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We present here a methodology for real-time analysis of diffraction images

acquired at a high frame rate (925 Hz) and its application to macromolecular

serial crystallography at ESRF. We introduce a new signal-separation algorithm,

able to distinguish the amorphous (or powder diffraction) component from the

diffraction signal originating from single crystals. It relies on the ability to work

efficiently in azimuthal space and is implemented in pyFAI, the fast azimuthal

integration library. Two applications are built upon this separation algorithm: a

lossy compression algorithm and a peak-picking algorithm. The performances of

both are assessed by comparing data quality after reduction with XDS and

CrystFEL.

1. Introduction

X-ray macromolecular crystallography is one of the most

successful methods to determine the atomic structure of

biological molecules. However, the achievable diffraction

quality may often be limited by radiation damage. Although

cryogenic conditions permit one to extend the lifetime of

crystals in the X-ray beam and to increase the maximum

absorbed dose before inducing damage, they may hinder

analysis of physiologically relevant conformations. This

limitation has renewed the interest in room-temperature

macromolecular crystallography through applying a more

drastic approach to overcome the radiation-damage problem

by collecting data from thousands of small crystals, in what has

become known as serial crystallography. First developed at

X-ray free electron laser sources (Chapman et al., 2011; Boutet

et al., 2012), the method is also currently applied at synchro-

tron sources (Diederichs & Wang, 2017; Gati et al., 2014;

Nogly et al., 2015; Owen et al., 2017).

1.1. Serial crystallography using synchrotron sources

Serial crystallography involves exposing thousands of small

crystals to the X-ray beam only once in a serial way. Diffrac-

tion is collected with a very high flux density, in order to

extract the most information from a single shot. This is in

contrast with traditional rotational crystallography, where a

complete dataset is collected from a single crystal rotated

around one (or several) axis. These serial synchrotron crys-

tallography (SSX) images represent a slice through the reci-

procal space and thus intersect a lower fraction of the

reciprocal space in comparison with rotational crystal-

lography, as the crystal is still. To achieve a complete dataset,

thousands of frames have to be collected, individually indexed

and then merged. The high flux needed to collect all of the
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diffraction signal from a single crystal within a single exposure

makes the SSX technique a good candidate to benefit from

fourth-generation synchrotron sources, such as the new

ESRF–EBS update (Chaize et al., 2018). However, macro-

molecular crystallography beamlines are extremely specia-

lized towards rotational data collection and thus require

modifications to the experimental setup to perform SSX

experiments. The synchrotron serial crystallography beamline

ID29 at ESRF (Orlans et al., 2025) has been built to have a

dedicated environment to perform SSX experiments with a

high flux (using a larger energy bandwidth with a multilayer

monochromator), a high-speed chopper (to separate X-ray

pulses), several sample-delivery methods and a fast detector.

1.2. Jungfrau 4M detector

Macromolecular crystallography has vastly progressed in

recent decades with the introduction of photon-counting

detectors (Broennimann et al., 2006). With their absence of

readout noise and their fast speed, the main limitation of

photon-counting detectors is the achievable count rate, i.e.

how fast the electronics of a pixel are able to count arriving

photons.

The ID29 beamline features a Jungfrau 4M detector. Unlike

photon-counting detectors such as the Eiger detector

(Casanas et al., 2016), the Jungfrau detector (Mozzanica et al.,

2016) is an integrating detector. Thus it is not limited by the

count rate, even under the very intense flux expected when

recording Bragg peaks. To cope with this photon density, every

single pixel implements an automatic gain-switching

mechanism (three levels), which offers a precision of the order

of one-third of a kiloelectron volt in the higher-gain mode, a

precision of the order of one photon at the intermediate level

and the ability to cope with thousands of photons in the lower-

gain mode. Moreover, the Jungfrau detector is able to operate

at 2 kHz, which means the image must be read every half a

millisecond. Since the Jungfrau detector is an integrating

detector, dark-current and flat-field corrections have to be

applied: every pixel has three ‘pedestals’ and three gain values

(one for each gain level). This large number of parameters per

pixel makes the pre-processing of the raw signal challenging at

full speed: the signal from a single pixel, initially packed with

16 bits, gets expanded to 32 bits (floating point or integer

value), doubling the required bandwidth and the storage size

(Leonarski et al., 2020). The Jungfrau 4M detector at the ID29

beamline operates at 1 kHz, with pace imposed by the chopper

and synchronized with the photon bunches from ESRF. At

nominal speed, the detector will produce 16 GB of pre-

processed data per second, making the data analysis and

storage extremely challenging.

1.3. Requirements for online data processing

Serial crystallography is one of the techniques where online

data processing is likely to have the most impact: millions of

images are collected and existing detectors already saturate

the fastest storage systems, not even considering the cost of

this storage. Beside this, only a small percentage of the frames

are expected to contain diffraction signal and, out of them, a

fraction will be indexed, integrated and thus useful to solve the

protein structure. Efficient processing of raw images is

therefore essential for SSX.

This article describes the methodology that has been

developed for real-time analysis of diffraction images acquired

with the Jungfrau detector at the ID29 beamline of ESRF. The

algorithms described here were developed in OpenCL

(Khronos, 2008) using the pyFAI software package (Kieffer &

Wright, 2013) and are currently in use at ESRF and at other

facilities.

The data processing stategy involves five levels of increasing

complexity: (1) image reconstruction with pedestal correction,

(2) a veto algorithm to sieve out images with poor signal, (3)

saving of only pixels with diffraction signal, (4) precise loca-

tion of peak position with indexing (Gasparotto et al., 2024)

and (5) real-time integration of diffraction peaks.

Reconstruction and pedestal correction have already been

described by Debionne et al. (2022a). This article will focus on

the subsequent steps – the detection of signal is addressed in

Section 2, sparse data compression in Section 3 and peak

finding in Section 4 – before drawing some conclusions in

Section 5.

2. Algorithm for the separation of the amorphous

background from the Bragg peaks

2.1. Background scattering

The simplest implementation of Bragg peak separation is to

assume that the background signal originates from scattering

of amorphous material giving an isotropic signal that ideally

presents only smooth variations. Before background subtrac-

tion, the raw signal has to be corrected for dark noise and for

any systematic anisotropic effects such as polarization

corrections. Unlike X-ray free electron lasers, a synchrotron

X-ray beam is better characterized in energy and shows little

to no pulse-to-pulse variability. All anisotropic correction can

be easily modeled and taken into account. The same method

can be extended to separate Bragg peaks from powder

diffraction if the powder signal is isotropic, i.e. without

preferred orientation.

The initial implementation of signal separation in pyFAI

(Kieffer & Wright, 2013) relies on a 2D polar transform

followed by a median filter in the azimuthal dimension to

calculate the amorphous scattering curve. Although this

method has been successfully used for large dataset analysis

(Bordet et al., 2021), it presents four major drawbacks: (i) the

2D averaging mixes the signal originating from several pixels

and blurs the signal; (ii) pixel splitting is needed to leverage

the Moiré effect in the 2D averaging, but this further increases

the blurring (Fang et al., 2020); (iii) the 1D curve obtained

after the application of the median filter shows sharp jumps

from one azimuthal bin to its neighbor; and (iv) the median

filter is computationally heavy since it is required to sort out

every azimuthal bin.
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We have improved on this by developing a new efficient way

of performing the azimuthal averaging (including the asso-

ciated uncertainty propagation).

2.2. Efficient azimuthal averaging and uncertainty evaluation

2.2.1. Pre-processing

The first step of the analysis involves applying a pixel-wise

correction for dark current and several normalization

corrections (Kieffer et al., 2020):

Icor ¼
signal

norm
¼

Iraw � Idark

F�PAI0

: ð1Þ

In equation (1), the numerator (referred to as ‘signal’ here-

after) is given by the subtraction of the dark current Idark from

the detector’s raw signal Iraw. The denominator (hereafter

‘norm’) is a normalization factor composed of the product of

F, a factor accounting for the flat-field correction; �, the

solid angle subtended by a given pixel; P, the polarization-

correction term; and A, the detector’s apparent efficiency

which is related to the incidence angle of the photon on the

detector plane. For integrating detectors, photons with high

energy see a longer sensor path with larger incidence angles

compared with the normal thickness, and thus they have a

higher detection probability. The intensity is also normalized

by the incoming flux I0 but, it being independent of the pixel

position, this correction can be applied when convenient.

2.2.2. Azimuthal averaging

Historically, azimuthal averaging has been implemented

using histograms (Hammersley et al., 1996). Since the

geometry of the experimental setup is fixed during the

acquisition, a look-up table listing all pixels contributing to

each azimuthal bin can be built and used to speed up calcu-

lations (Kieffer & Ashiotis, 2014). The azimuthal transfor-

mation being a linear transformation, it can be implemented

as a matrix multiplication, with a sparse matrix representing

the transformation and a dense vector containing the flattened

view of the diffraction image. The compressed sparse row

matrix representation is preferred for its efficiency in

performing dot products with dense vectors (Toledo, 1997).

The coefficients ci,r of the matrix are the fraction of area of a

pixel i falling into the radial bin r. In the case where pixel

splitting is deactivated, these coefficients (ci,r) are always one

(and zero elsewhere) since each pixel contributes to a single

bin. Sparse-matrix multiplication can be used to efficiently

sum values for all pixels belonging to the same bin. The

summed signal divided by the summed normalization provides

the weight-averaged intensity over all pixels falling in the bin

at the distance r from the center, as formalized in equation (2):

hIir ¼

P
i2binr

ci;r signali
P

i2binr
ci;r normi

: ð2Þ

2.2.3. Uncertainty evaluation from Poisson distribution

Photon-counting detectors, such as Eiger detectors, suffer

from hardly any error beside the counting uncertainty, which is

often referred to as Poisson statistics. This statistical law is

described by a single parameter �, which is related to the mean

� and standard deviation � from a normal distribution by � =

� = �2. Other sources of noise, like the dark-current noise in

the case of an integrating detector, superimpose quadratically

on the Poisson noise, as presented in equation (3):

varI ¼ ð�IÞ
2
¼ hIrawi þ ð�darkÞ

2
: ð3Þ

During the azimuthal integration, the coefficient of the sparse

matrix needs to be squared in the numerator when propa-

gating the variance [equation (4)] to have uncertainties �

proportional to the fraction of the pixel considered:

½�rðIÞ�
2
¼

P
i2binr

c2
i;r�

2
i

P
i2binr

ci;r normi

: ð4Þ

One should distinguish the uncertainty of the mean (some-

times referred to as the standard error of the mean, sem),

which describes the precision with which the mean is known

[and is described by Kieffer et al. (2020)], from the uncertainty

of the pixel value (often referred to as standard deviation,

std), which describes the uncertainty with which the pixel

value is known. These two values differ only by the square

root of the number of measurements in the case of an arith-

metic mean: sem = std/(N)1/2, with N being the number of

pixels contributing to the bin. When considering the weighted

average, the previous formula becomes

semr ¼ stdr

P
i2binr

c2
i;r norm2

i

� �1=2

P
i2binr

ci;r normi

: ð5Þ

Thus, the more data points collected, the more precisely the

mean value is known, but the uncertainty for a given point

remains the same. Since this article focuses on the uncer-

tainties of pixel values, the standard deviation will system-

atically be used from here on.

2.2.4. Uncertainty evaluation from the variance in a bin

Unlike photon-counting detectors, most detectors do not

follow the Poisson distribution, and therefore the definition of

a relation �2 = f(I) is not simple, if possible at all. The inte-

grating Jungfrau detector has a complex gain-switching

mechanism (Leonarski et al., 2020), which makes this equation

complicated. Therefore, a generic approach is proposed to

measure the variance in every single azimuthal bin.

When considering the diffraction of an isotropic compound

(liquid, amorphous or perfect powder), all pixels contributing

to the same radial bin should see the same flux of photons

(after correction of anisotropy like polarization), and the

deviation of their intensities can be used to estimate the

uncertainty. This approach is of course limited when consid-

ering the signal coming from a few large crystallites (where

rings become spotty) but it provides an upper bound for the

uncertainty. Variances (thus standard deviations) are usually

research papers
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obtained in a two-step procedure: one pass to calculate the

average value [equation (2)] and a second to calculate the

deviation from the average [equation (6)]. This double-pass

approach can be implemented using sparse-matrix multi-

plication. This requires twice the access to each pixel value,

and extra storage space, but it is numerically robust (i.e. not

prone to numerical-error accumulation).

½�rðIÞ�
2
¼

P
i2binr

c2
i;r norm2

i ½ðsignali=normiÞ � hIir�
2

P
i2binr

c2
i;r norm2

i

ð6Þ

and

½�rðhIiÞ�
2
¼

P
i2binr

c2
i;r norm2

i ½ðsignali=normiÞ � hIir�
2

ð
P

i2binr
ci;r normiÞ

2
: ð7Þ

Single-pass implementations of variance calculation are faster

than double-pass ones since they access pixels only once and

offer, in addition, the ability to perform parallel reductions

(Blelloch, 1996), i.e. work with blocks of pixels. Schubert &

Gertz (2018) present a complete review on the topic, which

introduces a formalism adapted here for crystallography. First,

assume that the weight of a pixel is !i = ci normi. If P is a

partition of the ensemble of pixels falling into a given

azimuthal bin, let �P, VP and VVP be the sum of weights

[equation (8)], the weighted sum of V [equation (10)] and the

weighted sum of deviation squared [equation (11)] over the

partition P, respectively:

�P ¼
P

i2P

!i ¼
P

i2P

ci normi; ð8Þ

��P ¼
P

i2P

!2
i ¼

P

i2P

c2
i norm2

i ; ð9Þ

VP ¼
P

i2P

!ivi ¼
P

i2P

ci signali ð10Þ

and

VVP ¼
P

i2P

!2
i ðvi � VP=�PÞ

2
: ð11Þ

The weighted average and associated variances are then

expressed as

hIiP ¼
VP

�P

¼

P
i2P ci signaliP
i2P ci normi

; ð12Þ

std2 ¼ ½�PðIÞ�
2
¼

VVP

��P

ð13Þ

and

sem2 ¼ ½�PðhIiÞ�
2
¼

VVP

�2
P

: ð14Þ

In this formalism, equations (2) and (12) on one side and

equations (6) and (13) on the other are actually equivalent.

Schubert & Gertz (2018) present a way to perform the union

of two sub-partitions A and B of a larger ensemble that opens

the doors to parallel reductions, which are especially efficient

when implemented on a GPU:

�A[B ¼ �A þ�B; ð15Þ

VA[B ¼ VA þ VB; ð16Þ

VVA[b ¼ VVA þ !
2
b vb �

VA

�A

� �

vb �
VA[b

�A[b

� �

ð17Þ

and

VVA[B ’ VVA þ VVB þ
��BðVA�B � VB�AÞ

2

�A[B�A�2
B

: ð18Þ

While equations (15) and (16) are trivial, equation (17)

describes the nominator of the variance of an ensemble when

adding an extra member b to A. Unfortunately, the slight

difference of formalism between Schubert & Gertz (2018) and

this work prevents some simplification from occurring, and

leads to the approximate numerator of the variance (VV) in

the case of the union of two ensembles A and B [equation

(18)], used in OpenCL reduction.1 However, a numerical

stability issue can arise from it when VA or VB are very small,

and this issue is addressed by using double-precision arith-

metic when implemented on a CPU and double-word arith-

metic when running on a GPU (Joldes et al., 2017).

2.2.5. Comparison of uncertainty models

Fig. 1(b) presents the uncertainties (for the pixel value) as

calculated from a background frame with pure Poisson noise

[Fig. 1(a), synthetic data] using the two algorithms previously

described: the Poisson model or calculated from the variance

in the azimuthal bin. While the two curves show similar

amplitude, except in the corner of the detector where very few

pixels contribute to each of the azimuthal bins, the variability

of the ‘azimuthal’ model is much greater from one bin to the

neighboring one.

2.3. Histogram intensity

Fig. 2 presents the diffraction from a single crystal of insulin

collected with a Pilatus 6M detector [Fig. 2(a)] and several

curves obtained from azimuthal integration of these data. Fig.

2(b) is the azimuthally integrated signal (blue curve), where

Bragg peaks are seen as spikes on top of a smooth back-

ground. Fig. 2(c) presents the uncertainties measured

according to the Poisson distribution (orange curve) or the

deviation in the ring (blue curve). The latter presents much

larger values since Bragg peaks contribute a lot to the

deviation despite them representing few pixels: this highlights

the sensitivity of the mean/std to outliers. Fig. 2(d) presents

histograms of pixel intensity for pixels lying at 87 and 160 mm

from the beam center. Each of these histograms is composed

of a bell-shaped distribution with a few positive outliers, which
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1 See https://github.com/silx-kit/pyFAI/blob/main/doc/source/usage/tutorial/Variance/
uncertainties.ipynb.
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Figure 2
(a) A single-crystal diffraction frame obtained from insulin with a Pilatus 6M detector with (b) the azimuthally averaged signal before and after clipping
data. (c) Uncertainties when calculated assuming a Poissonian error model (orange, red) or when measuring the deviation within all pixels in a ring
(green, blue). (d) A histogram of intensities for two rings at r = 87 mm and r = 160 mm from the beam center with the distribution fitted as Gaussian
curves: gðxÞ / exp½� ðx � �Þ2=2�2�.

Figure 1
(a) A simulated diffraction frame of a Pilatus 6M detector with pure azimuthal Poisson noise and (b) uncertainties for pixel intensity as measured with
the distance to the mean (azimuthal model, blue) or from the Poisson model (orange).



are usually Bragg peaks. The histograms in Fig. 2(d) have been

fitted with Gaussian curves, and the center (�) and the width

(�) of the curves match roughly with the average [in Fig. 2(b)]

and uncertainties [in Fig. 2(c)].

The core idea of the algorithm for background extraction is

to model the distribution of background pixels. Unlike

Bayesian statistics (Sivia & Skilling, 2006) where the cost

function is usually tuned to give less weight to outliers, here

these outliers are simply flagged and discarded. Positive

outliers can reasonably be assigned to Bragg peaks and

negative outliers to shadows or defective pixels. The distri-

bution is recalculated after discarding pixels for which the

intensity differs from the average value by more than n times

the standard deviation,

jI � hIij> n�ðIÞ; ð19Þ

where n is called the signal-to-noise ratio (SNR). This clipping

re-centers the distribution of the remaining pixels since the

mean is sensitive to outlier values. The orange plot in Fig. 2(b)

presents the average after having discarded these outliers, and

the red and green curves of Fig. 2(c) are the uncertainties

calculated after this clipping. After clipping, the average and

uncertainty curves have lost most of their spikes, which means

that most Bragg peaks and shadowed pixels have been

discarded.

Of course this works only if the background signal is

isotropic, ideally smoothly varying, and there are many more

background pixels than peaks or shadowed pixels. While

shadows can be handled with a user-defined mask, anisotropy

in the background scattering, as is sometimes observed with

certain stretched plastic films in fixed-target mode, is much

more challenging and will not be addressable with this

analysis.

2.4. Sigma clipping

The sigma-clipping algorithm consists of applying this

outlier rejection several times. If the initial distribution is

mono-modal, this algorithm gradually forces the data to be

sampled symmetrically around the maximum probability,

which is likely to look like a normal distribution. If the initial

distribution is more complicated (typically multi-modal), the

larger standard deviation will prevent most outlier pixels from

being rejected, making it more conservative. The sigma-

clipping algorithm uses two parameters: the number of itera-

tions and the rejection cut-off (SNR). Despite the execution

time being proportional to the number of iterations of sigma

clipping, iterations should continue until no more outliers are

found, so that the background data can be treated assuming a

normal distribution. Since the loop exits as soon as no more

outliers are discarded at the clipping step, having an arbitrary

large number of iterations is not really an issue for the

execution time and the number of actual iterations is usually

few (3 are commonly observed).

2.4.1. Limits of the Poissonian approach

The evaluation of uncertainties based on the variance

within a radial shell (azimuthal model) was developed after

numerical artefacts were discovered while performing sigma

clipping with a Poissonian approach. Some azimuthal bins

showed no pixel contribution at all and thus appeared without

any mean or uncertainties, jeopardizing the complete back-

ground-extraction algorithm. This artefact was directly linked

to the usage of Poisson statistics and can be demonstrated with

a simple distribution of two pixels with values 1 and 199. The

mean of this distribution is 100 and the standard deviation is

also close to 100, while the uncertainty derived from a Pois-

sonian law would be close to 10 (i.e. 1001/2). With the azimu-

thal error model, both pixels are 1� from the mean, while with

the Poissonian error model, pixels are at 10�. This explains

why bins featuring strong Bragg peaks on top of a low back-

ground got completely emptied of any contributing pixels

when sigma clipping was performed assuming Poissonian

noise.

Unlike the Poisson error model, the azimuthal model

provides uncertainties that are resilient to diffraction data

coming from several types of samples but show much more

variability from one bin to its neighbor [Fig. 1(b)]. The

package pyFAI introduces a hybrid error model that uses the

azimuthal error model for the sigma-clipping stage, which

trims the ensemble of pixels to become mono-modal. The

uncertainties are then calculated using the Poisson error

model on the trimmed ensemble.

2.4.2. Clipping threshold

The clipping threshold can be automatically calculated via a

variation of Chauvenet’s criterion (Maples et al., 2018) where

one would accept to discard only a single pixel in a ring with a

signal already following a normal law. Thus, the threshold

value is adapted to the size of the distribution, i.e. the number

of pixels in each ring [equation (20)], which can reach several

thousands and shrinks with iteration:

SNRchauv: ¼ 2log
size

2�ð Þ
1=2

� �� �1=2

: ð20Þ

Typically, the numerical value for this cut-off varies from 2

to 4.

The worse-case scenario for sigma clipping corresponds to

an initial distribution that is very far from a normal distribu-

tion, like the bimodal distribution seen in the previous section.

Another challenging situation occurs close to the detector

corners where the background signal is low and the size of the

distribution is decreasing. For example, this cut-off parameter

increases from 2.7 to 3.5 when the size of the ensemble

increases from 100 to 1000 elements. So, for a Poissonian

detector and a low count rate of 1 (� = � = �2 = 1), any pixel

with intensity greater than 4 is discarded with an ensemble of

100 pixels, while the cut-off is greater than 5 for an ensemble

of 1000 pixels.
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3. Application to lossy image compression for X-ray

diffraction

Diffraction images from protein crystals usually exhibit an

isotropic background on top of which Bragg peaks appear

(discarding any diffuse scattering). The sigma-clipping algo-

rithm can be used to select the background level and, more

importantly, the associated uncertainty. This lossy compres-

sion algorithm consists of saving only pixels where intensity is

above the average background value (�) plus n standard

deviation (�).

The decompression simply restores these intense pixels and

builds a smooth background for the missing ones (possibly

with noise). The cut-off value n (also called SNRpick) controls

the amount of data to store. It is linked to the compression

ratio. Assuming a normal distribution has been enforced at the

sigma-clipping stage, 16% of the pixel is recorded with n = 1,

2.3% for n = 2 and only 0.13% for n = 3, as depicted in Fig. 3.

The compressed data format consists of (1) pixel intensities

and positions for pixels worth saving, (2) the average level of

the background and associated uncertainties as a function of

the distance to the beam center, and (3) the distance to the

center of every pixel.

Since diffraction analysis software performs some kind of

noise-level analysis, the background signal has to be regen-

erated with intensity and noise similar to the original data.

3.1. Sparsification/compression

The sigma-clipping algorithm was originally written for real-

time sparsification of single-crystal diffraction data, and its

integration into the Library for Image Acquisition Version 2

(Lima2) detector control system (Petitdemange et al., 2018)

for the Jungfrau 4M detector used at ESRF ID29 is described

by Debionne et al. (2022b). The constraints of real-time

analysis meant that we had to develop code running on GPUs,

since these devices are several times faster than equivalently

priced processors. All algorithms were developed in OpenCL

(Khronos, 2008) and implemented in the pyFAI software

package (MIT license, available on github). A command-line

tool called sparsify-Bragg has been available for testing off-

line since version 2023.01.

All the pixel coordinates and intensities are stored in an

HDF5 container (The HDF Group, 2000–2021) following the

NeXus convention (Könnecke et al., 2015), together with a

snippet of Python code explaining how to rebuild the dataset.

All sparse datasets (averaged and uncertainties curves, pixel

coordinates, etc.) are compressed with bitshuffle-LZ4 (Masui

et al., 2015) lossless compression.

3.2. Densification/decompression

Since no crystallographic software package can deal with

this sparse format (yet), a densification code was developed to

regenerate initial frames and the densify-Bragg program was

made available as part of the FabIO (Knudsen et al., 2013)

software package (MIT license). The source code is deposited

on github (https://github.com/silx-kit/fabio) and densify-Bragg

has been available since version 2022.12 via usual channels

like pip or conda install. The software constraints for this

densification code are very different from those for sparsifi-

cation since this code can be used by users after they have left

the beamline. For this reason, densify-Bragg was optimized to

run on a multi-core CPU. Maybe an important consideration is

whether, regardless of the file format, it is necessary to

reconstruct the background or not. In fact, some crystal-

lographic reduction programs like CrysAlisPro (Rigaku

Oxford Diffraction, 2015) provide a better result with noise-

less background while XDS (Kabsch, 2010), which performs a

deep noise analysis, needs to have the noisy background

properly restored. Shaded regions are never reconstructed

properly and should be masked adequately in the reduction

software.

Future development will focus on HDF5-plugins able to

provide access to densified images from their sparse repre-

sentation using a user-defined function in HDF5 (Real & de

Bayser, 2021). This will allow any analysis software (already

able to read HDF5 files) to treat sparse data as if they were

dense, removing the burden of densifing the images from the

users.

3.3. Performance on a single-crystal protein dataset

The performance for a lossy compression algorithm was

evaluated along many directions: compression and decom-

pression speeds, compression ratio, and degradation of the

recorded signal. In the following example, we present the

sparsification of an egg-white lysozyme (HEWL) dataset

obtained using traditional oscillation data collection. Data

were collected on an Eiger 4M detector (Dectris, 2014),

selected for its similarity in size and performance to the

Jungfrau detector. These data were then densified again to

regenerate the data and processed in XDS (Kabsch, 2010).

Data-quality indicators were finally compared between the

original dataset and the one that went through the lossy

compression presented here.
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Figure 3
Normal distribution and probability of having pixels with intensities
above a certain threshold. The cut-off parameters govern how much
signal is integrally kept, thus the achievable compression rate on the one
hand and the limit of quality of data on the other. It is the user’s
responsibility to set this threshold wisely.

https://github.com/silx-kit/fabio%20


3.3.1. Compression ratio

After sparsification (picking cut-off: 2�; error model: Pois-

sonian), the size of the dataset is still 103 MB, which represents

a 15� compression ratio compared with the standard proce-

dure. For conformance with the state of the art, the reference

dataset was re-compressed using the bitshuffle-LZ4 algorithm

(Masui et al., 2015), for which the 1800 frames have a size of

1500 MB (instead of the 5000 GB of the original files

compressed in LZ4).

The maximum theoretical compression ratio for 2� is 22�

(Fig. 3, neglecting the storage of the background data and

effects of the lossless compression). To evaluate the effective

maximal compression ratio, the dataset was median filtered

along the image stack to produce an image without peaks. A

background dataset of 1800 such images sparsifies into an

11 MB HDF5 file, which represents a compression ratio of

136�. Indeed, only 19 pixels were saved per frame and the

compressed numerical values are mostly the same, which

facilitates compression with bitshuffle-LZ4.

For ESRF-ID29, where the Jungfrau 4M detector can

operate close to 1 kHz, the pedestal + gain pre-processing

converts 16-bit integers into 32-bit floating point values,

doubling the bandwidth for data saving. The detector outputs

the data via 8� 10 Gbit s� 1 network links and the storage is

performed via a single 25 Gbit s� 1 link, making a minimum

compression ratio of 6.4�.

In production conditions, ID29 users have to trade between:

(a) Detector speed: operate at a lower speed (231 Hz) to

save the pre-processed data.

(b) Energy resolution: floating data compress badly, so they

are better stored as integers, where the number of analog-to-

digital units (ADUs) per photon can be tuned. With 1 ADU

per photon, one gets the best compression rates but loses the

sub-photon energy resolution of the Jungfrau detector.

(c) Using the burst mode: acquire only shorter datasets and

make pauses to let the data reach the disk in the central

storage.

(d) Discarding pixels of lower intensity: this is a new

possibility offered by this algorithm. A cut-off at 1.5� should

already provide the 6.4� compression ratio needed (Fig. 3).

3.3.2. Compression speed

The compression speed has been measured on a computer

designed for online data reduction of the Jungfrau detector

(Debionne et al., 2022b): an IBM AC922 using two Power9

processors and two Nvidia Tesla V100 GPUs. The sequential

execution of the code on the GPUs takes about 4 ms to

process one image, and uses one single CPU core and a GPU.

In production conditions, two such computers each drive two

GPUs (for a total of 4 GPUs), allowing one to use the detector

at its nominal speed close to 1 kHz. The main bottleneck

remains the networked saving of the different files: pre-

processed files, sparse files, peak positions, accumulated

frames, . . . . Not all can be saved at all times when operating at

full speed.

3.3.3. Decompression speed

The decompression of these data should typically be

performed on a standard workstation (here, running two Intel

Xeon Gold 6134 CPUs @ 3.20 GHz): the reconstruction speed

takes 30 s for the full dataset, while writing of the densified

dataset (with bitshuffle-LZ4 compression) takes 45 s. Densi-

fication is thus faster than writing on disk. The reading time of

the input sparse dataset is negligible (<2 s).

3.3.4. Quality of the restored dataset

The densified dataset was processed via XDS and the

summary indicator for the quality of the results was compared

with that from the reduction of the original dataset. Since

these integrators are measured on integral peaks with I/� > 3

and the sparsification was performed with a cut-off of 2, these

results should be almost unaffected, which is confirmed in

Table 1.

Of course, these data were collected on a test sample with a

very intense signal; but the example demonstrates that the

algorithm does not destroy the signal. However, with more

challenging samples, exhibiting lower I/�, the threshold for

picking pixels has to be lower to ensure all pixels relevant for

subsequent analysis are actually preserve: unless, and as

described by Galchenkova et al. (2024), this sparsification

would be detrimental for the quality of the reduced data.

3.4. Influence of the sparsification on the quality of serial

crystallography data acquired with an Eiger detector

Tiny crystals of HEWL + gadolinium were deposited on a

SiN membrane and this membrane was scanned on the

ID30A3 beamline at ESRF (massif3) using an Eiger 4M

detector. The dataset consists of 11 637 frames of images, out

of which 11 512 were properly indexed.

3.4.1. Quality-indicator degradation

The Rfree/Rwork quality indicators (Brünger, 1992) were

calculated for the initial dataset and compared with the same

dataset sparsified at 0.8�, 1.0�, 1.4� and 2.0�, and subse-

quently re-densified (Fig. 4).
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Table 1
Quality indicators after peak integration and averaging using XDS
(Kabsch, 2010).

The lysozyme (HEWL) dataset was provided by Dectris for advertising their
Eiger 4M detector (Dectris, 2014).

Initial dataset Lossy compressed dataset (2�)

Indicator 2.91 Å 2.06 Å All 2.91 Å 2.06 Å All

Completeness 98.8 90.8 93.8% 99.8 90.6 93.5%
Robs ¼P

jIh;i � Iij=
P

Ih;i

9.9 57.3 12.5% 9.2 61.2 11.4%

Rexpected 8.8 73.2 15.0% 8.2 68.7 12.1%
Rmeas† 10.3 61.2 13.2% 9.6 65.5 12.0%
CC1/2‡ 99.7 94.0 99.7 99.6 95.4 99.7

hI/�i 25.80 5.39 10.52 26.33 4.09 10.17

† Diederichs & Karplus (1997). ‡ Karplus & Diederichs (2012).



As expected, the crystallographic quality indicators show a

gradual degradation with increasing sparsification but Rfree

shows little degradation with little sparsification (0.8�,

compression ratio of 2�).

3.4.2. Quality indicators as a function of the resolution shell

The same Rwork and Rfree quality indicators are reported in

Fig. 5 as a function of the resolution shell in order to monitor if

the degradation is uniform among shells or if it affects mostly

the outer shells. These indicators compare the initial dataset

with the sparsified ones at 0.8� and 2.0�, which were subse-

quently re-densified for the analysis.

Both Rwork and Rfree exhibit degradation as expected and

this degradation is rather uniform over all shells; it does not

affect the outer shells more. The degradation of Rfree at

moderate sparsification (0.8�) is once again very limited.

3.4.3. Ability to phase sparse data and quality of the density

map

One of the main concerns with sparsification is that it may

degrade the weak anomalous signal, which is precious for

phasing. The HEWL + Ga dataset was truncated at different

lengths (from 3000 to 7000 out of the 11 512 frames) in order

to ‘artificially’ decrease the anomalous signal strength in the

dataset. Fig. 6 shows the number of residues that were prop-

erly placed in the electron-density map with an automatic

procedure.

The sparsified dataset does not show fewer residues prop-

erly placed after the procedure; it even looks marginally better

than the initial dataset, especially for larger compression

factors where the dataset could be phased with as few as 3500

frames. With Eiger detector data, a sparsification at 0.8� offers

2� extra compression without noticeable degradation of the

quality of the processed data.

3.5. Influence of the sparsification on the quality of serial

crystallography data acquired with a Jungfrau detector

3.5.1. Dataset description

Small crystals of an NQO1 sample (Grieco et al., 2024),

complexed with NADH, were collected at ESRF-ID29 using a
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Figure 5
Rwork and Rfree crystallographic quality indicators at different resolution shells obtained from the complete dataset (11k frames) of HEWL + Ga. The
quality of the sparsified data (at 0.8� and 2.0�) is compared with the initial dataset.

Figure 4
Degradation of Rwork and Rfree crystallographic quality indicators on the
integral dataset of HEWL + Ga (11k frames) and actual compression
rates, when increasing the levels of sparsification.



fixed-target sample environment and the Jungfrau 4M

detector (PDB code 8rfm). The complete dataset represents

574k frames (5 TB), out of which 25 809 frames were selected

with nice peaks (4.5% of the total). The indexing rate for

dense data and two sparse datasets (cut-offs at 1.0� and 1.4�)

is reported in Table 2, and the crystallographic quality indi-

cators are reported in Fig. 7 in reciprocal space and Fig. 8 in

real space.

3.5.2. Data statistics

The processing was performed with CrystFEL (White et al.,

2012) (version 0.11) with the geometry of the detector opti-

mized with the Millepede procedure (Blobel & Kleinwort,

2002; Kleinwort, 2021–2024). Indexing was performed with the

default parameters of xgandalf (Gevorkov et al., 2019) based

on peak position from peakfinder8 (Barty et al., 2014).

From the hIi/� curve, Fig. 7(a), there is a systematically

lower SNR from sparsified data in comparison with the initial

dataset, regardless of the resolution shell. This could be due to

too much noise being added when densifying the data, espe-

cially when this dataset was acquired (and processed) at the

full energy resolution of the Jungfrau detector, here 485

ADUs per photon (in comparison, an Eiger detector has 1

ADU per photon). The SNR curve obtained on uncompressed

data was used to assess the resolution shell at which there is no

more signal expected to be saved, shown by the two vertical

lines in green (1.4�) and orange (1.0�). On the right of these

lines, there is supposed to be no more signal, while on the left,

there is supposed to be no degradation of the signal in an ideal
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Figure 7
Comparison of crystallographic quality indicators as a function of the
resolution shell for sparsified data (1.0� in orange and 1.4� in green) in
comparison with the initial dense data (in blue): (a) SNR, (b) Rsplit and (c)
CC1/2. The two vertical lines indicate the resolution shell at which the
SNR drops below the sparsification threshold, i.e. the limit at which all
signal is expected to be lost.

Table 2
Indexing statistics of the NQO1 dataset (25 809 frames, 4.5% of the
complete dataset).

Dense Sparse 1.0� Sparse 1.4�

Disk space (MB) 166 52 32
Compression 1� 3.2� 5.2�

Frames indexed 22874 20176 20384
Indexing rate (%) 88.6 78.2 79.0

Figure 6
Influence of the sparsification (at 0.8� and 2.0� versus the initial dataset)
on the ability to phase the HEWL + Ga protein with an artificially
reduced number of frames, in order to limit the strength of the anomalous
signal.

Figure 8
Comparison of crystallographic quality indicators in real space after
refinement using phenix.refine as a function of the resolution shell for
sparsified data (1.0� in orange and 1.4� in green) in comparison with the
initial dense data (in blue): (a) completeness of the dataset, (b) Rwork

(dotted) and Rfree (dashed), and (c) CCwork
1=2 (dotted) and CCfree

1=2 (dashed).
The two vertical lines indicate the resolution shell at which the SNR drops
below the sparsification threshold, i.e. the limit at which all signal is
expected to be lost.



case. The evolution of Rsplit and CC1/2, plotted in Figs. 7(b) and

7(c), shows a degradation of the quality that is much earlier, by

half an ångström, in comparison with what would have been

expected.

3.5.3. Refinement statistics

These data were finally refined in real space using

phenix.refine (Afonine et al., 2012) until a resolution of 2.7 Å,

which is noticeably better than what can be expected from the

sparse data (limited to 3.0 and 3.1 Å for 1.0� and 1.4�,

respectively). The results are summarized in Fig. 8.

Fig. 8(a) shows the completeness of the dataset as a function

of the resolution shell. It confirms that the sparsification

algorithm works as expected, and that the signal starts to

degrade where the SNR drops below the picking threshold.

Fig. 8(b) superimposes Rwork in dotted lines (full dataset) in

comparison with Rfree where the fit is performed on 95% of

the dataset and the quality assessment is performed on the

remaining 5% (dashed line). Thus, Rwork is always expected to

be better than Rfree. While Rwork for the initial dataset looks

much better than the sparsified version, the degradation is

very limited for Rfree, especially between the initial and the

sparsified dataset at 1�. The same is observed for CC1/2 in Fig.

8(c): the initial dataset shows a clear degradation between the

‘work’ version and the ‘free’ version, but this degradation is

less important for the sparsified version. The CCfree
1=2 indicators

hardly degrade between the initial dataset and the two spar-

sified ones, confirming the ability to solve the protein structure

from sparse data.

3.6. Conclusions on sparsification

The sparsification algorithm presented here is generally

applicable to any kind of single-crystal diffraction experiment

where the background is isotropic. This excludes notably

diffuse scattering experiments but is generally applicable to

small-molecule crystallography and macromolecular crystal-

lography, and even serial crystallography, when the images are

nicely centrosymmetric and shadows are properly masked out.

The additional compression offered by sparsification is espe-

cially interesting for serial crystallography, where datasets of

millions of frames are collected per experiment. As for any

lossy compression, the user still has the responsibility of

choosing wisely the threshold level as it will limit later on the

quality of the results one may extract from these data. This is

of crucial importance for macromolecular crystallography

where valuable information is still present in reflection with an

SNR of less than one (Karplus & Diederichs, 2012). We have

demonstrated that a sparsification at 0.8�, which has an actual

compression of 2.0� on Eiger data (2.6� for Jungfrau data),

preserves nicely the electron-density map and is hardly

distinguishable from the uncompressed data. Sparsification at

1.0�, offering a 2.6� compression on Eiger data (3.2� for

Jungfrau data), preserves enough signal to refine a protein

with very limited degradation of the Rfree and CCfree
1=2 quality

indicators. The Jungfrau data showed systematically larger

compression rates for sparsification because data were

collected with 485 ADUs per photon (and are tunable) while

Eiger detectors always operate at 1 ADU per photon (i.e. they

have less noise).

In contrast with ROIBIN-SZ (Underwood et al., 2023),

which preserves all pixels in the neighborhood of identified

peaks and stores the background heavily binned, the sparsi-

fication presented here does not require a complete peak

search; thus, it is simpler, with fewer parameters to be tuned,

and is able to save any pixel that is intense enough. Never-

theless, peak finding is of crucial importance for identifying

Bragg peaks, one of the first stages of any data-reduction

pipeline.

4. Application to peak finding for serial crystallography

A classical way of pre-processing serial crystallography data is

to shrink the amount of data by sieving out empty or bad

frames, only keeping the frames that deserve processing. This

is the role of the veto algorithm.

The sigma-clipping algorithm provides us with the back-

ground (average and deviation) and is used to pick pixels that

are likely to be part of Bragg peaks, like peakfinder8 (Barty et

al., 2014) does. For this, several additional checks are

performed on a local neighborhood that is a small square

patch (typically 3 � 3 or 5 � 5 pixels, user defined): (i) Is the

considered pixel the maximum of the local neighborhood? (ii)

Are enough pixels of the local neighborhood satisfying the

SNR condition (user-defined parameter)?

For each peak, the coordinates of the centroid, the sum of

data and its propagated deviation are recorded and reported.

These peak positions are saved into an HDF5 file (as repre-

sented by Fig. 9) following the CXI format (Maia, 2012), which

can be read from CrystFEL (White et al., 2012). CrystFEL

allows one to swap peak-picking algorithms (Zaefferer, 2000;

Barty et al., 2014; Hadian-Jazi et al., 2021) and indexing tools

(Kabsch, 2010; Powell et al., 2013; Ginn et al., 2016; Gevorkov

et al., 2019, 2020).

The serial crystallography beamline at ESRF (ID29) uses a

Lima2 monitor (Debionne et al., 2022a) as a visualization tool.

It is inspired by NanoPeakCell (Coquelle et al., 2015) for

online visualization and feeds back information to check if

peaks found actually correspond to the crystal lattice expected

for the sample. We will first compare the peak-picking algo-

rithm with some reference implementation on a single frame

before evaluating the quality of the picked points on a serial

crystallography dataset.

4.1. Comparison of picked peaks

Fig. 10 presents a comparison between the original peak-

finder8 described by Barty et al. (2014), interfaced in Python

via OnDA (Mariani et al., 2016), and the version implemented

in pyFAI on the same Pilatus 6M image already used in Fig. 2.

In Fig. 10, most peaks found by both implementations

match and correspond to Bragg reflections; the close-up on the

right allows one to visualize Bragg spots in the image. There

are more green peaks (found by pyFAI) closer to the beam
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center, while more orange peaks (found by OnDA) are

located in the outer shell. This plot was made with a minimum

SNR of 3 and a noise level of 1, since the Pilatus detector is

Poissonian.

Peaks were registered if four pixels met the SNR criterion

in a 5� 5 pixel patch around the peak. These parameters were

tuned to obtain a comparable number of peaks with both

implementations: 290 with pyFAI and 293 with OnDA. The

similarity of these figures enables a direct comparison of peaks

found per resolution shell, histograms that are plotted in

Fig. 11.

Fig. 11 presents histograms of q values (modulus of the

scattering vector) of the peaks found with different methods,

i.e. the number of peaks having a given q value. For read-

ability, these histograms (bin width of 2 nm� 1) have been

represented as plots with the horizontal axis labeled in d
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Figure 9
A peak-picking CXI file produced by pyFAI and visualized with the silx viewer (Vincent et al., 2021). The left-hand side contains the HDF5 tree structure
while the right-hand side presents the default plot with the number of peaks found per frame.

Figure 10
Comparison of the reference peakfinder8 interfaced with OnDA (in orange, execution time of 300 ms) and the version from pyFAI (in green, execution
time of 10 ms) on top of a Pilatus 6M diffraction frame of an insulin crystal. The subplot on the right is a close-up of the red rectangle.



spacing (q = 2�/d). The analysis of these histograms confirms

that the implementation in pyFAI is getting more points closer

to the beam center while the reference implementation is

picking more points at larger q values. This is probably due to

the curvature of the Debye–Scherrer ring: the original version

of peakfinder8 evaluates the variance in a neighborhood

defined by some radius around the point of interest and the

variance is higher close to the beam center because of the

substantial curvature of these rings. On the other hand, pyFAI

knows about this curvature and measures the variance along

the ring. Points picked by OnDA at larger q values do not look

like Bragg peaks, but this could be a side effect of the para-

meter tuning to get the same number of peaks for both

algorithms.

The same figure presents, with dashed lines, the number of

peaks that are coincident (within two pixels) with expected

reflections (after indexing using xgandalf ). This demonstrates

that the additional peaks found by pyFAI in the inner shell

(d > 3Å) are consistent with Bragg peaks and thus are valuable

for indexing, while the additional peaks found by OnDA in the

outer shell (d < 2Å) are not Bragg peaks and thus are detri-

mental.

A word on performance: the Python binding in OnDA to

the peakfinder8 algorithm from Cheetah runs in 180 ms on a

high-end server CPU (AMD Epyc 7262) and 300 ms on a

workstation (Intel Xeon E5-1650 v4). The version available in

pyFAI was designed in OpenCL (Khronos, 2008; Stone et al.,

2010; Klöckner et al., 2012) and runs best on GPUs: 30 ms on

an AMD Vega 56 and 10 ms on a Nvidia RTX A5000.

4.2. Quality of the peakfinder algorithm on serial

crystallography data

The quality of peaks extracted with this algorithm was

evaluated on a serial crystallography dataset. A subset of 1000

frames of the dataset used in Section 3.4 was used as a probe

and was indexed with the indexamajig tool from CrystFEL.

Since all frames show Bragg peaks (Fig. 9), the number of

indexed frames can be seen as a quality indicator of the peak-

picking algorithm used, when all other parameters remain

unchanged. The indexing was performed with the xgandalf

algorithm (Gevorkov et al., 2019) with default settings from

CrystFEL v0.10.1 and was provided with the following cell

parameters: tetragonal a ¼ b ¼ 78:77 Å; c ¼ 39:04 Å; � ¼

� ¼ � ¼ 90�. Table 3 compares the number of frames properly

indexed with the different picking algorithms available in

CrystFEL and with the algorithm presented here.

Since the Eiger detector is a counting detector, the global

threshold for algorithms zaef and peakfinder8 had to be

lowered (to 50, which is the maximum of the background

signal on any frame), and the default SNR value was used for

these algorithms. The same SNR value of 5 was used for

pyFAI. Default parameters were used for the peakfinder9 and

RobustPeakFinder algorithms. The reported runtime corre-

sponds to the execution time on a single core of an Intel Xeon

Gold 6134.

The indexing rate obtained with the algorithm from pyFAI

is on par with the reference implementations like peakfinder8

or peakfinder9 available from CrystFEL. Since time is mostly

spent in indexing, sets of peaks that are simpler to index

present a lower runtime as fewer retries are needed. Retries

can be deactivated but they increase significantly the success

of indexing. Table 3 also presents the indexing performances

when using the option –xgandalf-fast-execution from

indexamajig, which is five to six times faster and exhibits a

limited degradation of the indexing rate. The peak extraction

in pyFAI is about as fast as the sparsification, so it can be used

online to perform the pre-analysis and provide peaks to

NanoPeakCell. Nevertheless, the executable peak finder
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Figure 11
Number of peaks found in the different resolution shells for the peak finders implemented in pyFAI and in OnDA. The width of each radial shell is
2 nm� 1 in q space. The dashed lines represent the number of these peaks that have successfully been indexed, i.e. located at less than two pixels away
from an expected reflection (calculated by xgandalf).



available from pyFAI (offline tool) has a total execution time

that is much larger: about 30 s for 1000 frames, most of which

is spent in reading and writing the different HDF5 files.

4.3. Peak count as a veto algorithm

Since the background extraction and peak finding are

performed in real time on the serial crystallography beamline

ID29 at ESRF, the information about the number of Bragg

spots can be used to assess the quality of each individual image

and the acquisition system can decide to discard a frame

depending on the number of peaks and a live-adjustable

threshold.

Since the beginning of operation of ESRF-ID29 in 2022, the

beamline has operated with the veto algorithm deactivated;

the number of peaks found was just recorded for future

exploration. Here, Fig. 12 presents the indexing rate of ‘hit’ (in

blue) and ‘non-hit’ frames (in orange) when changing the

threshold for the minimum peak-count per frame. The

expected compression rate is displayed in green. The dataset

consists of 80 000 lysozyme micro-crystals between two mylar

films, raster scanned with an X-ray beam of 11.56 keV at

ESRF-ID29. The offline analysis was performed with

CrystFEL v0.11.0 using peakfinder8 and xgandalf as indexers.

Since the Jungfrau detector is an integrating detector, it has

relatively more background noise than a photon-counting

detector: here, data were saved with 8 ADUs per photon,

making the compression rates of hit and non-hit frames

similar. In this example, discarding frames with fewer than 20

peaks would have allowed one to save one-third of the

network bandwidth and disk space, losing only 0.16% of

indexable frames. The indexing rate of actually recorded

frames also increased to 20%. It is noticeable that the hit rate

was especially high in this experiment, with 84% of frames

showing diffraction peaks. One would not expect a user

experiment to have such a high concentration of crystals, and

in normal conditions the expected compression ratio should

be higher. The veto algorithm, having proved its robustness, is

now activated for most experiments, thanks to graphical

helper tools, to assess the optimal threshold during the

experiment and allow one to set these parameters on the fly

for real-time processing.

4.4. Limitations

There is a strong sensitivity in the indexing rate with data

from the Jungfrau detector, related to the description of the

detector in CrystFEL and in pyFAI. The Jungfrau 4M detector

is built from eight modules manually assembled and exhibits

some residual misalignment, of the order of a few pixels, and

mis-behaving pixels. This misalignment is much larger than

what is commonly encountered with Eiger detectors from

Dectris, where misalignment is usually less than one pixel in

size (75 mm). For Eiger detector data, where the detector is

defined as a single rigid module, the indexing rate is fairly

independent of the peak-picking algorithm as described in

Section 4.2. This means that the peak positions provided by

the veto algorithm are suitable for indexing and this saves

reading of the complete frame if it cannot be indexed.

With data from the Jungfrau detector, the indexing rate was

lower than with certain peak-finder algorithms integrated into

CrystFEL. Work is ongoing to convert the geometry descrip-

tion from pyFAI, where every pixel is independent, to the

geometry used in CrystFEL, and vice versa. We found this

difference of indexing was related to the description of the

mask and of pixel position in different software. Until this

issue is addressed, the safest solution is to re-extract peak

positions for indexing using one of CrystFEL’s provided peak-

finding algorithms.

5. Conclusions

Background analysis of single-crystal diffraction images can

be implemented efficiently using iterative azimuthal integra-

tion, which allows the separation of the signal originating from

Bragg peaks from isotropic background.
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Figure 12
Indexing rates of frames that would be considered as ‘hit’ or ‘non-hit’, as a
function of the peak-count threshold. The green curve represents the disk
space that could have been saved. The sample dataset consists of 80 000
frames of lysozyme micro-crystals indexed off-line with xgandalf in
CrystFEL.

Table 3
Indexing rate obtained with xgandalf (Gevorkov et al., 2019) from peak
positions extracted with different picking algorithms available from
CrystFEL (White et al., 2012) on a subset of 1000 frames of microcrystals
of lysozyme (HEWL + Ga) collected with an Eiger 4M detector at ESRF-
ID30A3.

xgandalf (default) xgandalf (fast)

Peak-picking
method Index rate (%) Runtime (s) Index rate (%) Runtime (s)

zaef† 10.0 2178 10.0 430
peakfinder8‡ 49.5 10397 48.5 1757
peakfinder9x 44.2 8328 43.5 1436
RobustPF} 22.4 6314 21.2 1628
pyFAI‖ 49.7 9325 49.2 1595

† Zaefferer (2000). ‡ Barty et al. (2014). x Gevorkov et al. (2024). } Hadian-Jazi

et al. (2021). ‖ This contribution.



A lossy compression algorithm for diffraction frames, called

sparsification, has been built on top of this signal separation,

with the average background saved on one side and the

position and intensity of the most intense pixels (probably

belonging to peaks) on the the other. The quality of the

compression has been demonstrated on macromolecular

rotational and serial crystallography data. The degradation

of the signal has been monitored after a compression–

decompression cycle, both in reciprocal space using crystal-

lographic quality indicators and after Fourier transform in

direct space, where the number of residues placed auto-

matically was checked. The degradation of the signal was also

monitored as a function of the threshold, and sparsification at

0.8�–1.0� still enables one to reconstruct the molecular

structure of proteins, with both Eiger and Jungfrau detectors.

The second application presented here is a peak finder for

serial crystallography that locates peak positions in real time

and can be used as a veto algorithm to discard images without

(enough) diffraction peaks. The peaks picked were evaluated

against state-of-the-art peak-finder algorithms like peak-

finder8 and the results were comparable in quality, while much

faster thanks to the usage of a GPU. This veto algorithm is

now used in production at the ESRF serial crystallography

beamline (ID29) to save storage space.

One of the strengths of this peak-finder algorithm is that it

is optimized to work on GPUs. It is thus ideally suited to be

coupled with the next generation of crystal indexer (Gaspar-

otto et al., 2024), which is running on the same kind of hard-

ware, allowing one to save two memory transfers per frame

and maybe achieve real-time integration of serial crystal-

lography data.
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ment of this project and Vincent Favre-Nicolin for his support.

Thanks also to Gavin Vaughan, scientist at the Materials

beamline at ESRF, for a constructive discussion about sigma

clipping versus median filtering. We would like to also thank

Jonathan P. Wright and Carlotta Giacobbe for offering us the

ability to test these algorithms on small molecule data and

validate the concept of sparsification on the ID11 beamline at

ESRF. Pierre Paleo and Jerome Lesaint are also acknowl-

edged for fruitful discussions on numerical methods devel-

oped in this article.

References

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J.,
Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev,
A., Zwart, P. H. & Adams, P. D. (2012). Acta Cryst. D68, 352–367.

Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.

Blelloch, G. E. (1996). Commun. ACM, 39, 85–97.
Blobel, V. & Kleinwort, C. (2002). arXiv, hep-ex/0208021.
Bordet, P., Kergourlay, F., Pinto, A., Blanc, N. & Martinetto, P. (2021).

J. Anal. At. Spectrom. 36, 1724–1734.

Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A.,
Doak, R. B., Weierstall, U., DePonte, D. P., Steinbrener, J.,
Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A.,
Kassemeyer, S., Kirian, R. A., Seibert, M. M., Montanez, P. A.,
Kenney, C., Herbst, R., Hart, P., Pines, J., Haller, G., Gruner, S. M.,
Philipp, H. T., Tate, M. W., Hromalik, M., Koerner, L. J., van Bakel,
N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman,
C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C.,
Katona, G., Kupitz, C., Liang, M., Martin, A. V., Nass, K., Redecke,
L., Stellato, F., Timneanu, N., Wang, D., Zatsepin, N. A., Schafer, D.,
Defever, J., Neutze, R., Fromme, P., Spence, J. C. H., Chapman, H.
N. & Schlichting, I. (2012). Science, 337, 362–364.

Broennimann, Ch., Eikenberry, E. F., Henrich, B., Horisberger, R.,
Huelsen, G., Pohl, E., Schmitt, B., Schulze-Briese, C., Suzuki, M.,
Tomizaki, T., Toyokawa, H. & Wagner, A. (2006). J. Synchrotron
Rad. 13, 120–130.
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152 Jérôme Kieffer et al. � Signal separation in diffraction and serial crystallography J. Appl. Cryst. (2025). 58, 138–153

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB13
https://gitlab.esrf.fr/limagroup/lima2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB14
https://indico.desy.de/event/27430/abstracts/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB15
https://www.dectris.com/support/downloads/datasets/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jo5109&bbid=BB19


Gasparotto, P., Barba, L., Stadler, H.-C., Assmann, G., Mendonça, H.,
Ashton, A. W., Janousch, M., Leonarski, F. & Béjar, B. (2024). J.
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