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Diffuse scattering is a component of the powder pattern bearing information on

the local atomic structure and disorder of crystalline materials. It is visible in the

X-ray diffraction patterns of binary structures like Ag2O, which has a large mean

squared displacement for its constituent elements. Pair distribution function

(PDF) analysis is widely employed to extract this local structural information,

embedded in the widths of PDF peaks. However, obtaining the PDF from

experimental data requires a Fourier transform, which introduces aberrations in

the transformed data due to instrument resolution, complicating the distinction

between its static and dynamic components. In this work, the analysis of thermal

diffuse scattering is performed directly on the X-ray powder pattern, using the

traditional Rietveld method integrated with a correlated displacement model for

atomic pairs. The Ag2O case study data were collected using synchrotron

radiation at room temperature, supplemented by laboratory experiments up to

200�C. An Einstein model was used to obtain the harmonic and anharmonic

force constants of the system. The force constants were also obtained via density

functional theory and ab initio molecular dynamics simulations and showed

similar values to the experiments. The analysis reveals the complex dynamic

structure of Ag2O, characterized by high anisotropy in phonon dispersion

relations and the presence of soft phonon modes, which explain the significant

displacement parameters observed. The proposed approach can be easily

employed for other binary or more complex systems to understand the dynamics

of local forces through X-ray diffraction analysis.

1. Introduction

The intensity of a diffraction pattern can be divided into two

components: Bragg and diffuse scattering. The Bragg

component arises from the coherent diffraction of X-rays with

the ordered crystalline lattice, which produces well defined

diffraction peaks corresponding to the periodic arrangement

of atoms. The diffuse scattering instead comes from atoms

deviating from perfectly periodic lattice points, due to static

sources like point, line or planar defects, or crystal boundaries,

as well as dynamic factors due to atomic motion within the

crystal structure (Warren, 1990). Thermal diffuse scattering

(TDS) specifically reflects the effects of atomic thermal

vibrations on the diffractogram and provides insights into the

local dynamic structure of materials.

Two methodologies are commonly used for studying the

dynamics of a system via X-ray powder diffraction (XRPD):

(i) total scattering analysis of the pattern and (ii) structure

(Rietveld) refinement. The former option comprises the pair

distribution function (PDF) analysis (Takeshi & Billinge,

2012a) in real space and the Debye scattering equation

approach (Cervellino et al., 2015) employed for reciprocal

space data modelling. The total scattering analysis puts diffuse
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and Bragg scattering on an equal footing and requires a

Fourier transformation of the data (Takeshi & Billinge,

2012a), or high computational costs to calculate the Debye

scattering equation (Gelisio & Scardi, 2016) from atomic

coordinates. In (ii) the Bragg and diffuse components are

modelled separately, allowing the implementation in conven-

tional routines based on Rietveld refinement (Coelho, 2018;

Scardi et al., 2018). The static component of the pattern can be

modelled by whole powder pattern modelling (WPPM)

(Scardi et al., 2018), whereas the dynamic component can be

modelled by analysing the collective vibration modes of the

phonons via the Warren model (Warren, 1953, 1990; Beyerlein

et al., 2012; Perez-Demydenko, 2019) or, alternatively, via the

Sakuma model (Sakuma, 1995; Scardi & Malagutti, 2024),

which treats the atomic pairs as correlated oscillators. There-

fore, the Sakuma TDS approach can model the effects of the

short-range dynamical distortion of the system (Scardi &

Malagutti, 2024), whereas the Warren TDS approach deals

with longer-range dynamical features, such as phonon

confinement in nanoparticles (Warren, 1953; Beyerlein et al.,

2012; Perez-Demydenko, 2019).

Investigating the local dynamic structure of materials

provides information on the bonding mechanisms of its crys-

talline components, a task uniquely achievable through the

Sakuma model for powder diffraction. Extending from the

Rietveld unit-cell model (Coelho, 2018), which considers an

average unit-cell structure for the modelling, the Sakuma

approach considers its standard deviation (second moment of

distribution) (Scardi & Malagutti, 2024). This allows the esti-

mation of the correlated movement of the atoms in each

coordination shell. A straightforward approach for extracting

meaningful information from correlated movements is to

assume an effective one-dimensional potential between any

pair of atoms, as is done in extended X-ray absorption fine

structure (EXAFS) analysis (Fornasini, 2001; Yang et al., 1997;

Fornasini et al., 2001). In this case, the harmonic and anhar-

monic coefficients of the potential can be related to the first,

second and third moments of the Fourier transform of the

EXAFS data. Similar strategies have been employed for PDF

analysis (Chung & Thorpe, 1997), where simple models using a

harmonic potential with bond-stretching and bond-bending

forces were employed.

In XRPD patterns, the effect of the TDS appears as more or

less broad features under the Bragg peaks (Warren, 1990), as

illustrated later in Fig. 1. Its intensity scales with the number of

atoms N, being notably lower than the N2 scaling observed for

the Bragg component (Warren, 1990). Consequently, TDS is

often dismissed as background noise in many XRPD studies.

However, it cannot be overlooked in cases of substantial

dynamic disorder such as in Ag2O (Wada et al., 2012), whose

Debye–Waller (DW) coefficients are on the order of 5 Å2.

Consequently, Ag2O is the perfect case study to investigate the

TDS component of binary systems.

The exotic dynamic features of Ag2O are attributed to the

cuprite structure. The oxygen ion has tetrahedral coordination

with four silver ions, forming an Ag4/2O tetrahedron where the

silver atoms have a linear coordination with two oxygens

(O—Ag—O). EXAFS analysis showed that static/dynamic

deformations of these Ag4/2O tetrahedra are also related to

the mechanism of negative thermal expansion (NTE) in Ag2O

(Fornasini et al., 2006; Beccara et al., 2002; Dapiaggi et al.,

2003, 2008; Sanson et al., 2006; Chapman & Chupas, 2009).

These studies, in fact, suggest that the Ag–O nearest-

neighbour distance augments slowly with temperature,

whereas the Ag–Ag second-nearest-neighbour pair distance

reduces (Beccara et al., 2002; Sanson et al., 2006). This is

corroborated by other work that, using inelastic neutron

scattering techniques, showed a strong anharmonic nature of

phonon modes (Gupta et al., 2012). In addition, ab initio

calculations showed that transverse phonon modes are

responsible for Ag4/2O tetrahedron bending motions (Gupta

et al., 2012). Other reports suggest that a static displacement of

the Ag atoms is the origin of the NTE behaviour, by

promoting a phase transition of the first order at around 35 K

from an unknown phase to the cuprite cubic phase (Kennedy

et al., 2005); this phase transition was analysed via EXAFS by

Sanson (2016). However, few reports employing Rietveld and

PDF analysis have been published thus far to elucidate the

phase transition and dynamic properties (Wada et al., 2012;

Dapiaggi et al., 2008).

In the present article, we discuss and refine the Sakuma

TDS modelling for multi-element systems and demonstrate its

practical use for the Ag2O case. This is achieved by analysis of

high-temperature XRD (HTXRD) laboratory data, room-

temperature (RT) experiments from synchrotron sources, and

density functional theory (DFT) and ab initio molecular

dynamics (AIMD) simulations (Kresse & Furthmüller,

1996b). Here we also provide tools and approaches to effec-

tively separate the TDS from background components in

XRPD patterns. Via TDS, we show that the force constants of

the Ag2O system can be estimated using XRPD in terms of

Einstein oscillators, like for EXAFS data analysis (Fornasini,

2001). This strategy is compared with a PDF analysis, which

revealed that Fourier transformation and instrumental aber-

rations often overestimate the dynamic components of the

Ag2O system. Through first-principles calculations, we high-

light the complexity of Ag2O force fields, with DFT calcula-

tions unveiling a previously unknown lattice-parameter-

dependent soft mode, suggesting a dynamical instability in

cuprite Ag2O.

2. Materials and methods

2.1. X-ray powder diffraction theory

As previously mentioned, the intensity scattered from a

powder sample is often written as the sum of the Bragg scat-

tering or diffraction term IB and the diffuse scattering term ID.

Due to thermal motion, the Bragg term is reduced in intensity

by the Debye factor [exp(� 2M)] which multiplies the scat-

tering factor f of the atomic species. This decrease in intensity

is then transferred to the diffuse scattering component ID.

The most well known assumption employed in the work of

Debye (1915) treats each atom as an independent and
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isotropic Einstein oscillator, having a mean square displace-

ment MSD = 3B/(8�2) such that the Debye factor is given by

Dð2�Þ ¼ expð� 2MÞ ¼ exp½� 2Bðsin �=�Þ
2
�: ð1Þ

Here the wavelength of the incident radiation is represented

by � and the angle of incidence by �, and B is the DW coef-

ficient (also known as Biso in the scalar and isotropic form).

For monoatomic systems, the diffuse scattering from such

uncorrelated oscillators increases by

ID ¼ kð2�Þff � 1 � expð� 2MÞ½ �; ð2Þ

where k(2�) includes terms depending on the experiments,

like the Lorentz–polarization factor. f � is the complex

conjugate of f, the form factor. For the Ag2O case, discarding

any correlations and replacing M from equation (1), the

intensity is given by

ID ¼ kð2�Þ

�

nAg fAg f �Ag 1 � exp � 2BAgðsin �=�Þ
2

� �� �

þ nO fO f �O 1 � exp � 2BOðsin �=�Þ
� �2

n o�

;

ð3Þ

where nAg, nO, fAg, fO, BAg and BO are the number of atoms

per unit cell, atomic scattering factors and DW coefficients of

Ag and O, respectively.

If the correlations in the vibration of atoms are added,

considering the closest neighbours of the inner coordination

shells, ID is given by the Sakuma expression (Sakuma, 1995;

Wada et al., 2012):

ID ¼ kðQÞ

�X

s

ns fs f �s 1 � expð� 2MsÞ
� �

þ
X

s

X

s0

ns fs f �s
�

exp½� ðMs þMs0 Þð1 � �rss0
Þ�

� exp½� ðMs þMs0 Þ�
�

Zss0
sin Qrss0ð Þ

Qrss0

�

:

ð4Þ

The expression above is given in reciprocal space where

Q ¼ 4� sin �=�, including the summation over all pairs of sites

(s and s0), where ns is the number of s atoms per unit cell and

Zss0 is the number of sites belonging to the s0 neighbour around

an s site. In the current formulation, the equation is valid for a

stoichiometric compound, but it can easily be extended to

model the partial occupancy of sites (Sakuma, 1993; Scardi &

Malagutti, 2024). The model originally developed by Sakuma

(1995) and Wada et al. (2012) encompasses the correlation

between atoms enclosed in one unit cell. This can be easily

extended to more distant atom pairs by expanding the volume

of the original unit cell and replacing ns for the supercell

number of atoms in the equations above (Sakuma, 1995;

Scardi & Malagutti, 2024).

The correlation coefficients are defined as

�rss0
¼
h2�rs�rs0 i

h�r2
s i þ h�r2

s0 i
¼ 1 � 3

MSRD

MSDs þMSDs0ð Þ

� �

: ð5Þ

Here, �r2
s is the mean square displacement of the atom in site

s, MSRD is the parallel component of the mean squared

relative displacement for the s–s0 couple, �rs is the modulus of

the displacement of an s atom in relation to its mean position

and �rs�rs0 is the displacement correlation function. When

displacements are uncorrelated, �rss0
¼ 0, and equation (4)

reduces to equation (3).

From a physical perspective, �rss0
is proportional to (i) the

shell coordination number (CN) and (ii) the atomic force

exerted between each pair, and inversely proportional to (iii)

the interatomic distance (Makhsun et al., 2013; Fornasini et al.,

2001; Wada et al., 2012). For (i), the dependence on the CN lies

in the sum [equation (4)] over the number of atoms in the

specific neighbour shell bonding atoms along the corre-

sponding direction. For (ii), if the forces between the atoms

are strong, the displacement correlation is correspondingly

high, achieving a maximum of �rss0
¼ 1 when atomic move-

ments are totally correlated (rigid-bond model). Values from 1

to 0 correspond to acoustic modes of vibration (i.e. not

perfectly correlated movement), whereas negative values

represent optical modes. For (iii), as the atomic pairs are

further apart, the forces between them decrease, eventually

leading �rss0
to zero. Therefore, the �rss0

values can be

employed to analyse the local dynamics of the system.

The MSRD is the second moment of the distribution of

distances �(r, T), where �(r, T) corresponds to the probability

of finding an atomic couple per unit of radial length, and can

be also calculated from the PDF as g(r) = �(r)/�0, where �0 is

the atomic number density. In EXAFS formulation (Fornasini,

2001), an effective one-dimensional pair potential is assumed

in the form

VeðrÞ ¼
au2

2
þ bu3 þ cu4 þ � � � ; ð6Þ

where u is the variation of the atomic distance concerning the

potential minimum; and a, b and c are the force constants of

the effective potential. Using a similar approach to EXAFS

(Fornasini, 2001), the effective bond-stretching force constant

can be estimated via the Einstein fit of the MSRD versus

temperature data using the relation

MSRDðTÞ � MSRDðT ¼ 0 KÞ ¼
h-

2�!E

coth
h- !E

2kBT

� �

; ð7Þ

where � is the reduced mass between the pair of atoms, kB is

the Boltzmann constant and !E is the Einstein frequency of

oscillation. The effective bond-stretching force constant can

be estimated as a ¼ �!2
E. The relation between the anhar-

monic components and Ve(r) is given by Fornasini (2001).

2.2. Experimental

The analysis of the TDS is based on XRPD data collected

for 99% pure Ag2O powders, purchased from Sigma–Aldrich.

The XRD patterns were collected using two setups. (1) A Stoe

Stadi P diffractometer containing a Mythen 1K detector

(DECTRIS) in Debye–Scherrer geometry, using an Mo K�

target and a Ge111 Johan-type monochromator. The Ag2O

powders were placed in glass capillaries of 0.15 mm radius,

sealed in a vacuum and allowed to spin during the measure-

ments. HTXRD was performed from 30 to 210�C, with
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temperature intervals of 20�C and a heating ramp of

5�C min� 1. An isotherm was applied for over 30 min at each

temperature step before the XRPD pattern collection.

Cooling curves were also measured in steps of 50�C. (2) RT

synchrotron measurements were made on the P02.1 beamline

(Dippel et al., 2015; Schökel et al., 2021) of the Deutsches

Elektronen–Synchrotron (DESY). � = 0.20741 Å (�60 keV)

was employed and the data signal was collected by a 2D area

detector [XRD 1621 from PerkinElmer (Skinner et al., 2012)].

The sample was prepared in a 0.8 mm-diameter borosilicate

capillary and measured using the Debye–Scherrer geometry.

Two sample-to-detector distances (SDDs) were employed: 300

and 2100 mm. The 300 mm SDD measurements were used for

TDS and PDF analyses due to the wider range of the wave-

vector modulus (Q). The 2100 mm SDD measurements have

the highest resolution and were used for microstructural

analysis.

Rietveld refinements (Rietveld, 1969) and whole powder

pattern analyses were made using the TOPAS software

(version 7; Coelho, 2018). The line profile analysis for the

strain- and size-broadening effects used the WPPM (Scardi &

Leoni, 2002; Scardi et al., 2018) approach. A lognormal

distribution of spherical domains accounted for the size

broadening of the line profile. The strain broadening was

accounted for using the Popa–Adler–Houska (PAH) model as

a flexible approach to model anisotropic microstrain (static

disorder) (Scardi et al., 2018). Fundamental parameter

analysis was employed to obtain the instrumental resolution

function (IRF) from laboratory instrumental data by analysis

of the LaB6 standard (NIST SRM 660c) XRD measurements.

For the synchrotron measurements, a procedure developed in

the literature (Dippel et al., 2015; Schökel et al., 2021) was used

for estimating the IRF on the basis of the Thompson–Cox–

Hastings pseudo-Voigt approach.

The PDF was obtained from synchrotron data, measured

with an SDD of 300 mm. It used the deconvolution process

available in the TOPAS software (Coelho, 2018). Three hat

convolutions were used for smoothing the reduced structure

function F(Q), and a fifth-order Chebyshev function for

background. An Si 640d standard (Black et al., 2010) was

measured to estimate the instrument’s damping function and

broadening (Takeshi & Billinge, 2012b). A maximum Q value

Qmax = 31.8 Å� 1 was used.

2.3. Computational methodology

The force constant values were compared with simulated

data for the Ag2O system. The DFT calculations employed the

Vienna Ab initio Simulation Package (VASP; Kresse &

Hafner, 1994; Kresse & Furthmüller, 1996a,c). A 3 � 3 � 3

supercell (162 atoms) of Ag2O was used, accounting for the

anharmonic effects. The Perdew–Burke–Ernzerhof (PBE)

(Perdew et al., 1996) form of the generalized gradient

approximation was used to approximate the exchange-corre-

lation energy, with scalar-relativistic PBEsol pseudopotentials

(Terentjev et al., 2018). A cutoff of energy 450 eV was used in

the calculations, with a Gaussian charge smearing of 0.1 eV.

Relaxation of the electronic degrees of freedom was

performed until the change in the energy eigenvalues and the

total free energy were both smaller than 10� 6 eV. Density

functional perturbation theory was used to obtain the dyna-

mical matrix. Subsequently, the Phonopy (Togo & Tanaka,

2015) code was employed to perform a diagonalization of the

dynamical matrix, obtaining the interatomic force constants

and retrieving the phonon dispersion relations. The visuali-

zation of the simulated trajectories was done using Ovito

(Stukowski, 2010), and VMD (Humphrey et al., 1996) was

utilized to calculate the MSD of the system.

The trajectories were generated through AIMD simula-

tions, utilizing a 3 � 3 � 3 supercell. The calculations

employed a cutoff energy of 450 eV, electronic convergence of

10� 5 eV and Gaussian charge smearing of 0.1 eV. Sampling of

the irreducible Brillouin zone was conducted at a single point

using a 1 � 1 � 1 Monkhorst� Pack gamma-centred k-grid.

AIMD calculations were carried out in a canonical (NVT)

ensemble with a Nose� Hoover thermostat. Each simulation

ran for 14 000 steps with a time step of 1 fs, resulting in a total

simulation time of 14 ps. The simulations were performed in

the temperature range 50–500 K with a step size of 50 K,

including the 300 K temperature simulation.

3. Results and discussion

3.1. Synchrotron measurements

Synchrotron experiments furnish the highest quality

possible for the analysis of the diffuse component. This is due

to the high brilliance of synchrotron sources as well as the

possibility to extend data collection to high Q values. For the

PDF analysis, this allows a substantial reduction of truncation

ripples caused by the Fourier transform (Takeshi & Billinge,

2012a), and for TDS analysis it provides the data quality

required to model the diffuse component at long Q, where no

Bragg peaks are present.

The synchrotron diffraction Rietveld refinement using

WPPM with the Sakuma TDS model is shown in Fig. 1(a) for a

3� 3� 3 supercell model [Pn3m (224), PDF database No. 41-

1104]. Fig. 1(b) shows the amplified part with the TDS and

background. The structural model did not present significant

residual features, represented as a blue line in Fig. 1(a). Rwp

approached 1% and the goodness of fit was 5. Silver carbonate

(Ag2CO3, PDF database No. 04-012-6615) and silver (Ag,

PDF database No. 00-004-0783) are present in the sample but

correspond to less than 2% of the weight fraction (see Fig. S1

of the supporting information). To separate the background

contribution from TDS modelling, an empty capillary pattern

was collected prior to the measurement, being properly scaled

and incorporated in the pattern modelling of the actual

sample. This capillary background is represented in green in

Fig. 1(b). In addition, a fourth-order Chebyshev polynomial

was employed as a background function and proved to be

constant throughout the whole 2� range, forming the baseline

of the pattern. This background is given as a grey dashed line

in Fig. 1(b). The microstructure was modelled using the
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WPPM approach (Scardi et al., 2018), refining the size distri-

bution average crystallite size and standard deviation together

with the PAH microstrain model. Details on the micro-

structure are presented in Supplementary Note 1 of the

supporting information.

For 2� angles higher than 20�, the most important contri-

bution to the pattern originates from the TDS and the back-

ground [see Fig. 1(b), purple line]. This part of the

diffractogram is characterized by the long tail of the uncor-

related Debye TDS component, shown in Fig. 1(c) as a red

line, and is highly sensitive to the refined DW values. Thus,

more accurate results for BAg and BO were obtained by fitting

the TDS in this region while constraining the DW factors to be

the same as those of the Bragg part. The resulting values were

BAg = 3.82 (4) Å2 and BO = 5.8 (4) Å2. A comparison with the

literature is given in Supplementary Note 2. With the intro-

duction of the correlation of atomic displacements via equa-

tion (4), oscillatory features appear for 2� < 20�, as shown in

Fig. 1(c) – black and grey lines for Ag—O and Ag—Ag pairs,

respectively. The period of these oscillations is related to the

rss0 values and, therefore, their amplitude tends to be higher

underneath the main Bragg peaks [see purple line of Fig.

1(b)]. For this reason, it becomes clear that the diffuse part

cannot be ignored in order to estimate the DW parameters for

Ag2O, as it affects the intensity of the Bragg peaks.

An alternative approach for treating diffuse components of

XRPD data is via PDF analysis (Jeong et al., 2003). In this

methodology, the XRPD undergoes a Fourier transformation,

where the local structural information is encoded in the

breadths and shape of the PDF. By fitting the PDF with

Gaussian bell functions, their full widths at half-maximum can

be related to the MSRD and the MSD, which can be inserted

into equation (5) to obtain the �rss0
coefficients for each

coordination shell (Scardi & Malagutti, 2024; Jeong et al.,

1999). The PDF fitting is given in Fig. 2(a) and the low-r region

is highlighted in Fig. 2(b). The residuals show no major fitting

disagreements and the overall Rwp ’ 7.85%. The DW para-

meters showed values of BAg = 4.061 (3) Å2 and BO =

9.79 (7) Å2, the latter being 60% higher compared with the

values obtained via Sakuma-based Rietveld refinement and

clearly overestimated. A cosine background function was

added to correct the baseline of the data for low pair distances

[r, represented as a green dashed line in Fig. 2(b)].

The �rss0
values obtained via the PDF and the Rietveld

method (supported by the Sakuma TDS model) are graphi-

cally represented in Fig. 2(c). The �rAg� Ag
trends are similar to

those for face-centred cubic (f.c.c.) metals (Jeong et al., 2003)

since the Ag–Ag pairs also form an f.c.c. sublattice within the

Ag2O structure. For the Ag–O first neighbours, due to the

strong ionic nature of the bonding (Gupta et al., 2014), the

correlation coefficient is triple that for Ag–Ag pairs,

�rAg� O� 1
’ 0:6, approaching a rigid-bond model.

The PDF and Sakuma TDS refinements retrieved similar

trends of �rss0
with r, albeit differing in magnitude. This

discrepancy can be attributed to four main factors: (i) the

different DW parameters obtained from each approach, (ii)

the effect of an inaccurate background modelling on the

Fourier transform, (iii) the 2� resolution damping factor

(Juhás et al., 2018) and the IRF in the PDF data, and (iv) the

termination ripples caused by the cutoff imposed by the
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Figure 1
(a) Rietveld analysis of the XRPD pattern supported by the Sakuma TDS model. The dots represent the experimental data obtained with an SDD of
300 mm, the red line is the powder pattern modelling, the green line is the empty capillary contribution, the dashed line is the Chebyshev background,
the yellow line is the Sakuma TDS contribution, the purple corresponds to all the background features (TDS + Chebyshev + empty capillary) and the
blue line represents the residual of the fitting. (b) Zoomed-in part of the grey rectangle of (a). (c) Components of the TDS modelled by the Sakuma
approach. Red corresponds to the uncorrelated Debye TDS component of equation (3). �rAg� Ag� i

represents each of the ith coordination shell
components of the of the TDS for the Ag–Ag pairs. �rAg� O� j

represents the TDS jth coordination shell for the Ag–O pairs. The yellow lines represent the
total TDS contribution, which was multiplied by 0.20 in the graph for visualization purposes.
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maximum 2� value (or Qmax value) after the transformation

(Takeshi & Billinge, 2012a). For (i), the increasing noise-to-

signal ratio in the measurement at high Q induces a Qbroadr2

factor in the MSRD of the PDF peaks. This broadening of

PDF peaks is intrinsically tied to DW values that are also

obtained from the PDF peak breadths. For item (ii), the

background was only accounted for by the empty capillary

measurement during the Fourier transformation, disregarding

other contributions. As shown in Fig. 1 (a), the Chebyshev

contribution is of the same order of magnitude as the diffuse

part, which induces the ripples observed in the green line of

Fig. 2(b) in the PDF. In (iii), the instrumental contribution

(IRF) dampens the PDF peak intensities via the equation

Idamp expð� QdampL rÞ þ ð1 � IdampÞ expð� QdampG r2Þ (Beyer et

al., 2022), where Idamp, QdampL and QdampG must be estimated

using standard Si measurements (Debra & Kaiser, 2010). A

further damping factor is needed for the limited Q resolution

(Juhás et al., 2018). These two effects are mainly present in the

low-r part of the PDF, where the effects of the correlated

movement are most noticeable as the sharpening of the PDF

peaks. Furthermore, in (iv) the termination ripples affect the

low-r region of the PDF as the limiting Qmax induces an

imprecision in the broadening and peak position.

Modelling the local dynamic structure in reciprocal space

through the Sakuma TDS approach presents the following

benefits: (i) The DW factors can be estimated by both the

Bragg and the TDS parts simultaneously, increasing the

stability and reliability of the modelling and the resulting DW

coefficient values. (ii) The instrumental components can be

readily modelled by the IRF, estimated via the fundamental

parameter approach using standard LaB6 measurements

(Cheary & Coelho, 1992). In addition, the IRF contributions

are only present in the line profile of the Bragg peaks and do

not correlate with the diffuse part where the local dynamic

information is encoded. (iii) The XRPD data can be used as

they are, requiring no Fourier transformation, being free of

features like the PDF peak broadening due to high noise at

high Q (Qbroad) and termination ripples at low r from the finite

Qmax (Scardi & Malagutti, 2024).

The results presented here using synchrotron data provide

the best conditions to assess the TDS and local dynamic

parameters. However, synchrotron sources are not always

available for routine XRPD measurements. With the

following, we investigate the use of the TDS Sakuma model

for laboratory data.

3.2. Laboratory measurements

Laboratory measurements tend to have lower beam energy

and brilliance than synchrotron sources, and a larger contri-

bution from the background is expected. For the purpose of
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Figure 2
(a) PDF of the data collected with a 300 mm SDD, calculated by the deconvolution process available in TOPAS (version 7), represented as black dots.
The PDF fitting is represented in red lines, the background function is in green and the blue line represents the residuals. (b) Zoomed-in part where the
correlation modelling was applied. (c) Correlation coefficients as a function of the pair distance r obtained via the PDF analysis (dashed lines and square
symbols) and the whole pattern modelling supported by the Sakuma TDS model (solid lines and circle symbols). Ag–Ag pair correlations are
represented in grey and Ag–O pairs in black. The inset illustrates the correlated movement of pairs of atoms.



TDS analysis, it is imperative to separate the background from

the diffuse component. As already shown for the synchrotron

data, the simultaneous refinement of the DW coefficients in

the Bragg and TDS components helps this separation. In

addition, the trends of the MSRD with temperature, obtained

using the DW coefficients and �rss0
, should follow the Einstein

fit of equation (7). This provides an indirect way to verify the

quality of fitting.

HTXRD patterns collected using laboratory Mo K�

radiation by heating the sample from RT to 210�C are shown

in Fig. 3(a). Temperature increases the atomic MSD, therefore

increasing the corresponding DW coefficients as indicated in

Fig. 3(b). This also increases the TDS component intensity,

foreseen by equation (4), while the Bragg peak intensities

decrease due to the DW factor of equation (1). The correlation

coefficients’ behaviour with temperature is shown in Fig. 3(c)

for the Ag–O atomic pairs. The Ag–O nearest neighbours

have a large correlation coefficient inside the Ag4O tetrahedra

(�Ag� O� 1 ’ 0:85), while the second and third nearest Ag–O

neighbours have negative values. In addition, the displace-

ment correlation of the Ag–O first neighbours remained

constant in temperature, with no variation outside the error

bars, implying that the Ag—O ionic bonds remain stiff on

heating. The quality of refinement and comments on the TDS

fitting are available in Supplementary Notes 3 and 4, repec-

tively.

In contrast, the �rss0
trends change significantly with

temperature for the Ag–Ag pairs, as shown in Fig. 3(d). A

likely reason for this variation is a vacancy-healing mechanism

in the Ag2O phase. Vacancies are reported for Ag2O synthe-

sized by precipitation methods (Kato, 1971), and the presence

of a pure Ag phase in the pattern of Fig. S5 indicates a slightly

unbalanced stoichiometry for the Ag2O phase. It is also known

that increased temperature promotes the diffusion of Ag

atoms (Kato, 1971), which can start migrating from the

disordered domain boundaries of the Ag2O and Ag phases,

filling in vacant sites. With the annealing of vacancies, the

lattice dimensions tend to expand. This expansion of the

lattice occurs at �150�C, as shown by Fig. 3(e), inducing a

switch from NTE to positive thermal expansion (PTE) beha-

viour. The vacancy-healing mechanism together with a better

crystallization at high temperatures also reduces the micro-

strain in the sample. This effect is observed in the Warren plots

of Fig. S6 for some crystallographic directions. Overall, since

the atoms are freer to be displaced in the direction of the

vacant spaces, the correlation coefficient should be reduced.

The opposite should happen when the vacancies are healed.

One way to eliminate the effect of microstructural evolution

and vacancy healing in the analysis is to collect data in the

cooling ramps. Their HTXRD patterns are shown in Fig. 4(a).

The (311) plane reflection is given in Fig. 4(b), and the distinct

shift towards lower angles indicates an NTE through the entire

temperature range. Lattice parameters are plotted in Fig. 4(c)

and fitted with a linear trend, giving a linear thermal expan-

sion of 1.03 (1) � 10� 5 K. The values for the DW parameters

are similar to the heating curves, as shown in Fig. 4(d) and
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Figure 3
(a) HTXRD patterns collected with Mo K� radiation for the purchased Ag2O powders. The colours represent the temperatures (�C) in the scale on the
right. (b) DW parameters for Ag (grey) and O (red). (c) Ag–O correlation coefficients versus the pair distance r from RT to 210�C. (d) Ag–Ag
correlation coefficients versus the pair distance r from RT to 210�C. (e) Lattice parameter of the cuprite Ag2O structure for all the temperatures
measured. The lines connecting the symbols are guides to the eye only.
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similar to what is reported in the literature (Wada et al., 2012;

Kennedy et al., 2005; Ishikawa et al., 2015).

The parallel components of the MSRD, obtained by equa-

tion (5) using values of MSD from the DW coefficients and the

�rss0
coefficients, are shown in Fig. 5 for the heating and cooling

ramps. Figs. 5(a) and 5(b) show the values for Ag–O and Ag–

Ag first neighbours, respectively, calculated using the heating

ramp. Figs. 5(c) and 5(d) show the local dynamic parameters

obtained using the cooling ramps of the Ag–O and Ag–Ag

nearest neighbours. The red lines represent the Einstein

model fit [equation (7)]. The �rss0
values are available in Fig. S8

for the cooling ramps in Supplementary Note 5. Here, it is

possible to observe that the Ag–O–1 pair distance presents an

irregular MSRD trend throughout the entire range of

temperature. This is associated with the vacancy healing of the

Ag2O lattice during heating. However, as shown in Table 1, its

force constant value closely matches that of the cooling ramp

in Fig. 5(c), indicating that the presence of vacancies has

minimal impact on the TDS. Consequently, force constant

values can still be accurately determined in the presence of

vacancies. Likewise, the Ag–Ag–1 MSRD are not significantly

different during heating or cooling. The parameters of fitting

such as the Einstein temperature, calculated from the Einstein

frequency (!E) using the relation h- !E=kB, and the 0 K MSRD
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Figure 4
(a) HTXRD patterns collected with Mo K� radiation for the purchased Ag2O powders during cooling. The colours represent the temperatures (�C) in
the scale on the right. (b) Zoom-in of the (311) plane reflection. (c) Refined lattice parameter. (d) DW parameters for Ag (grey) and O (red).

Table 1
Estimated force constants for the Ag–O and Ag–Ag first nearest neighbours using equation (7) for the heating ramp, cooling ramp, AIMD simulations
and DFT simulations.

�E is the Einstein temperature calculated by h- !E=kB.

Parameter

Ag–O

(heating ramp)

Ag–O

(cooling ramp)

Ag–O

(AIMD)

Ag–O

(DFT)

Ag–Ag

(heating ramp)

Ag–Ag

(cooling ramp)

Ag–Ag

(AIMD)

Ag–Ag

(DFT)

!E (THz) 39.7 38.3 48.3 8.48 8.83 10.3
MSRD at T = 0 K (Å2) 0.004 (1) 0 0.0043 0.0164 (2) 0.0248 (1) 0.008
�E (K) 303 292 370 65 67 80

Force constant a using
the Einstein model
(eV Å� 2)

This work: 2.27 2.12 3.37 3.9 (0 K) This work: 0.40 0.44 0.6 0.3 (0 K)
Artioli et al. (2006): 5.93† Artioli et al. (2006): 0.164
Beccara et al. (2002): 5.77

† Estimated from the Einstein frequencies available in the references.

http://doi.org/10.1107/S1600576724010756


values are also reported in Table 1. The MSRD at T = 0 K

approaches zero for the cooling and heating ramps for the Ag–

O first-neighbour pairs, similar to that reported for EXAFS

experiments (Artioli et al., 2006). For the Ag–Ag pairs, this

value corresponds to more than 10% of the MSRD at RT.

The force constants obtained using the Einstein model fit of

the HTXRD data are higher for Ag–O and lower for Ag–Ag

pairs than reported using combined XRD and EXAFS results

(Artioli et al., 2006), but on a similar order of magnitude. As

reported by Sanson and coworkers (Artioli et al., 2006), the

purity of the Ag2O sample can induce different phase transi-

tions at low temperatures. Therefore, different batches of

Ag2O can give significantly different results for the force

constants. This is also evident in the work of Kato (1971),

where Ag2O was synthesized via precipitation methods. In

that work, a PTE was observed instead of the NTE observed

by Artioli et al. (2006). In addition, the Ag–Ag pairs can be

divided into two types for the second nearest neighbours: the

six pairs that share the same oxygen atom network (type A)

and the other six that are outside of this network (Beccara et

al., 2002; Artioli et al., 2006). We believe that diffraction alone

cannot differentiate the two types of pairs, given that the PDF

of the second nearest neighbour in Fig. 2 does not split into

two peaks or present a significant asymmetry in order to allow

the modelling of this effect by XRPD. To investigate the

differences between Ag–Ag pair types in Ag2O and to

compare the force constants obtained from HTXRD with

those from first-principles simulations using DFT and AIMD,

the following analysis is presented.

3.3. Ag2O simulations

First-principles calculations were performed to gain insights

about the local static and dynamic disorder of Ag2O, both at

0 K using DFT and as a function of temperature using AIMD

simulations (from 50 to 500 K). From the AIMD trajectories,

g(r) was calculated using the atomic coordinates at each time

frame of the simulation according to procedures already

established in the literature (Yang et al., 1998; Fornasini et al.,

2001). By fitting g(r), the second cumulant C�2 ðTÞ is estimated

and corresponds to the parallel component of the MSRD (see

Supplementary Note 6 for definitions). g(r) is represented in

Figs. 6(a) and 6(b) for the Ag–O and Ag–Ag pairs, respec-

tively, with the C�2 ðTÞ values plotted in Fig. 6(c) and 6(d), fitted

using the Einstein model (red lines). The harmonic force

constants obtained are 3.36 eV Å� 2 for Ag–O and 0.6 eV Å� 2

for Ag–Ag first neighbours (see Table 1 for fitting para-

meters). These values are on the same order of magnitude as

reported by the HTXRD experiments in Table 1 using equa-

tion (7), and significantly higher than those reported using

Wada and Ishikawa models compared in Supplementary

Note 7.

Figs. 6(a) and 6(b) show the g(r) peak variation with

temperature for the Ag–O and Ag–Ag nearest-neighbour

pairs, respectively. While the average Ag–O separation

augments with temperature, the Ag–Ag separation reduces.

This is the main mechanism responsible for the NTE beha-

viour of Ag2O (Beccara et al., 2002; Sanson et al., 2006). The

average pair distance values are given by C�1, plotted in Figs.

6(c) and 6(d) for Ag–O and Ag–Ag pairs, respectively. The
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Figure 5
MSRD (square symbols) estimated by the HTXRD TDS fitting of (a) the heating ramp for the Ag–O first neighbour, (b) the heating ramp for the Ag–Ag
first neighbour, (c) the cooling ramp of the Ag–O first neighbour and (d) the cooling ramp of the Ag–Ag first neighbour. The connecting lines are guides
to the eye only. The red lines represent the Einstein model fit.
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Ag–O pairs present a local thermal expansion1 of 8.5 �

10� 5 K� 1, while Ag–Ag experience an average thermal

contraction of � 4.2 � 10� 5 K� 1. The thermal expansion can

also be calculated from the ratio C�3=2C�2 and is plotted in Fig.

6 (c) for Ag–O pairs. From this ratio, the anisotropic b para-

meter of equation (6) is estimated as 5.41 eV Å� 3, in good

agreement with EXAFS experiments (Artioli et al., 2006). The

Ag–Ag pairs present a very symmetric g(r) profile, which

means that the anharmonic effects are insignificant. The BAg

and BO values from the AIMD simulations are 3.6 (2) and

3.6 (4) Å2, respectively. It is important to highlight that the

effective values for Ag–Ag are placed here for direct

comparison with HTXRD measurements. The correct values

should consider the different intra- and internetwork Ag–Ag

pairs. In Supplementary Note 6, a thorough discussion of these

two types of bonding is performed and a value for the force

constants is given. Additional simulations with smaller (2 �

2 � 2) and larger (4 � 4 � 4) supercells are given in the same

supplementary note, highlighting that a 3 � 3 � 3 simulation

box is a good compromise between precision and speed for

simulating the system.
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Figure 6
(a) g(r) obtained using the AIMD simulated coordinates for (a) Ag–O and (b) Ag–Ag first-neighbour pairs. The colours correspond to the scale of
temperature on the right. Cumulants versus temperature for (c) Ag–O and (d) Ag–Ag first-neighbour pairs. (e) Trajectory of the Ag and O atoms in the
unit cell simulated at 500 K. The black bars represent the unit-cell boundaries.

1 The local thermal expansion is estimated by the slope of the linear fits of Figs.
6(c) and 6(d) divided by C�1 (T = 0 K), called R0.

http://doi.org/10.1107/S1600576724010756


Here we observe that the proximity of values using the

Einstein model for the HTXRD experimental and AIMD-

simulated data confirms that the TDS model is a valid tool for

investigating the local dynamics of Ag2O. However, we believe

that the absolute value of the force constants cannot be

attained with enough precision with the current setup. Two

reasons can be given: one is that the one-dimensional effective

potential of equation (6) tends to be a very simple modelling

that might not capture all the complex features of the Ag2O

system, and the second is that the XRD might not have

sufficient resolution to capture the subtle details from the

diffuse components. A visual representation of the complexity

of the Ag2O system is represented by the vibration of the ions

shown in Fig. 6(e), corresponding to the trajectory of Ag and

O atoms over the entire simulation time at 500 K. In parti-

cular, the Ag atoms are found to have displacement patterns

in the shape of ellipsoids with the long axis perpendicular to

the O—Ag—O bonds, in agreement with previous experi-

mental measurements (Kennedy et al., 2005). This suggests

that non-central forces might be present for the Ag2O system

and cannot be modelled by equation (6).

Further complexity in the static component of the Ag2O

system can be understood via DFT. A quantitative measure of

the anisotropy, the log-Euclidean anisotropy parameter (AL)

(Kube, 2016), can be obtained from the compliance tensor,

calculated by DFT. For Ag2O, AL = 3.2, a value considered to

be quite high for the symmetric cubic structure. For compar-

ison, the highest calculated AL reported by Kube & Jong

(2016) for a cubic structure is 5.3 for SrVO3. This anisotropy is

also reflected in the calculated interatomic force constant

tensor, whose values for nearest neighbours vary according to

direction (see Supplementary Note 8) and contain non-zero

off-diagonal terms. As expected, the IFCs for the first Ag–O

pairs are found to be significantly stronger than those for the

first Ag–Ag pair, in agreement with the correlations obtained

from the TDS modelling of the XRD data, where the value for

�rAg� Ag
is half that of �rAg� O

. However, note that this large

anisotropy is somewhat at odds with the use of a simple one-

dimensional potential such as equation (6) – in particular, the

presence of off-diagonal terms in the IFC tensors suggests that

a simple central-force model for the interactions in Ag2O has

certain limitations.

Further details about the nature of the static disorder in

Ag2O are revealed from the phonon dispersion obtained from

the IFCs. The phonon dispersions (Fig. 7) are computed by

constraining the lattice parameter of Ag2O to a range of

values between �4.8 and �4.7 Å (the ground state values of

the lattice parameter obtained using a simple PBE functional

and a modified PBEsol functional, respectively) and show that

the lowest-energy acoustic mode becomes soft (imaginary

frequencies, represented as negative) along the � -X and � -M

directions, as the lattice parameter drops below 4.736 Å.

Additionally, the calculated mode Grueneisen parameter (see

Supplementary Note 8, Fig S15) shows high anharmonicity at

frequencies <2 THz. These soft modes, which have not been

observed in previous calculations of the phonon dispersion of

Ag2O using a simple PBE functional (Li, 2022), correspond to

non-restorative forces on the atoms which make the structure

dynamically unstable. The experimental lattice parameters as

shown in Fig. 4(d) lie between 4.7345 and 4.7360 Å, which

indicates that the system is quite close to dynamical instability.

As such, the associated structural softness (IFCs approaching

0) can be responsible for the large displacement vibrations of

the ions, which give rise to the large TDS. Additionally, the
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Figure 7
Phonon dispersions for a range of lattice parameters: (a) 4.800 Å, (b) 4.742 Å, (c) 4.736 Å, (d) 4.728 Å and (e) 4.698 Å.
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presence of the soft modes raises the question of a potential

phase transition in Ag2O, as already reported in the literature

(Sanson, 2016; Kennedy et al., 2005). Hence, here we

presented the main barriers to understanding the Ag2O local

dynamic behaviour through TDS approaches. We believe that

further advancements in the theory must be performed for the

full comprehension of these complex systems, especially

involving non-central forces.

4. Conclusions

The TDS modelling of binary phases using XRPD is demon-

strated in this work using the case of Ag2O measured in

synchrotron and laboratory facilities. The proposed approach

based on Rietveld refinement integrated with the Sakuma

TDS model provides access to correlation displacement

coefficients for atomic pairs in the inner coordination shells.

The Einstein model was used for estimating force constants

assuming a one-dimensional effective potential, providing

harmonic force constants on the order of 2 and 0.4 eV Å� 2 for

Ag–O and Ag–Ag first neighbours, respectively. Compared

with first-principles studies (DFT and AIMD), the force

constants are of the same order of magnitude. First-principles

calculations point to a complex interplay between static and

dynamic components of disorder as the origin of the large

TDS. This includes (i) the vibrations of ions with large

displacements about their lattice sites, (ii) the anisotropic

interactions between Ag–Ag and Ag–O pairs (also respon-

sible for the NTE) leading to distortions of the Ag4/2O

tetrahedra, and (iii) distortions associated with the proximity

of the Ag2O structure to dynamical instability. The present

work thus explains the atypical vibrational behaviour of Ag2O

while establishing a novel framework to analyse similar

systems with large TDS using XRPD.
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