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It is reported how the popular SHELXL-like weighting scheme leads to bias in

residuals when the standard uncertainty (s.u.) values of the observed intensities

are underestimated, which appears to be the case very frequently. An under-

estimation of the s.u. values by a factor of 5 destroys the symmetry of the

residuals with respect to zero and leads to an average increase in Uequiv of 3.35%

in a simulation.

1. Introduction

Wilson (1976) advocates using weights w with the property

@w

@Icalc

¼ 2
@w

@Iobs

ð1Þ

to avoid statistical bias in least-squares refinement against

observed intensities. Any smooth and differentiable function

of (Iobs � 2Icalc) conforms to this requirement. However,

equation (1) was derived under several approximations that

limit its applicability. For example, the weights are expanded

in a power series of the statistical fluctuation � of a particular

observed intensity (and of the deviation � of the calculated

intensity from the true value) only to the second order, which

is justified only if � (and �) is small. For very weak intensities,

however, the statistical fluctuation may be dominant. For this

reason, Wilson states: ‘Third-order and higher terms have

been neglected and these may be of importance for the very

weak reflections.’ In the popular SHELXL refinement soft-

ware package (Sheldrick, 2015), the condition (1) is imple-

mented in the weighting scheme in the form of the parameter

P ¼
Iobs � 0 : fIobs þ ð1 � f Þ Icalc

Iobs < 0 : ð1 � f Þ Icalc

�

ð2Þ

with f = 1/3 as standard, such that Iobs� 0 follows P = 1/3 Iobs +

2/3 Icalc, which obviously conforms to the above requirement

as

@w

@Icalc

¼
@w

@P

@P

@Icalc

and
@w

@Iobs

¼
@w

@P

@P

@Iobs

:

For negative intensity observations, however, equation (2) is

discontinuous and does not conform to equation (1) anymore.

Regardless of the exact definition of P, a bias is introduced

by weights conforming to equation (1), as the same absolute

unweighed residual�|�| may lead to vastly different weighted

residuals �w|�| depending on the sign of �. For an acciden-

tally positive fluctuation of � = +|Iobs| for a weak reflection

with true value close to or identical to zero and Icalc = 0, as an

example, P = Iobs/3, whereas the same absolute value but with

negative fluctuation � = � |Iobs| leads to P = 0, which makes

the absolute negative weighted residual larger than the

corresponding positive weighted residual. Thus, weights in
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accordance with equation (1) down-weight positive fluctua-

tions and up-weight negative fluctuations specifically of weak

intensities. The symmetry of the weighted residuals with

respect to positive and negative fluctuations is broken, which

may lead to a significant negative shift of the weighted resi-

duals, as will be seen later.

2. Application

The above-discussed bias is particularly strong when the

standard uncertainties of the observed reflections after data

integration, s.u.(Iobs), severely underestimate the physical

noise in the data. The full form of the weighting scheme as

implemented in SHELXL is defined according to

w ¼
q

s:u:2ðIobsÞ þ ðaPÞ
2
þ bPþ dþ e sin �=�

; ð3Þ

with parameters a, b, c, d, e and f. When the weighting-scheme

parameter c is chosen to be 0, q is automatically set to 1. For

c 6¼ 0, exponential weights according to Dunitz & Seiler (1973)

are used, with q ¼ exp½c ðsin �=�Þ2� for c > 0 and q ¼ 1�

exp½c ðsin �=�Þ2� for c < 0. For the overwhelming majority of all

published datasets, c = 0 and only the parameters a, b and

typically f = 1/3 are used. The need to use the parameter b > 0

is often taken as a warning sign. In the following, the focus is,

for simplicity, on the case with c = d = e = 0 and f = 1/3, such

that equation (3) simplifies to

w ¼
1

s:u:2ðIobsÞ þ ðaPÞ
2
þ bP

; ð4Þ

with P according to equation (2) and weighting-scheme

parameters a and b.

Now suppose that the unknown true physical noise in the

observed reflections is larger by the same factor x > 1 for all

reflections,

s:u:trueðIobsÞ ¼ x s:u:ðIobsÞ; ð5Þ

and that apart from this underestimation of the s.u.(Iobs) there

are no other systematic errors. What are the consequences?

The weak intensities will be affected most by this error, as

their scatter is much more pronounced around zero as

expected, thereby leading to large and highly significant

negative intensity observations, Iobs/s.u.(Iobs) < � 3. The high

significance, however, is in this specific example of course only

formal, as the s.u.(Iobs) values are systematically under-

estimated. This leads to large positive and negative residuals,

i.e. to a large variance in the residuals, specifically for the weak

intensities. The weighting-scheme parameter b will account for

these large variances for weak reflections. For the weak

intensities with accidentally positive and negative fluctuations,

the above-described bias will lead to strong negative residuals

(as expected) but to damped positive residuals for the same

absolute unweighted residual �|�| with opposite sign. This

effect might become so strong that it even affects the mean

value of the whole distribution of weighted residuals by

shifting it significantly to negative values. For a very simple

example, think about the respective weighted residual

� ¼ ðF2
obs � F2

calcÞ=�ðF
2
obsÞ ¼ w1=2� for opposite statistical

fluctuations: assume s.u.(Iobs) = 10, Itrue, 1 = Icalc, 1 = Itrue, 2 =

Icalc, 2 = 0, Iobs, 1 = 50 and Iobs, 2 = � 50, i.e. two reflections with

the same true value of zero and the same s.u.(Iobs), but with

opposite statistical fluctuations that are larger than s.u.(Iobs)

by the same factor of 5 in both cases. The absolute values of

the weighted residuals, �1 = w1/2�1 = +50/[102 + b(50/3)]1/2 <

+5 and �2 = w1/2�2 = � 5, become quite different. For b = 10, as

an example, �1 = +3.06 and �2 = � 5.00.

2.1. Simulation

To explore further implications, two simulations with arti-

ficial data were conducted. First, the idealized case of an error-

free experiment was simulated in order to construct a refer-

ence set and to confirm the validity of the simulation proce-

dure (Sim 1). In the second simulation, a dataset was

constructed following exactly the same protocol with only one

small, but important, change. This change was to build in on

purpose an artificial error in order to study its effect on the

residuals. This artificial error increased the standard deviation

of the Gaussian random number for each reflection by a factor

of 5 when adding noise to the ideal data, such that the simu-

lated physical noise in the simulated observed intensities was

five times larger compared with the formal value s.u.(Iobs) in

the reflection input file (Sim 2). Some crystallographic values

for these simulations are given in Table 1.

A small-molecule dataset (Shraddha et al., 2020) was picked

randomly from open access datasets published with IUCrData

in the time range between 2020 and 2022. Details of the

structure, crystallizing in the monoclinic space group P21/n

and chemically belonging to the imidazoles (C29H23ClN2O),

and of a measurement taken at 297 K on a Bruker diffract-

ometer with Mo K� radiation are to be found there. For the

simulation, the refinement was repeated with the additional

command OMIT � 100 to incorporate all reflections including

negative intensity observations in the refinement without

modification. The calculated intensities were extracted from

the resulting fcf file and used for the simulation by adding a

Gaussian random number with a mean value of zero and

standard deviation according to s.u.(Iobs). This resulted in

a consistent set of ideal simulated Bragg intensities and
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Table 1
Crystallographic values for a refinement against the original observed
data from Shraddha et al. (2020) with the ‘OMIT � 100’ command, for the
reference simulation ‘Sim 1’ and for a simulation with deliberately
included systematic error (‘Sim 2’) according to equation (5) (with x = 5)
with two different values for the OMIT command.

The command OMIT � 100 leaves all negative intensity observations
unchanged, while the command OMIT � 2 replaces all reflections
F2

obs< � �ðF
2
obsÞ by � �ðF2

obsÞ.

hkl input data a b wR(F2) GoF OMIT

Original 0.0320 1.6958 13.47 1.08 � 100
Sim 1 0.0017 0.0047 3.85 1.04 � 100
Sim 2 0.0000 13.6794 37.23 1.77 � 100

Sim 2 0.0226 8.7552 22.53 1.19 � 2†

† The OMIT default value.



corresponding model parameters. The appropriately scaled

simulated intensities and s.u.(Iobs) values were written to a

SHELX.hkl input file. In order to control the validity of the

procedure, the model was refined against the simulated data.

The simulation conforms to a high-quality structure refine-

ment with respect to the given metrics: the weighting-scheme

parameter values are both small and the weighted agreement

factor wR(F2) = 0.0385 is also small, as is the goodness of fit

(GoF) at 1.04. This simulation is, however, not entirely free of

errors as the refinement still leads to very small but non-zero

weighting-scheme parameters a = 0.0017 and b = 0.0047. It is

expected that repeating the simulation procedure iteratively

would lead to zero weighting-scheme parameters; however,

the simulation was regarded as good enough for the purpose.

The corresponding figures and numbers can be found in the

supporting information. To prevent the software from

subtracting anomalous signals from the simulated intensities

(corresponding to idealized Bragg intensities free of anom-

alous dispersion), the individual atomic contributions to

dispersion were set to zero with the help of the DISP

command in the SHELXL input file.

In a second simulation, the same procedure was executed

but the noise added was magnified by a factor of 5. The sole

systematic error in the data is that the actual noise in the

reflections is five times larger than the formal value. This has,

however, severe effects on the weighting-scheme parameters

and the residuals. Regarding the weighting-scheme para-

meters, the large value of b = 13.6794 in this case just indicates

that the s.u.(Iobs) values are all too small. That a large value of

b may just indicate too small s.u.(Iobs) is rarely discussed in

the literature. A remedy for this situation in which no

essential structure model deficiencies are present but large

values of b appear is found in the online tutorial Some

thoughts on SHELXL weights by Dr Parkin (https://xray.uky.

edu/Tutorials/tutorials.html).

Table 2 shows some numbers describing the residuals for

the reference simulation (Sim 1) and the simulation with

systematic error (Sim 2). First we look at Sim 1. The mean

value of the weighted residuals is virtually zero with an

insignificant [h�i = � 0.12�(h�i)] small negative deviation from

zero. The mean values of the positive and absolute negative

residuals are at 0.80 equal. The corresponding 3� error bars

are at 0.04 small and also equal. The mean values of the

squared positive (h�2
þi ¼ 1:02) and squared negative residuals

(h�2
� i ¼ 1:00) are close to one and within 3� error bars (0.09 in

both cases) identical, as expected for a high-quality refine-

ment. There are 27 more negative than positive residuals,

which corresponds to a ratio of #�þ=#�� ¼ 0:99. The small

number of negative excess residuals is, however, not significant

[#�+ � #�� = � 0.39(Nobs)
1/2]. In total, the residual distribution

from simulation 1 is characterized by being symmetric with

respect to positive and negative deviations, as expected for a

dataset with little systematic error.

Now, we turn our attention to Sim 2. The mean value of the

weighted residuals is shifted to � 0.20, which is highly signifi-

cant [h�i = � 8.00�(h�i)]. The mean values of the positive and

absolute negative residuals now differ substantially and

cannot be regarded as equal within 3� errors. The absolute

value of the negative residuals has increased, with h|�� |i = 1.33

much stronger compared with the positive residuals (h�+i =

0.83). The squared negative residuals are with h�2
� i ¼ 4:93 on

average more than four times larger than the squared positive

residuals (h�2
þi ¼ 1:15). The number of positive residuals has

increased so much that the excess number of positive residuals

(227) is at 3.27(Nobs)
1/2 highly significant. In summary, the

residual distribution of simulation 2 is characterized by being

highly asymmetric with respect to positive and negative

weighted residuals.

Fig. 1 visualizes the broken symmetry of the residuals.

Whereas for simulation 1 the fractions of positive and negative

residuals are virtually equal [Fig. 1(a), left] and positive and

absolute negative mean residuals are similar [Fig. 1(a),

middle], as are the mean squared positive and negative resi-

duals [Fig. 1(a), right], the picture changes drastically for

simulation 2, which shows stronger mean absolute negative

residuals [Fig. 1(e), middle]. That the squared negative resi-

duals are so much stronger indicates that large negative resi-

duals play an important role [Fig. 1(e), right]. This might sound

trivial, but it is not, as increased mean absolute negative

residuals could also be induced by a shift of the residual

distribution to negative values as a whole, which would be

visible in a significant negative value ð#�þ � #�� Þ= Nobsð Þ1=2 <

� 3; however, Table 2 indicates a significant positive shift of

ð#�þ � #�� Þ= Nobsð Þ1=2 ¼ 3:27. These seemingly contradicting

findings are interpreted as follows: the least-squares proce-

dure reacts to one-sidedly very large negative residuals by

shifting the whole residual distribution as much as possible

into the positive realm. Fig. 1( f) shows a histogram of the

weighted residuals in a range between � 2 and 2 for Sim 2. The

red curve represents the probability density function for the
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Table 2
Residual descriptors describing the reference simulation (Sim 1) and the simulation contaminated by a systematic error (Sim 2) with the true noise in the
reflections being magnified by a factor of 5 compared with the formal value.

Column 2: mean weighted residual, �h i ¼ ð1=NÞ
PN

i �i. Column 3: significance of deviation of h�i from zero with �(h�i) = [var(�)/N]1/2 and population variance
varð�Þ ¼ ½1=ðN � 1Þ�

PN
i �i � �h ið Þ2. Column 4: mean value of positive residuals. Column 5: mean value of absolute negative residuals. Column 6: mean value of

squared positive residuals. Column 7: mean value of squared negative residuals. Columns 8 and 9: integer number of positive and negative residuals. Column 10:

ratio of number of positive and negative residuals. Column 11: a measure of the significance of excess residuals when a random walk with 50% probability for
positive and for negative steps is assumed. For more on the definitions of these metrics, see e.g. Domagala et al. (2023) and Henn (2019).

h�i �h i=� �h ið Þ h�+i h|�� |i h�2
þi h�2

� i #�+ #�� #�þ=#�� ð#�þ � #�� Þ= Nobsð Þ1=2

Sim 1 0.00 � 0.12 0.80 � 0.04 0.80 � 0.04 1.02 � 0.09 1.00 � 0.09 2390 2417 0.99 � 0.39
Sim 2 � 0.20 � 8.00 0.83 � 0.04 1.33 � 0.11 1.15 � 0.11 4.93 � 0.91 2517 2290 1.10 3.27

http://doi.org/10.1107/S1600576724011889
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Figure 1
Diagnostic plots for Sim 1 (left) and Sim 2 (right). Row 1: ‘balance sheet’ with positive (blue) and negative (orange) residuals. First pair of columns:
fraction of positive and negative residuals; second pair: mean value of just positive residuals and mean value of absolute negative residuals; and third
pair: mean value of squared positive residuals and mean value of squared negative residuals. Additionally, 3� error bars are attached. Row 2: histograms
of weighted residuals with three Gaussian probability distributions – red: idealized; black: fitted to all absolute residuals smaller than 3, |�| < 3; and
orange: fitted to all residuals. Row 3: weighted residuals printed in rank order of � = 1/w1/2. Row 4: normal probability plots (Abrahams & Keve, 1971).



ideal case, a Gaussian distribution with a mean value of zero

and standard deviation � ¼ ðNobs � NparÞ=Nobs ¼ 0:94. When

a Gaussian probability density function is fitted to the subset

of residuals |�| < 3, the parameters obtained are � = +0.11 and

� = 1.01, i.e. a Gaussian shifted to positive values. When a

Gaussian function is fitted to all weighted residuals � instead,

the parameters obtained are � = � 0.20 and � = 1.71, i.e. the

total shift to negative residuals is clearly caused solely by the

large residuals |�| > 3. Very importantly, Fig. 1(g) shows that

the large negative residuals all originate from low values of

�(Iobs) = 1/w1/2 (large weights, corresponding to weak inten-

sities). As the chosen specific systematic error affects the weak

intensities relatively most, large positive and negative resi-

duals specifically for weak intensities are indeed expected.

However, the positive residuals are simultaneously suppressed

in the same region [Fig. 1(g)], which is a direct consequence of

b > 0. This leads to a distinct asymmetry of the weighted

residuals for large weights (corresponding to weak intensities).

This pronounced asymmetry in the residuals for weak reflec-

tions leads to a shift of the median of the weighted residuals to

negative values [see the red horizontal bars in Fig. 1(g)]. This

additional shift is a direct consequence of the definition of P in

combination with b > 0. It applies regardless of choosing P =

f max(0, Iobs) + (1 � f)Icalc or P = f Iobs + (1 � f)Icalc with all

Iobs including negative intensity observations.

Before proceeding with a discussion, it is important to

realize that there are two different but connected symmetry-

breaking mechanisms at work. First, choosing P in accordance

with equation (1) or equation (2) breaks the symmetry of the

weighted residuals with respect to random positive and

negative fluctuations for weak intensities. This results in a shift

of the median of the weighted residuals of the weak intensities

to negative values. This is a consequence of down-weighting

accidentally positive fluctuations for weak intensities and up-

weighting accidental negative fluctuations via P. Second, the

actually expected large positive and negative weighted resi-

duals for weak intensities are limited only for large positive

weighted residuals by invoking b > 0.1 This is a consequence of

choosing a weighting scheme of the type in equation (4).

It is particularly problematic that the large positive resi-

duals are suppressed when it is additionally considered that

large negative residuals are usually suppressed too, via the

default choice of the OMIT command. The default is applied

when the software user does not specify any OMIT command.

Using the default OMIT command for Sim 2 leads after

refinement to wRðF2Þ ¼ 22:53% and GoF = 1.186, both much

smaller compared with the refinement with all negative

intensities included [wRðF2Þ ¼ 37:23% and GoF = 1.77, see

Table 1]. The systematic error of s.u.(Iobs) values that are much

too small is masked by limiting large positive residuals via the

weighting-scheme parameter b > 0 and limiting large negative

residuals by omitting large negative fluctuations, which are,

however, in this case, a valuable hint to the systematic error.

Finally, Fig. 1(h) shows how the normal probability plot is

affected by this specific systematic error. The overall appear-

ance indicates that positive and negative residuals are not

symmetric, and the large slope for the negative residuals

indicates that large negative residuals are much stronger than

expected.

More diagnostic plots are shown in the supporting infor-

mation for the interested reader.

The structure model is also affected. For example, the

equivalent isotropic atomic displacement parameters Uequiv

from Sim 2 are on average increased by 3.36% compared with

those from Sim 1. The increases for individual atoms are up to

10.01% (for C24), followed by 9.10% (C4), 8.51% (C28) and

8.16% (C13). A slight decrease of Uequiv appears only for the

two atoms C14 (� 0.19%) and C20 (� 0.76%).

3. Discussion

The findings show how a simple systematic error that just

underestimates all stochastic fluctuations by the same factor

and which therefore could be remedied exactly by using a

weighting scheme of the type w = 1/[x2 s.u.2(Iobs)] – with x = 5

in the present case – instead leads to invoking b > 0 and to a

variety of symmetry-breaking phenomena in the distribution

of weighted residuals. The effect is particularly strong for

choosing P according to equation (2) but would be present,

and in fact even stronger, if negative intensity observations

were not set to zero in P. For the question of why negative

intensity observations are set to zero in P, the SHELXL

manual pages offer an explanation: ‘It is possible for the

experimental F2
o value to be negative because the background

is higher than the peak; such negative values are replaced by 0

to avoid possibly dividing by a very small or even negative

number in the expression for w.’ (https://shelx.uni-goettingen.

de/shelxl_html.php). If, for just one moment, negative values

for Iobs in P are admitted, negative values in w may appear

solely through the term bP as all other terms are positive or

zero. For weak intensities the quadratic term (aP) with a� 1

is ignored and we get w = 1/(s.u.2 + bP). Now b = 0 holds for a

refinement without systematic errors; therefore, systematic

errors are needed to invoke b > 0. The weight w might become

negative only for large values of b. Large values of b appear,

for example, when the s.u.(Iobs) are severely underestimated.

In short: zero or negative weights indicate a severe error that

needs to be removed in order to proceed with the structure

refinement. Such a severe error might need reintegration of

the raw data with different parameter settings or other

substantial changes.

The choice to suppress negative intensity observations in

equation (2) allows one to proceed with the refinement despite

fundamental errors such as severely underestimated s.u.(Iobs)

for the weak data. The price to pay for this is b� 0, a distorted

residual distribution with large negative residuals and

suppressed positive residuals for weak intensities, which

together lead to a shift of the mean value of the residuals to

negative values and to corresponding changes in the model

parameters like the atomic displacement parameters. The
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1 This is invoked because the variance of the weighted residuals for the weak
intensities has increased.
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topic is even more delicate as the default OMIT command in

SHELXL suppresses just these large negative residuals that

drive the weighted agreement factor, such that two different

suppression techniques cut off large residuals from the resi-

dual sum: the large positive residuals are cut off ‘from above’

by down-weighting these [see Fig. 1(g)] and the large negative

residuals are cut off ‘from below’ (see the supporting infor-

mation for a visualization) by the default OMIT command. In

the present case, using the default OMIT command leads not

only to a substantially lower agreement factor and a

substantially lower GoF as discussed above but also to a lower

value of the weighting scheme parameter b = 8.7552 compared

with a refinement with the OMIT � 100 command. Paying

exclusive attention to formal values like wR(F2), GoF, b etc., it

appears as if the weighting scheme and OMIT default settings

help to create higher data quality; however, in reality they

disguise a simple error that could be easily removed. Such a

default OMIT setting is rather specific to SHELXL and not

implemented in other software packages like JANA or olex.

refine. In the personal view of the author, the default value

should be chosen so as to include all reflections.

It is well known that the s.u.(Iobs) values are often under-

estimated. This is also reflected in the abundant use of the

SHELXL-like weighting scheme in published datasets with

non-zero parameter values: from a sample of 9606 light-atom

structures containing exclusively C, O, N and H atoms (to

avoid problems with absorption) downloaded from the Crys-

tallography Open Database (Gražulis et al., 2009), only three

structures showed a weighting-scheme parameter of a = 0

(COD 2230560, COD 2230904, COD 2016360). One of these

three also shows b = 0. The use of statistical weights is thus

very rare. A total of 6745 datasets (>70%) were processed

with one of several releases of SADABS; the rest were

processed with software by Stoe & Cie, Agilent, Oxford

Diffraction and others. In total, a minority of 2039 crystal

structures (<22%) were refined with b = 0.

There is usually no effort made to clarify the reasons for the

need to apply a weighting scheme in standard structure

determinations. Inadequacies or errors in the structure model

could be such a reason; however, too small s.u.(Iobs) could

equally well be a reason. Because no effort is made to

discriminate between these cases, it is also not known how

large the fraction of datasets is that suffer mainly from severe

underestimation of (at least a part of) the s.u.(Iobs) values.

Although the error simulation with fivefold under-

estimation of s.u.(Iobs) may appear exaggerated to the reader,

this example serves just to demonstrate that a bias is induced

by a SHELXL-type weighting scheme if it is applied in a

situation where in particular the s.u.(Iobs) of the weak reflec-

tions are underestimated. This poses a methodological

problem that persists even in cases where numerical values are

not strongly affected.

Blessing (1987) shows that the variance of the observed

intensities might be underestimated by an order of magnitude

if the variance of the mean value is employed (rather, the

population variance; the difference is that the variance of the

mean value is smaller by a factor 1/n) for a reflection with

redundancy n = 100. This is caused by correlations between

different reflections introduced by time- and frame-scaling

and other data-processing steps, with the effect that the

measurements of different reflections are not statistically

independent anymore. The loss of statistical independence is

also stressed by Sheldrick (2015): ‘It could be argued that all

reflection intensities are independent measurements, and this

was approximately true for unscaled data from point detectors

before the introduction of focusing optics. However, it is now

standard practice to scale the data so that equivalent reflec-

tions (usually including Friedel opposites) become more

equal, in order to correct for absorption and differences in the

effective crystal volume irradiated, and then the equivalent

reflections can no longer be regarded as independent obser-

vations.’

This error of underestimated s.u.(Iobs) is, to the best

knowledge of the author, the first non-trivial example of a

systematic error that leads to a negative shift of the residuals.

Trivial examples would be a missing extinction correction or

unrecognized shadowing by the beam stop and its support, as

well as detector saturation. Examples for systematic errors

that may lead to a positive shift of the residuals are undetected

twinning and unmodelled disorder, as well as low energy

contamination and higher harmonics (Domagala et al., 2023).

The (significance of the) deviation of the weighted residuals

from zero seems to develop into a good and rather robust

overall indicator of systematic errors in diffraction data,

similar to high or low blood pressure or high temperature in

humans for overall health condition.

4. Open questions and final remarks

It was not possible to cover the important question of how the

model parameters are affected by systematically under-

estimated s.u.(Iobs). From the above given information it

seems that the atomic displacement parameters are affected

the most, but this deserves a more thorough investigation with

a variety of structures, which is out of the scope of this work. It

was also not possible to address the important question of how

other weighting-scheme types like, for example, Chebychev

polynomials (Carruthers & Watkin, 1979) react to under-

estimated s.u.(Iobs). What conclusions should be drawn? In the

definition of P, negative intensity observations need to be

treated like positive ones in order to fully conform to equation

(1). This will increase the bias (as given by the negative shift of

the weighted residuals) as the absolute negative residuals will

become even larger. This, in turn, may bring the whole concept

of equation (1) into question. Another consequence must be

to include all reflections in the refinement by setting the

default of OMIT to a large negative number, like � 100 or so,

in order to enable detection of this specific error. The detec-

tion of this specific systematic error of underestimated

s.u.(Iobs) is hampered or even prevented by (i) the commonly

accepted default OMIT value and (ii) the choice of P

according to equation (2). The IUCr as a science organizing

body as well as the crystallographic journals and data banks

may need to motivate authors to do that by giving clear rules.
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Using the OMIT default value s = � 2 in combination with the

error of underestimated s.u.(Iobs) conceals the error and is

therefore, to say the least, at the border of massaging the data-

quality metrics like GoF and wR(F2). Replacing the observed

intensities, whether negative or not, with an idealized value is

an unjustified manipulation of the observed data and should

be avoided. Whenever large values like b > 1 appear it might

be worth checking for too small s.u.(Iobs). Standardized

protocols for this purpose need to be developed. Taking the

findings from this work, checking for h�i/�(h�i) < � 3 and

simultaneously (#�+ � #�� )/(Nobs)
1/2 > +3 in combination with

b � 1 could be a valuable hint. Finally, some more research

may be needed to find out whether or not bias is really

reduced in practical applications of a weighting scheme that

conforms to equation (1), as in the current example this is

clearly not the case. There may be other examples where bias

is not reduced but increased instead, and vice versa: there may

exist examples in which bias is reduced in practical applica-

tions. It may be necessary to develop criteria to discriminate

between these cases. The derivation of equation (1) by Wilson

(1976), as beautiful and brilliant as it is, is based on limiting

assumptions and lacks practical-application examples, which

poses a risk of detachment from real-world cases.

In general, all authors of crystallographic structures should

be motivated to discuss or at least comment on the underlying

causes for non-zero weighting-scheme parameter values and,

in particular, for large weighting-scheme parameter values of

a � 0.1 and b � 1 in order to learn from it and to communicate

the findings to fellow scientists instead of accepting it

unquestioned. Even if the comment is something like ‘Cause

unknown’, this will over time get attention from fellow

scientists and some eager young scientists may tackle this

problem. This will improve the data quality in general and may

even lead to helpful and surprising insights.
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