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Since the morphology of nanoparticles directly influences many of their prop-

erties, accurately determining their shape is crucial for targeted applications. In

this work, we focus on nanoprisms due to their widespread use and the

limitations of direct imaging techniques in accurately describing their polygonal

cross section. Specifically, we introduce a new tool for small-angle scattering

(SAS) analysis of nanoprisms that requires minimal computation time compared

with all-atom simulations and other form factor analyses. A key innovation in

this work is the implementation of the Lebedev quadrature for isotropic aver-

aging, which allows for accurate form factor calculations using few sampling

points. This form factor model is developed for any n-sided prism and is

compared with small-angle X-ray scattering and transmission electron micro-

scopy experimental data for gold and/or silver nanoprisms (n = 3, 4, 5). For small

sizes, the nanoprism form factor model is compared with the result obtained

with the Debye equation from atomic coordinates, showing a very good

agreement. We explore the effects of the aspect ratio and cross-sectional shape

of the nanoprisms on the form factor curves and discuss the limitations of our

approach. Overall, our method combines precise shape determination with

rapid computation time, paving the way for detailed characterization of

nanoprisms using SAS techniques, potentially even during their growth.

1. Introduction

The functional properties of inorganic materials are governed

by various factors, among which shape plays a pivotal role. For

instance, the exposed crystalline facets of a nanocrystal

determine reactivity in catalysis and can guide their self-

assembly into functional materials, and, frequently, anisotropy

gives rise to rich optical properties (Kinnear et al., 2017;

Baffou & Quidant, 2014; Jana, 2004; Reguera et al., 2017).

Accurately determining the shape of faceted nanoparticles is,

therefore, a fundamental challenge in materials science.

However, the conventional method, transmission electron

microscopy (TEM), is not always ideal for characterizing

complex 3D shapes, as its micrographs provide only 2D

projections. Within the colloidal shape library, nanoprisms in

the form of rods and platelets are found in a variety of

materials, including metals, oxides, II–VI and III–V semi-

conductors, and perovskite nanocrystals (Dey et al., 2021;

Grzelczak et al., 2008; Ghosh & Manna, 2018). For nanoprisms

with triangular and square bases, it is usually feasible to infer

the dimensions of the cross section from TEM image analysis.

However, for nanoprisms with pentagonal, hexagonal and

octagonal bases, this becomes significantly more complicated.

In addition, nanoprisms show very often a preferred

orientation on a TEM grid, preventing measurement of all

their dimensions.
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In this context, small-angle scattering (SAS) can provide

detailed shape characterization, particularly when nano-

particles are uniformly dispersed. SAS offers a significant

advantage over TEM by averaging data from a far larger

number of particles, compared with the limited sample of

around a hundred typically analyzed in TEM. For diluted

colloidal dispersions, analyzing SAS data yields the form

factor of the nanoparticles, averaged over all orientations. This

form factor also appears in the scattering when nanoparticles

are assembled together into supercrystals (Yager et al., 2014).

By modeling the form factor, it is possible to extract geometric

parameters of the individual nanoparticles and predict the

intensity of peaks in the structure factors of assemblies.

However, nanoprisms are often approximated as spher-

ocylinders, which imperfectly describe their polygonal cross

section. Other models overlook the polygonal cross section of

nanoparticles to save computational time (Lyu et al., 2023). In

general, SAS analysis of polyhedral shapes requires new

models to better fit experimental data. Analytical formulas for

volume integrals rapidly become complicated, even for simple

shapes such as Platonic solids (Li et al., 2011). The form factor

of any particle shape can be obtained from the Debye formula

(Debye, 1915) by calculating distances between all atomic

pairs, but for large nanoparticles of a few tens of nanometres,

computational time and resources are still an issue. Other

approaches simplify volume integrals, either by reducing them

to simpler volumes (Senesi & Lee, 2015; Croset, 2017; Yang et

al., 2023) or by using the divergence and Stokes theorems to

first reduce the volume integral to an integral over the poly-

hedron’s faces and then further reduce it to integrals along the

edges (Wuttke, 2021). The latter gives a general and elegant

analytical expression of the form factor of any convex poly-

hedral shape, which optimizes computation time, but aver-

aging over orientations is still needed.

The purpose of this work is to introduce a new tool for the

SAS analysis of nanoprisms that requires minimal computa-

tion time. We utilize the expression derived by Wuttke (2021)

for right prisms with regular polygonal cross sections and

perform the orientation averaging using the Lebedev quad-

rature method. Specifically, the model is developed for any

n-sided prism and is compared with small-angle X-ray scat-

tering (SAXS) and TEM experimental data for gold and/or

silver nanoprisms (n = 3, 4, 5). We examine the effects of the

aspect ratio and cross-sectional shape of the nanoprisms on

the form factor curves and discuss the limitations of our

approach. The code is implemented in Python to facilitate

reuse by other researchers. In the case of small nanoprisms, a

very good agreement is found with a computation using the

Debye equation from atomic coordinates. This work opens

new avenues for the detailed characterization of nanoprisms

using SAS techniques, potentially even during their synthesis.

2. SAS by n-sided prisms

We consider particles having the shape of a right prism of

length L and a cross section made of a regular polygon with n

sides, as illustrated in Fig. 1(a). The size of a regular polygon

can be characterized by its edge length E or by R, the

circumradius of the polygon, with R ¼ E=½2 sinð�=nÞ�. As

shown in Fig. 1(c), the circumradius R is the radius of the

circumcircle shown in black when the apothem R cosð�=nÞ is

the radius of the dashed circle. For comparison purposes, it is

convenient to introduce an average radius Rave,

A ¼ �R2 sinc
2�

n

� �

¼ �R2
ave; ð1Þ

where A is the area of the polygon. Rave is the radius of the

equivalent disc having the same area as the n-sided polygon

and it is shown in red in Figs. 1(b) and 1(c). Rave is also the

squared average of the distance from the center of the polygon

to any point of its perimeter,

R2
ave ¼ R2 sinc

2�

n

� �

: ð2Þ

As expected, when the number of sides n increases, the cross

section becomes closer and closer to a disc, and the difference

between Rave and R decreases, as illustrated in Fig. 1(b).

Anisotropic particles are often characterized by their aspect

ratio �. Here we define the aspect ratio of a right prism in a

way that is independent of the number of sides n of the

polygonal cross section:

� ¼
L

2Rave

¼

ffiffiffi
�
p

L

2
ffiffiffiffi
A
p : ð3Þ
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Figure 1
Right prisms with n sides. (a) Prisms with increasing n values at constant
volume and fixed length L of aspect ratio � = 3. Aspect ratio � is defined
as L=ð2RaveÞ. (b) The corresponding cross sections are regular polygons
with identical areas. (c) Characteristic dimensions of the polygonal cross
section illustrated for a pentagon (n = 5): E is the edge length, R is the
circumradius of the regular polygon and Rave (in red) is the squared
average radius. The arrows in dark blue and magenta correspond,
respectively, to the vectors Mj (middle of edges) and Ej (half-edges) used
in the form factor calculation in equation (5).



When � � 1, the prism shape describes a rod morphology,

like in Fig. 1(a). In contrast, when � � 1, a platelet

morphology is described by the same form factor. The influ-

ence of � on the form factor curves is discussed in Section 4.4.

Note that, with this definition, the aspect ratio of a regular

cube is � ¼
ffiffiffi
�
p

=2 � 0:89 and not 1.

2.1. Form factor for a prism

Following Wuttke’s expression (Wuttke, 2021), the form

factor F(q) for any right prism can be decomposed into the

product of two factors, one for the component q? of the

scattering vector q that is perpendicular to the cross section,

and only depends on the length L, and another one, co-planar

to the cross section, with the component qk, that depends on

the number of sides n and the edge length E of the polygon.

The perpendicular factor is

f?ðq?;LÞ ¼ sinc
q? � n̂ð ÞL

2

� �

; ð4Þ

where n̂ is the direction normal to the cross section. The length

L gives rise to a standard sinc function for the form factor.

On the other hand, the parallel factor for a regular n-sided

polygon of circumradius R can be expressed as

fkðqk; n;RÞ ¼
2

iq2
k

Xn

j¼1

n̂ � ðqk � EjÞ

� sinc qk � Ej

� �
exp iqk �Mj

� �� �
: ð5Þ

In the sum over all edges, Mj is the vector joining the center of

the polygon to the middle of the jth edge and Ej is the half-

edge vector, as illustrated in Fig. 1(c) for a pentagon. The

scattered intensity for one prism is

Iðq; n;R;LÞ ¼ Fðq; n;R;LÞ
�
�

�
�2¼ f?ðq?;LÞfkðqk; n;RÞ

�
�

�
�2: ð6Þ

At scattering vectors close to zero, the limit of the scattered

intensity Iðq; n;R;LÞ is ðLAÞ2, the squared volume of the

particle.

2.2. Orientation average

In order to compare with experimental scattering curves of

nanoparticle suspensions, we need to compute the isotropic

form factor Pðq; n;R;LÞ by calculating the orientation

average of the intensity Iðq; n;R;LÞ on all possible orienta-

tions of a particle. It is formally equivalent to the computation

of the average of Iðq; n;R;LÞ over the direction u of the

scattering vector q at a fixed value of its modulus q:

Pðq; n;R;LÞ ¼ hIðqu; n;R;LÞi ffi
XN

j¼1

wjIðquj; n;R;LÞ; ð7Þ

where h i stands for the average of u over the unit sphere.

Numerically, this average is computed as a discrete sum over a

finite number N of sampling points of the unit sphere with

their associated weights wj, called a quadrature (Beentjes,

2015). Different choices are possible for the quadrature and

numerical methods are still improving in this field (Beentjes,

2015; Gross & Atzberger, 2018). Depending on the choice of

quadrature, the repartition of the sampling points on the unit

sphere varies. We opted for the Lebedev quadrature (see

Section 2.4) as a possible alternative to the more widespread

Gauss–Legendre-based quadrature that couples a 1D Gauss–

Legendre integration for the polar angle with constant steps

for the azimuthal angle. The Lebedev quadrature is particu-

larly interesting because it offers a much more uniform

distribution compared with Gauss–Legendre. However, a

limitation of the Lebedev quadrature is that the number of

sampling points is fixed according to its order, with a

maximum of only 5810 points for the highest solved order, 131.

In contrast, the Gauss–Legendre quadrature allows for any

number of sampling points, offering greater flexibility when

more points are required, depending on the complexity of the

scattering function. In this study, a quadrature order of 65

(1454 points on the unit sphere) is used by default to quickly

calculate the isotropic average when adjusting parameters, and

the resulting curve usually contains all the relevant features

with a sufficient precision to compare with experimental data.

The final result is computed with the maximum available order

of 131 (5810 points on the unit sphere) for the quadrature.

2.3. Modeling scattering curves

A size distribution can be included for both the circum-

radius R and the length L to model the scattering intensity. A

Gaussian polydispersity is chosen, characterized by a standard

deviation �. To reduce calculation times, four options are

implemented: polydispersity for R only, polydispersity for L

only, the same polydispersity for both R and L, and distinct

polydispersities for R and L. In practice, the final expression

Ppolyðq; n;R; �R;L; �L;NpolÞ is computed as a simple sum for

all options,

Ppolyðq; n;R; �R;L; �L;NpolÞ ¼
XNpol

j¼1

w
pol
j Pðq; n;Rj;LjÞ; ð8Þ

where R is the average value of the circumradius and �R its

standard deviation, L the average length and �L its standard

deviation, and Npol the number of values in the sum with

weights w
pol
j , which are calculated differently depending on

the option.

Experimental sets of data points Idata are adjusted by

computing a model intensity Imodel using either Pðq; n;R;LÞ

or Ppolyðq; n;R; �R;L; �L;NpolÞ for the form factor. A reduced

chi-squared �2
R is computed for comparing different adjust-

ments:

�2
R ¼

1

Ndata

XNdata

i¼1

ðIi
data � Ii

modelÞ

�Ii
data

�
�
�
�

�
�
�
�

2

; ð9Þ

where Ndata is the number of points in a data set, making the

assumption that the error bars on experimental intensities are

10% of their absolute values with �Idata ¼ 0:1Idata.

2.4. Code implementation

A Python 3.10 code, tested under 3.12, has been written and

is available at https://github.com/jules-marcone/prismformfactors
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and on PyPI (https://pypi.org/project/prismformfactors). An

open-source Python package is used for the Lebedev quad-

rature (Lebedev, 1976; Filot, 2023). Polydispersity is imple-

mented using the open-source SASView library (https://www.

sasview.org/). Numerical results for a cylinder particle and for

a prism with a square cross section are compared with those

obtained using models available in SASView.

2.5. Debye equation approach from atomic coordinates

Scattering data can also be computed from atomic struc-

tural models constituted of atom types and coordinates using

the well known Debye equation (Debye, 1915). In the case of

particles made only of gold atoms, the Debye equation can be

written as

IDebye qð Þ ¼ f Au
0 ðqÞ
�
�

�
�2
XN

i¼1

XN

j¼1

sin qrij

� �

qrij

; ð10Þ

where q is the scattering vector magnitude, f Au
0 ðqÞ is the

atomic form factor of a single gold atom, and rij is the distance

between atoms i and j.

In-silico structural models of pentagonal nanoprims have

been created using the ASE Python library (Larsen et al.,

2017). The corresponding scattering data were further

computed with the Debye equation using the debyecalculator

Python library (Johansen et al., 2024), which allows calcula-

tions on a GPU. In the case of structures larger than 60000

atoms, our nVidia Quadro GV100 GPU failed to compute the

scattering intensity because of a lack of memory, illustrating

the technical limitations in terms of computational power

associated with the Debye approach. CPU calculations were

performed with an 11th-generation Intel@Core i7-11850H@

2.5GHzx16. Scattering data computed with the Debye equa-

tion (10) were then compared with those obtained with the

form factor approach for nanoprisms of similar sizes and

shapes.

To take into account the variation of the gold atomic form

factor with the scattering vector at large q values, the same

prefactor jf Au
0 ðqÞj

2 as in the Debye equation can be applied to

the nanoprism form factor Pðq; n;R;LÞ [equation (7)]. f Au
0 ðqÞ

is computed using the tabulated Cromer–Mann coefficients. A

constant gold atomic form factor f Au
0 ð0Þ ¼ ZAu ¼ 79 is a good

approximation in the SAXS regime only until about 0.5 Å� 1.

Finally, to facilitate comparison between the results using

the Debye equation and the form factor approaches, scattered

intensities can be scaled to 1 at q ¼ 0 by dividing IDebyeðqÞ by a

scaling factor of Z2
AuN2, when Pðq; n;R;LÞ is divided by the

square of the particle volume.

3. Materials and methods

3.1. Materials

Gold chloride trihydrate (HAuCl4·3H2O, �99.9%), silver

nitrate (AgNO3, >99%), sodium borohydride (NaBH4,

�96%), ascorbic acid (AA, �99%), hydrochloric acid (HCl,

37%), cetyltrimethylammonium chloride (CTAC, 25 wt% in

H2O), cetyltrimethylammonium bromide (CTAB, �99%),

benzyldimethylhexadecylammonium chloride (BDAC, 99%),

sodium iodide (NaI, �99%) and trisodium citrate dihydrate

(�99%) were purchased from Merck. Milli-Q (MQ) water

with a resistivity above 15 M� cm was used.

3.2. Synthesis of nanoparticles

Metallic nanoprisms (n = 3, 4 and 5) were synthesized as

described previously (Goldmann et al., 2023; Gómez-Graña et

al., 2013; Park et al., 2011; Sánchez-Iglesias et al., 2017;

Marcone et al., 2023).

3.2.1. Gold triangular nanoprisms (C3NPs)

The synthesis of C3NPs first required the synthesis of gold

seeds, followed by a seed-mediated growth. The seeds were

prepared from a solution of CTAC (4.7 mL, 100 mM) and

HAuCl4·3H2O (50 mL, 25 mM) in water, in which NaBH4 was

added under vigorous stirring. After 30 s, the reaction mixture

was kept undisturbed at room temperature for 120 min. For

the C3NP growth, two separate solutions A and B were

prepared simultaneously. The composition of solution A was

MQ water (8 mL), CTAC (1.6 mL, 100 mM), HAuCl4·3H2O

(80 mL, 25 mM), NaI (15 mL, 10 mM), AA (40 mL, 100 mM)

and the composition of solution B was water (20 mL), CTAC

(20 mL, 100 mM), HAuCl4·3H2O (1000 mL, 25 mM), NaI

(300 mL, 10 mM), AA (400 mL, 10 mM). A portion of the

aforementioned gold seed solution was diluted ten times in

CTAC (100 mM), and 150 mL of this diluted solution was

added quickly to solution A. Subsequently, 3.2 mL of solution

A was rapidly mixed with solution B. The reaction mixture was

gently stirred at room temperature for 2 h, centrifuged at

6000 rev min� 1 for 15 min and washed before purification by

depletion in CTAC (110 mM) overnight. After the shape

separation, the precipitate was collected and washed with

2.5 mM CTAC and stored in 2.5 mM CTAC.

3.2.2. Gold/silver square nanoprisms (C4NPs)

This synthesis required three steps: the fabrication of

monocrystalline gold seeds, followed by a first seed-mediated

growth to obtain gold nanorods, and finally a second seed-

mediated growth of silver to obtain the core–shell gold/silver

C4NPs. The gold seeds were obtained from a solution of

CTAB (50 mM) and decanol (14 mM) in H2O (7 mL), to

which was added HAuCl4 (140 mL, 25 mM), AA (35 mL,

100 mM) and NaBH4 (280 mL, 20 mM). The mixture was

stirred at room temperature for 1 h. The gold nanorods were

obtained from 100 mL of a similar CTAB/decanol/water

solution, to which was added AgNO3 (800 mL, 10 mM), HCl

(7 mL, 1 M), HAuCl4 (2 mL, 25 mM), AA (1.3 mL, 100 mM)

and 6 mL of the previously prepared seeds solution. The

mixture was stirred at 28�C for 4 h, before being centrifuged at

13000 rev min� 1 for 1 h and washed with water twice. The

C4NPs were obtained from a solution of 250 mL of a similar

CTAB/decanol/water solution, to which was added AgNO3

(500 mL, 100 mM), HAuCl4 (5 mL, 25 mM), AA (2 mL,

100 mM), HCl (25 mL, 1 M) and the previously prepared
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nanorod solution (650 mL, [Au] = 8.75 mM). The solution was

stirred at 28�C for 4 h, after which the C4NPs were collected

and washed by centrifugation.

3.2.3. Gold/silver pentagonal nanoprisms (C5NPs)

This synthesis required three steps: the fabrication of

pentatwinned gold seeds, followed by a first seed-mediated

growth to obtain large gold decahedra, and a second seed-

mediated growth of silver to obtain the core–shell gold/silver

C5NPs. The seeds were synthesized in a solution of CTAC

(60 mM) in water (33 mL) to which was added trisodium

citrate (4 mL, 50 mM) at 30�C. The mixture was left at 30�C

for 30 min before adding NaBH4 (1 mL, 25 mM). After stir-

ring for 30 s, the mixture was left for 5 days in an oven at 40�C

to obtain pentatwinned seeds. The gold decahedra were

prepared from a solution of BDAC (100 mM) in water

(400 mL) to which was added HAuCl4 (8 mL, 25 mM) and AA

(3 mL, 100 mM). A portion of the seed solution (1200 mL,

[Au] = 0.3 mM) was added under fast stirring. The mixture was

subsequently left under slow stirring at 30�C for 30 min. The

decahedra were then centrifuged for 10 min at 6000 rev min� 1

and washed with water, before being stocked in 5 mL of 5 mM

CTAC. The C5NPs were synthesized from a solution of

decahedra ([Au] = 0.25 mM) and CTAC (10 mM) in water

(100 mL) to which was added, at 70�C under fast stirring,

AgNO3 (1.25 mL, 100 mM) and AA (5 mL, 100 mM). The

mixture was left under stirring at 70�C for 2 h before purifi-

cation by successive depletions at 60 and 40 mM of CTAC. The

C5NPs were then stored in 5 mM CTAC.

3.3. TEM

TEM was performed at Imagerie-Gif (I2BC CNRS, Gif-sur-

Yvette, France) using a JEOL JEM-1400 microscope oper-

ating at 120 kV with a filament current of �55 mA.

3.4. SAXS

SAXS measurements were performed on the SWING

beamline of the SOLEIL synchrotron (Saint-Aubin, France)

at a beam energy of E = 16 keV with a sample-to-detector

distance of 6.22 m, resulting in a q range of 0.001 to 0.24 Å� 1.

The beam size was approximately 500� 200 mm (horizontal �

vertical). All measurements were performed at room

temperature (295 K). The scattered signal was recorded by an

Eiger 4M detector (Dectris Ltd, Switzerland) with a pixel size

of 150 mm (2 � 2 binning mode). Preliminary data treatment

(angular averaging and normalization) was done using the

software Foxtrot developed at the beamline (https://www.

synchrotron-soleil.fr/fr/lignes-de-lumiere/swing), which yielded

the intensity as a function of the scattering vector magnitude

I(q) in absolute units. Complementary ultra-small-angle X-ray

scattering (U-SAXS) was conducted on the ID02 SAXS

beamline of ESRF (Grenoble, France), with a beam energy of

E = 12 keV and a sample-to-detector distance of 36 m, thus

allowing ultra-small q values down to �2 � 10� 4 Å� 1 to be

reached. Form factor scattering curves were measured on

diluted aqueous suspensions of the different metallic nano-

particles and the signal from the appropriate diluted CTAC

solution was subtracted from the raw signal.

4. Results and discussion

4.1. Influence of the number of sides n

In Fig. 2, the scattered intensity in the cross-section plane

fkðqk; n;RÞ
�
�

�
�2 [see equations (5) and (6)] is plotted to compare

different particles with the same circumradius R. As expected,

the effect of the polygonal shape is very strong for small values

of n, along with a strong even–odd effect. For all odd values of

n, the symmetry order of the 2D plot is 2n. It is visible in Fig. 2

for the triangular cross section with a sixfold symmetry and for

the pentagonal cross section with a tenfold symmetry. This

comes from the fact that the scattered intensity always has a

symmetry center at the origin of the reciprocal space, a general

relation known as the Friedel law. For values of n larger than

10, the anisotropy in the cross-section plane becomes much

less pronounced and it is hard to discern the difference from

the cross section of a cylinder.

The same even–odd effect is visualized in Fig. 3 on the

isotropic form factors Pðq; n;R;LÞ [see equation (7)] when
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Figure 2
Comparison of the scattered intensity in the cross-section plane for
different n-prisms (n = 3, 4, 5, 6, 10 and 100) with the same circumradius
R = 15 nm. The cross section is shown at the bottom left of each 2D plot.
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varying n at constant volume and length as depicted in Fig. 1.

The zeros in the oscillation regime at higher q values are much

less pronounced for an odd number of sides than for an even

one. The relative positions of the maxima of these oscillations

are different depending on n, giving a signature of the poly-

gonal cross section. In addition, as a verification, the form

factor for n = 4 is superimposed on the usual parallelepiped

model (light blue curve), while for n = 32, the usual cylinder

model (red curve) gives the same result. We conclude that the

n-prism particles have a clear signature in their isotropic form

factor for values of n less than 8. Triangular and pentagonal

prisms are easily recognized from the damping of the oscil-

lations at large q values. For n values larger than 8, it is not

possible in practice to discriminate them from a cylinder

model, as all the oscillations are superimposed in a realistic q

range for measurements.

4.2. Combining with TEM in the case of cuboids

We perform a first test of the nanoprism form factor model

by considering metallic nanoprisms with a square cross section

(C4NPs) (see Section 3.2). This simple shape is a good starting

point to compare with experimental data as the model is

equivalent to the well established expression of the form

factor for a parallelepiped model, as discussed in Section 4.1

and shown in Fig. 3.

The two dimensions (width and length) of C4NPs can be

easily measured using TEM imaging as the particles generally

lie flat when deposited on a TEM grid, as shown in Fig. 4(a).

The histogram of width (equivalent to the edge for four-sided

prisms) and length measured for 100 particles [see Fig. 4(b)]

gives LTEM = 98 nm and ETEM = 34 nm with a polydispersity of

0.05 for both dimensions. We can compare these with the

experimental SAXS scattering curve [see Fig. 4(c)] measured

on a dilute suspension of the same batch of C4NPs by calcu-

lating the form factor corresponding to these TEM values.

Here, initially, a global agreement was found but with some

remaining discrepancies. A manual adjustment (see Section

2.3) of the dimensions with the model is then done to match

the experimental curve as best as possible [see Fig. 4(d)].

Experimentally, the size distribution for the edge length is

usually narrow, while the size distribution for length is

broader. By adjusting the simulated curve to the experimental

oscillations in the form factor, the value of the edge length is

thus refined to E = 33 nm with a polydispersity of 0.09.

Meanwhile, adjusting the simulation to the experimental curve

at low q values yields an average length value of L = 73 nm

with a large polydispersity of 0.19.

This analysis with our model shows that TEM imaging on a

small number of particles underestimates the polydispersity
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Figure 3
Isotropic form factor Pðq; n;R;LÞ of various n-sided prisms for n ranging
from 3 to 32 computed with the Wuttke formula adapted for prisms [see
equation (6)]. All particles have the same length L = 450 nm and cross-
section area (Rave = 30 nm) with an aspect ratio � = 7.5. The curves are
compared with the calculation using the standard expressions of a
parallelepiped (in light blue) and a cylinder (in red). Curves are shifted
along the vertical axis for a better comparison.

Figure 4
Study of a population of four-sided prisms in both TEM and SAXS. (a)
TEM image of the C4NPs. (b) Histograms of the particle width (red) and
length (black) determined by 100 measurements in TEM. Gaussian
distributions of the size parameters determined by TEM only (green) and
by manual fitting of the experimental model (orange). (c) Comparison of
the experimental SAXS data (blue) and the experimental model with the
parameters found in the TEM analysis (green). (d) Comparison of the
experimental SAXS data (blue) and the experimental model with
manually fitted parameters (orange).



on both dimensions. When the edge length values from both

methods are in good agreement, the broadness of the length

distribution (0.19 polydispersity) is reliably obtained only

from the SAXS analysis. The final adjustment [see Fig. 4(d)]

still shows discrepancies with the experimental curve, indi-

cating that a small amount of another nanoparticle shape

might be present in the suspension as a by-product of the

synthesis.

4.3. Pentagonal nanoprisms – determination of the number

of sides

Since pentagonal nanoprisms (C5NPs) are typically

synthesized from pentatwinned seeds (see Section 3.2), it is

known from previous studies (Johnson et al., 2008) that their

cross section is pentagonal. However, the relation between the

width measured for a pentagonal nanoprism deposited on a

TEM grid and its radius or edge length depends on the

orientation of the cross section relative to the grid, making it

challenging to precisely evaluate its size. In this context, the

form factor analysis provides a much more accurate deter-

mination of nanoprism dimensions.

In Fig. 5, a typical experimental scattering curve for a batch

of C5NPs is analyzed. This curve has a remarkable number of

well defined oscillations at large q values, a good indication

that the particles have a low size polydispersity. The analysis

using the nanoprism form factor model is performed for n = 4,

5, 6 and 40, the last value corresponding to an effective

circular cross section. Only n = 5 [Fig. 5(b)] is able to repro-

duce the exact positions of all oscillations. For other values of

n, the positions exhibit a shift: if an adjustment is made based

on the position of one particular oscillation, the positions of

the others do not match the experimental curve. Collectively,

this analysis shows that this batch contains a large majority of

pentagonal nanoprisms.

The form factor model for n = 5 gives accurate dimension

values of the pentagonal nanoprisms with Rave = 30 � 1.5 nm

and L = 117 � 6 nm, giving an aspect ratio � of 2.0 for this

particular nanoprism batch. These dimensions are compatible

with TEM imaging performed on 100 particles (Rave = 30 nm

and L = 135 nm), but most importantly this analysis demon-

strates that the size distributions are very narrow, with a

polydispersity value of only 0.05 for both dimensions. Finally,

as with the previous particles with a square cross section

(Section 4.2), the discrepancy around the first oscillation with

the experimental curve might be attributed to a tiny amount of

synthesis by-products. Another explanation might be that the

cross section is not a perfect regular pentagon, or the presence

of caps at the extremities of the particles.

Note here that, with an aspect ratio value � = 2.0, the

oscillations in the form factor are governed not only by the

average radius Rave but also by the length L. This brings us to

an important feature, the influence of the aspect ratio on the

form factor.
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Figure 5
Comparison of an experimental form factor of C5NPs with form factor
models of varying number of sides. (a) Four sides. (b) Five sides. (c) Six
sides. (d) 40 sides, approximating a cylinder.

Figure 6
Isotropic form factor Pðq; n;R;LÞ for three-, four- and five-sided prisms
with the same cross-section area on the left (Rave = 40 nm) and the same
length on the right (L = 80 nm) and different aspect ratios �.



4.4. Influence of aspect ratio

In Fig. 6, the scattered intensity for three-, four- and five-

sided prisms is plotted for different aspect ratios ranging from

a thin platelet morphology for � = 0.1 to a long rod

morphology for � = 10. On the left-hand side of the figure, the

cross-section area is fixed (Rave = 40 nm) and only the length L

changes, while on the right-hand side, the length L is fixed at

80 nm when varying the cross-section area. These two situa-

tions may correspond, for example, to the evolution of the

scattering curves during the growth of nanoprisms in solution,

helping to discriminate which dimension is increasing the

most. For aspect ratios around 1, the scattered intensity

exhibits a direct transition from a plateau regime at low q

values to a regime where many oscillations are present, related

to the fact that the two characteristic dimensions Rave and L

have similar values. When the objects have a large anisotropy,

like platelets (� � 1) or rods (� � 1), the oscillations are

dominated by the smallest dimension, either the thickness for

a platelet or the section for a rod, while the larger dimension

controls the behavior of the scattering curve at low q values.

The even–odd effect is again observed, with more pronounced

oscillations for n = 4 than for n = 3 and n = 5. The typical

nanoprism dimension in Fig. 6 is 40 nm, which corresponds to

a characteristic value for metallic nanoprisms; this gives rise to

a large number of oscillations in the small-angle q range, which

makes it possible to distinguish the number of sides n.

However, when the overall size gets smaller, like for rods with

� = 10, the oscillations are shifted to q values larger than

0.1 Å� 1. In that case, in order to discriminate the value of n

from the positions of the oscillations, measurements have to

be performed at larger q values where the atomic form factor

is no longer constant. This means that the atomic structure

inside a nanocrystal should be considered when analyzing

particles of a few nanometres in size, as further discussed in

Section 4.6.

4.5. Triangular platelets – finding a non-visible dimension in TEM

The case of triangular platelets corresponds to n = 3 with an

aspect ratio � � 1. In Fig. 7, an experimental form factor

scattering curve is shown for C3NPs (see Section 3.2 for

synthesis aspects) and is compared with a triangular platelet

form factor model, which shows a very good agreement, with a

�2
R value of around 0.4. A representative TEM image for the

same C3NP sample is displayed in Fig. 7, and image analysis

performed over 118 different particles yields an average size

ETEM = 57.7 � 3.3 nm for the edge length. An important

observation is that platelet particles consistently lie flat on the

TEM grid, making it impossible to measure their thickness

directly by imaging. In contrast, SAXS curve analysis provides

both the edge length and thickness with high accuracy. From

the SAXS curve modeling, we can deduce the size distribution

both for the edge length with E = 59.6 � 7.7 nm and for the

thickness with L = 27.9 � 3.6 nm. Here the polydispersity

value is 0.13 for both dimensions. The average aspect ratio is

� = 0.63, showing that such platelets are rather thick, in

agreement with previous studies (Goldmann et al., 2023;

Scarabelli et al., 2014; Kuttner et al., 2018). Although the

effective shape of such nanoparticles is a beveled nanoprism

(Kim et al., 2017), it can be described well by our regular

nanoprism model. In conclusion, SAXS analysis provides

dimensional information, such as thickness, which is challen-

ging to obtain through standard TEM image analysis.

4.6. Smaller objects and size limit

When the dimensions of the nanoprisms are small, typically

less than about 10 nm for both dimensions, it is possible to test

the limitations of the form factor model for small sizes. To do

so, small pentagonal nanoprisms (a few thousand atoms) can

be modeled using two different methods, the form factor

approach and the Debye equation (see Section 2.5). We have

considered pentagonal nanoprisms with an edge length of
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Figure 7
Triangular thick platelets (C3NP). Average edge length is 59.6 nm,
average thickness is 27.9 nm, with a linked polydispersity for both
dimensions of 0.13. The 3D shape (in green color) illustrates these
dimensions, with a corresponding aspect ratio of � = 0.63.

Figure 8
Calculated form factor (solid lines) compared with the Debye equation
(dashed lines) for small C5NPs with an edge length of 1.55 nm and four
different aspect ratios � = 2.2, 2.7, 3.5 and 5.6 (see Table 1). Form factor
and Debye expressions are both scaled to one at q = 0 for each scattering
curve.



1.55 nm, corresponding to four times the interatomic Au–Au

distance, and with a variable aspect ratio (� = 2.2, 2.7, 3.5 and

5.6). Detailed dimensions of the resulting particles are shown

in Table 1.

Fig. 8 shows the results obtained with the form factor and

the Debye computation approaches. In the SAXS region (i.e.

q < 0.5 Å� 1), both methods show a very good agreement.

However, as q increases, the atomic scale structure of gold is

revealed in the Debye calculation, while it is not accounted for

in the form factor approach.

From a computational point of view, the use of the Debye

equation is much more demanding than the form factor

approach, passing from 450 ms in the form factor case to a few

seconds (33.6 s for 3876 atoms) per iteration in the Debye case

(CPU time). In addition, an increase in the number of atoms

increases the computation time in the case of the Debye

calculation, while the computation time remains constant with

the form factor approach.

In the case of particles of even smaller sizes, typically

around 1 nm of edge size, one should expect the observation

of one or two oscillations in the form factor, in a q region

approaching the domain where atomic scale structure

becomes dominant (q > 0.5 Å� 1). Since our method does not

account for the signal arising from the atomic structure, using

the Debye equation is preferable for simulating the scattering

signal in such cases. However, for larger particles (above

10 nm), the form factor approach is recommended, as it

provides equivalent results with significantly faster computa-

tion times.

5. Conclusion

In this work, we introduce a new tool for the SAS analysis of

n-sided nanoprisms that requires minimal computation time.

We utilize the expression derived by Wuttke (2021) for right

prisms with regular polygonal cross sections and perform the

orientation average using the Lebedev quadrature method,

which allows for accurate form factor calculations using few

sampling points. A very good agreement is obtained when

comparing our model’s results with the Debye equation

approach from atomic coordinates for test particles containing

only a few thousand atoms.

Comparison with TEM experimental data for gold and/or

silver nanoprisms (n = 3, 4, 5) illustrates how the shape and

dimensions are measured much more accurately and

completely using SAXS analysis rather than TEM imaging,

like in determining the thickness of triangular platelets, the

number of sides of a population of nanoprisms or the exact

average radius of pentagonal rods.

In the future, less regular cross sections could be easily

implemented in the model, to take into account truncation

effects along edges of a particle. This work also opens new

avenues for the detailed characterization of nanoprisms using

SAS techniques, potentially even during their synthesis.
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Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M.

(2008). Chem. Soc. Rev. 37, 1783–1791.
Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I. E.,

Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B.,
Hargus, C., Hermes, E. D., Jennings, P. C., Bjerre Jensen, P.,
Kermode, J., Kitchin, J. R., Leonhard Kolsbjerg, E., Kubal, J.,
Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T.,

research papers

J. Appl. Cryst. (2025). 58, 543–552 Jules Marcone et al. � Form factor of prismatic particles for SAS analysis 551

Table 1
Dimensions of the atomic structural models of C5NPs used for the
comparison between Debye and form factor approaches.

The edge length is fixed at E = 1.55 nm.

Aspect ratio � 2.2 2.7 3.5 5.6

Length (nm) 4.95 6.05 7.98 12.65
No. of gold atoms 1540 1869 2477 3876

https://www.i2bc.paris-saclay.fr
https://www.ibisa.net
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB2
https://cbeentjes.github.io/files/Ramblings/QuadratureSphere.pdf
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5099&bbid=BB18


Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J.,
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