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Lamellar phases are essential in various soft matter systems, with topological

defects significantly influencing their mechanical properties. In this report, we

present a machine-learning approach for quantitatively analyzing the structure

and dynamics of distorted lamellar phases using scattering techniques. By

leveraging the mathematical framework of Kolmogorov–Arnold networks, we

demonstrate that the conformations of these distorted phases – expressed as

superpositions of complex waves – can be reconstructed from small-angle

scattering intensities. Through the contour analysis of wave field phase singu-

larities, we obtain the statistics of the spatial distribution of topological defects.

Furthermore, we establish that the temporal evolution of these defects can be

derived from the time-dependent traveling wave field, informed by the disper-

sion relation of spectral components. This method opens new avenues for

investigating the dynamics of distorted lamellar phases using various dynamic

scattering techniques such as neutron spin echo and X-ray photon correlation

spectroscopy. These findings enhance our microscopic understanding of how

defects influence the physical properties of lamellar materials, with implications

for both equilibrium and non-equilibrium states in general lamellar systems.

1. Introduction

Lamellar phases, characterized by a regular, layered

arrangement of molecules, are commonly found in a variety of

soft materials and biological systems, including self-assembled

block copolymers, surfactants, liquid crystals and membrane

systems. These phases are crucial for the material properties

and behaviors of complex systems, making their structural

characterization a key area of research. Small-angle scattering

(SAS) techniques, particularly those using neutrons and

X-rays, have been applied extensively to study lamellar

structures (Prévost et al., 2017; Porte, 2002). Ideal lamellar

models (Nallet et al., 1993; Zhang et al., 1994; Lemmich et al.,

1996; Pabst et al., 2000, 2003; Bouglet & Ligoure, 1999;

Mihailescu et al., 2002; Castro-Roman et al., 2005) assume

perfect lamellar ordering (Vonk, 1978) and are effective in

systems where the layers remain uninterrupted.

However, the above assumption about the perfect lamellar

ordering is questionable in many cases. For example, electrical

conductivity measurements (Photinos et al., 1981; Boden et al.,

1981; Photinos & Saupe, 1986, 1991; Boden & Jolley, 1992),

NMR spectroscopy (Callaghan & Soderman, 1983; Davis,

1983; Chidichimo et al., 1987, 1988; Ukleja et al., 1991; Coppola

et al., 1995, 2003; Jóhannesson et al., 1996; Hubbard et al., 2005;
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Eriksson et al., 2015) and transmission electron microscopy

(TEM) imaging (Kléman et al., 1977; Meyer et al., 1978;

Bourdon et al., 1982; Costello et al., 1984; Allain & Kléman,

1985, 1987; Allain, 1986; Kléman, 1989; Strey et al., 1990; Blanc

et al., 2005; Moreau et al., 2006; Zhang et al., 2012) show that

topological defects frequently introduce distortions and

discontinuities within the lamellar layers. These defects can

compromise structural integrity, alter flow behavior and affect

light transmission, highlighting the limitations of the ideal

lamellar model in accurately describing the behavior of

distorted phases.

In ideal lamellar models, the density profile along the

direction normal to the interface is represented by square

waves, and the measured scattering intensity is modeled as the

Fourier transform of the autocorrelation of this profile.

However, in the presence of perforations between neigh-

boring layers or crumpled surfaces, the density profile no

longer follows this form. As a result, the ideal models are

insufficient for describing the behavior of distorted lamellar

phases, which deviate from the ideal lamellar ordering due to

these topological disruptions.

Intriguingly, these topological disruptions can cause

distorted lamellar phases to exhibit conformational features

similar to sponge structures, another important class of

lyotropic phases. SAS techniques have been used to quantify

sponge phase conformation through Berk’s inversion algo-

rithm (Berk, 1987, 1991), which models density fluctuations as

a superposition of plane waves with randomly distributed

wave vectors. In contrast, the ideal lamellar model represents

density fluctuations as plane waves with wave vectors aligned

along the normal direction of the interfaces. This similarity

suggests a promising approach to model distorted lamellar

structures as intermediate forms between the ideal lamellar

and sponge phases, where the key variable to control is the

wave vector distribution.

SAS techniques using neutrons (Kékicheff et al., 1984;

Hendrikx et al., 1984, 1987; Kékicheff & Cabane, 1984; Leaver

& Holmes, 1993; Holmes et al., 1993) and X-rays (Paz et al.,

1984; Holmes & Charvolin, 1984; Boden et al., 1986; Holmes et

al., 1987, 1988; Kékicheff, 1989; Kékicheff & Tiddy, 1989;

Boden et al., 1990; Funari et al., 1992, 1994; Quest et al., 1994;

Fairhurst et al., 1997; Dhez et al., 2000; Minewaki et al., 2001;

Orädd et al., 2001; Castelletto et al., 2002; Yamashita et al.,

2004; Baciu et al., 2007; Angelov et al., 2009; Meklesh &

Kékicheff, 2021) have proven effective for investigating

lamellar systems. These methods are sensitive to disruptions in

smectic ordering caused by topological defects, revealing

characteristic signatures in the diffuse scattering profiles

(Spinozzi et al., 2010; Spinozzi & Amaral, 2016). However,

accurately quantifying the impact of these defects remains

challenging (Hamley, 2022). Moreover, extracting key statis-

tical descriptors – such as defect classification, volume density

and spatial heterogeneity – from static two-point correlation

functions is difficult due to the nonlinear relationship between

topological properties and the scattering function.

To address these challenges, a machine-learning approach is

proposed, wherein density fluctuations in lamellar phases are

modeled as a superposition of plane waves with controlled

wave vector distributions. A comprehensive library of two-

point correlation functions for lamellar phases is constructed

to train a generative Kolmogorov–Arnold network (KAN),

which facilitates the inversion of real-space conformations

from experimental scattering patterns. This approach enables

the extraction of statistical and dynamical properties of

distorted lamellar phases.

The feasibility of this deep-learning strategy is demon-

strated both computationally and experimentally. Topological

defects manifest as disruptions in the regular stacking of

layers, with spatial continuity in complex wave fields

perturbed by phase singularities. A contour integral approach

is applied to identify these defects by locating phase singula-

rities in wave representations inverted from SAS data. This

paper introduces a novel methodology for statistically char-

acterizing the spatial arrangement and dynamical properties

of topological defects in lamellar phases. It offers new insights

into the molecular-level behavior of these complex materials

and discusses the potential of machine learning to enhance

scattering data analysis, laying the groundwork for future

advancements in soft matter scattering research.

2. Wave field representation of distorted lamellar

structures

The wave field approach for modeling distorted lamellar

phases originates from Turing (1952), who used plane wave

superposition to explain biological pattern formation. Turing

showed that small fluctuations in morphogen concentrations

could form stable patterns through reaction–diffusion

processes, breaking spatial symmetry and generating periodic

structures without pre-existing templates. The plane waves

capture the spatial modes of these fluctuations, leading to

complex patterns defined by characteristic wavelengths.

Turing’s principle also underpins the understanding of soft

matter systems. In 1987, Berk applied this framework to model

density fluctuations in lyotropic bicontinuous microemulsions

(Berk, 1987, 1991; Zemb, 2002), introducing the leveled wave

approach. In this model, random plane waves in an isotropic

medium mirror the dynamics of Turing’s morphogens, with the

density fluctuations represented as a superposition of plane

waves:

SðrÞ ¼
1
ffiffiffiffi
N
p

XN

n¼1

exp iðkn � rþ �nÞ: ð1Þ

The real part of S(r) represents local density fluctuations, with

random wave vectors k̂ and uniformly distributed phase shifts

�n. To define phase interfaces, a threshold parameter � is

introduced, where the surface is defined by

<½SðrÞ� ¼ �: ð2Þ

Regions where <½SðrÞ�>� and <½SðrÞ�<� are distinguished

by different scattering length densities. < stands for the real

part. The scattering length density distribution is defined using

the Heaviside function H,
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�ðrÞ ¼ Hf<½SðrÞ� � �g: ð3Þ

Finally, the Fourier transform of the autocorrelation of �(r)

gives the coherent scattering intensity I(Q), linking the wave-

based structural model to experimental scattering data. We

represent the SLD as binarized values to highlight the meso-

scopic distributions of the lamellae and water. For a more

precise depiction of the detailed SLD distribution, the

Heaviside function H in equation (3) can be substituted as

needed to account for the chemical characteristics of the

system.

To extend the plane wave superposition framework to

distorted lamellar phases, we revise the distribution of wave

vectors k � kk̂ in equation (1) to account for the inherent

anisotropy of the lamellar phases, where the normal vectors of

the interfaces deviate from a random orientation. The aniso-

tropic nature of density fluctuations necessitates the imposi-

tion of a constraint on the orientational order of k. In spherical

coordinates, this distribution can be expressed as

Pð�Þ ¼ c expð� cos �Þ;

Pð�Þ ¼
1

2�
;

PðkÞ ¼
1

�k

ffiffiffiffiffiffi
2�
p exp �

ðk � k0Þ
2

�2
k

� �

:

8
>>><

>>>:

ð4Þ

Here, � is the polar angle, � is the azimuthal angle and k is the

magnitude of the wave vector.

Unlike the isotropic distribution assumed in equation (1),

the polar component P(�) in lamellar phases is characterized

by an exponential distribution, as proposed by Fisher (1953).

This function incorporates an order parameter � that quan-

tifies the degree of directional anisotropy and a normalization

constant c to account for smectic ordering. The angular

distribution P(�) remains uniform over the range of 2�,

reflecting the absence of a preferred in-plane direction for

density fluctuations at the interface. Following Berk’s original

formulation (Berk, 1987, 1991), the radial distribution P(k) is

described by a normal distribution with mean k0 and standard

deviation �k, capturing the dispersion of the wave vector

magnitude.

Within this descriptive framework, each system is char-

acterized by three primary parameters: �k, � and �. We define

the characteristic length scale ~d � 2�=k0 and assign the

random phase �n following the uniform distribution in U(0,

2�). Fig. 1 demonstrates our generalized leveled wave (GLW)

approach for ~d equal to 1/8 of the cell size, which generates

real-space conformations of lamellar phases by modulating

these parameters.

Fig. 1(a) illustrates the orientation regulation of the vector k̂

in spherical coordinates.

Fig. 1(b) shows the relationship between the anisotropic

wave vector distribution and the parameters �k and � . For a

fixed �k, increasing � enhances polarization within the

distribution of k̂, aligning the vectors more closely with the

lamellar normal. Conversely, increasing �k while holding �

constant results in a more diffuse vector distribution.

Understanding the influence of �k, � and � on wave vector

distributions enables us to interpret variations in the real-

space conformations of distorted lamellar structures:

(i) The parameter �k governs the radial dispersion of k,

quantifying the variability in inter-layer spacing among

distorted lamellae.

(ii) The parameter � controls the angular dispersion in the

polar direction, providing a measure of the degree of layer

crumpling.

(iii) The clipping level � represents the ratio between the

thickness of the amphiphilic molecular layer and that of the

aqueous layer.

Fig. 1(c) displays three-dimensional interfacial conforma-

tions. The left column demonstrates that increasing �
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Figure 1
(a) Schematic of the anisotropic wave vector distribution defined in spherical coordinates. (b) Dependence of the wave vector distribution on the
orientational order parameter in the polar angle direction (� ) and the radial dispersion parameter (�k). (c) Corresponding three-dimensional structures
in real space, which are statistically equivalent to the wave vector distributions shown in (b), as obtained through ensemble averaging with � = 0.



enhances the anisotropic order within the structure, while the

bottom row illustrates that larger values of �k lead to greater

variability in inter-plane distances.

The dependence of SAS intensities on the parameters �k,

� and � is illustrated in Fig. 2. The coherent intensity is

presented as IðQ ~dÞ, where ~d � 1=k0 represents the average

inter-plane distance in lamellar structures. To compute IðQ ~dÞ,

we first evaluate �(r) in a simulation cell of size 20 ~d, divided

into a 512 � 512 � 512 grid. A fast Fourier transform is then

applied to obtain the scattering amplitude F(Qx, Qy, Qz).

Finally, I(Qx, Qy, Qz) is calculated as FðQx;Qy;QzÞ
2, followed

by radial averaging to obtain IðQ ~dÞ.

As shown in Fig. 2(a), with � fixed at 128 and � = 0, an

increase in �k from 0 to 0.5 results in a progressive broadening

of the three correlation peaks in IðQ ~dÞ, until they eventually

vanish. This trend closely mirrors the behavior observed when

increasing the variation in d within the ideal lamellar model

(Nallet et al., 1993). This similarity is anticipated, as �k in our

GLW model controls the radial dispersion of k, and a higher

�k naturally induces greater variability in the inter-layer

spacing.

Fig. 2(b) demonstrates that, with � held at 128 and �k set to

0.05, an increase in � from 0 to 0.5 causes a gradual reduction

in the intensity of the even-numbered correlation peaks, such

as the second and fourth, until they eventually disappear,

while the odd-numbered peaks remain largely unaffected.

This distinctive trend aligns with findings from contrast

variation small-angle neutron scattering (SANS) experiments

on lamellar phases (Doe et al., 2009). The observed behavior

parallels the effect of modifying the parameter � in the ideal

lamellar model (Nallet et al., 1993), which influences the phase

relationship between neighboring layers.

In Fig. 2(c), with �k fixed at 0.05 and � at 0, increasing ln �

from 0 to 5 leads to a smearing of the higher-order correlation

peaks, similar to the effect observed with an increase in �k.

However, the intensity of the primary correlation peak

remains unaffected. The evolution of IðQ ~dÞ with changes in � ,

which quantifies the disruption of lamellar order, cannot be

reproduced by adjusting either d or � within the ideal lamellar

model (Nallet et al., 1993). This finding highlights the signifi-

cance of our approach in accurately capturing the conforma-

tion of distorted lamellar phases.

3. Spectral inversion via Kolmogorov–Arnold networks

The primary question we address is whether it is possible to

derive an analytical expression for the SAS intensity in terms

of the three parameters, �k, � and �, to invert the real-space

conformation of distorted lamellar phases from experimen-

tally measured I(Q). Specifically, we aim to determine if such

an expression can be formulated in a manner analogous to the

scattering functions for ideal lamellar phases (Nallet et al.,

1993) and sponge phases (Berk, 1991). However, due to the

anisotropy in the wave vector distribution, this inversion

problem presents a higher degree of complexity than is

manageable by straightforward analytical approximation. The

resulting problem is nonlinear and incorporates additional

layers of complexity, making an exact analytical solution

challenging to achieve.

To address the limitations of deriving the scattering function

analytically for spectral regression analysis, we have devel-

oped several machine-learning approaches. These include

Gaussian process regression (Chang et al., 2022; Tung et al.,

2022; Ding et al., 2024c,b,a), variational autoencoders (VAEs)

(Tung et al., 2023) and convolutional neural networks (CNNs)

(Tung et al., 2024b,c), which have been applied to the spectral

inversion analysis of various soft matter systems with complex

structures that are not easily described by analytical models.

Although these machine-learning models demonstrate

satisfactory performance on controlled test data, a significant

limitation arises when applying them to real-world scattering

data. The primary issue concerns the output I(Q). For

example, within the CNN architecture (Tung et al., 2024b,c),

the output is generated as a one-dimensional array of I(Q)

values with a fixed number of Q points, stemming from the

fixed-size output imposed by the convolutional layers in the

encoder. Unfortunately, this approach conflicts with real

scattering experiments, where I(Q) is measured at variable Q

points. As a result, to align the CNN’s fixed output grid with

the experimental data’s variable Q points, we must rely on
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Figure 2
Dependence of SAS intensities on parameters �k, � and �, shown as IðQ~dÞ with the average inter-plane distance ~d � 1=k0: (a) With � = 128 and � = 0,
increasing �k from 0 to 0.5 progressively broadens the three correlation peaks in IðQ ~dÞ until they disappear, similar to the effect of increasing the d
variation in the ideal lamellar model (Nallet et al., 1993). (b) With � = 128 and �k = 0.05, increasing � from 0 to 0.5 reduces the intensity of even-
numbered peaks, while odd-numbered peaks remain largely unaffected. This trend parallels findings from contrast variation SANS experiments (Doe et
al., 2009) and resembles the influence of � in the ideal lamellar model (Nallet et al., 1993). (c) With �k = 0.05 and � = 0, increasing ln � from 0 to 5 smears
the higher-order peaks, similar to the effects observed with increasing �k, though the primary peak remains unchanged. Unlike in the ideal model,
variations in � effectively capture lamellar phase distortions.



interpolation and extrapolation, which introduce inaccuracies

in the inverted structural parameters and thus compromise the

precision of the analysis. This limitation is a critical issue for

handling real-world data, as interpolation and extrapolation

introduce distortions in the relationship between the predicted

and actual structural parameters, leading to significant sources

of error.

To address these challenges, we introduce KAN (Liu et al.,

2024) as a flexible generative model that produces a

continuous function for I(Q). This approach overcomes the

limitations of fixed-output models, providing adaptability to

real-world scattering data. Leveraging the Kolmogorov–

Arnold representation theorem (Arnold, 1956; Kolmogorov,

1957), the KAN framework represents any multivariate

continuous function as a finite sum of univariate functions of

input variables. With the multivariate function IðQ; �k; � ; �Þ

now directly represented by simpler univariate components

without needing discrete convolution operations, KAN elim-

inates the requirement for a fixed output grid. This makes it

particularly well suited for predicting scattering intensities

I(Q) across varying Q points, thereby aligning naturally with

experimental data.

The Kolmogorov–Arnold theorem (Kolmogorov, 1957)

states that any multivariate continuous function can be

represented as a superposition of simpler univariate contin-

uous functions. This enables the decomposition of complex

functions into more manageable components,

f ðx1; . . . ; xnÞ ¼
X2nþ1

q¼1

�q

Xn

p¼1

 pqðxpÞ

" #

; ð5Þ

where f ðx1; . . . ; xnÞ represents a multivariate continuous

function, and �q and  pq are univariate functions. In the

context of the spectral inversion problem for distorted

lamellar phases, each xp corresponds to conformational

parameters such as �k, � and �, along with the sampled wave

vector points Q. Here, f ðx1; . . . ; xnÞ represents the experi-

mentally measured scattering intensity IðQ; �k; � ; �Þ.

In this study, both �q and  pq are represented using spline

functions (Bartels et al., 1987). The number of basis functions

required for each is selected according to the resolution of the

parameters �k, � , � and Q within their respective ranges. The

training process aims to determine the optimal coefficients for

each spline basis function, using a training set of 8000 I(Q)

values generated from the relevant ranges of �k, � , � and Q.

Building on equation (5), a two-module KAN architecture,

shown in Fig. 3, is proposed to model the relationship between

the structural parameters �k, � , � and the scattering intensity

I(Q) as a function of Q. This network comprises two sections,

KAN 1 and KAN 2, each optimized with a distinct number of

neurons to efficiently map the input structural parameters to

the output intensity. The design is inspired by our previous

unsupervised VAE study, which verified that a smooth

mapping between I(Q) and its lower-dimensional repre-

sentations is achievable, aligning well with KAN’s intended

purpose. In this setup, KAN 2 represents the connection

between I(Q) and its lower-dimensional representations, while

KAN 1 links the structural parameters to quantities that can

be decoded to generate I(Q).

In forward propagation, the key parameters �k, � and � are

first processed by KAN 1, which consists of layers with widths

[3, 7, 3]. The output from KAN 1 yields three latent variables,

which are then combined with Q to form a four-dimensional
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Figure 3
The KAN architecture models the relationship between scattering parameters �k, � , � and the resulting scattering intensity I(Q) as a function of the
wave vector Q. KAN 1 maps the scattering parameters into a higher-dimensional space using three layers (3, 7 and 3 neurons) to capture nonlinear
dependencies. KAN 2 integrates Q with the KAN 1 outputs, using layers with 9, 1 and 1 neuron to predict IðQ; �k; � ; �Þ, aligning with experimental data
to reveal lamellar phase structures.



input for KAN 2, structured with layer widths [4, 9, 1, 1],

producing the final output of the scattering intensity

IðQ; �k; � ; �Þ. This functional relationship can be directly

compared with experimental data, enabling a detailed analysis

of lamellar phase structures through their scattering profiles.

The layered structure of this KAN model is designed to

capture both the anisotropic order (through � ) and the radial

distribution (through �k), while also considering the thickness

ratio represented by �. This architecture provides a robust

generative model that effectively maps complex relationships

within the scattering data.

Using a separate set of parameters �k, � and �, which were

not part of the training dataset, we generated coherent scat-

tering intensities using both the GLW and KAN models to

assess the accuracy of the KAN-based inversion algorithm.

The comparison, presented in Fig. 4, demonstrates excellent

quantitative agreement between the I(Q) values generated by

GLW (colored open symbols) and those produced by KAN

(solid curves) across the examined ranges of �k, � and �. This

close correspondence underscores the numerical precision and

robustness of the KAN-based regression method.

4. Experimental case study of distorted lamellar phases

Having benchmarked the numerical accuracy of the KAN-

based inversion algorithm, we now evaluate its feasibility for

analyzing real SAS experimental data. We used a least-squares

regression analysis (Tung et al., 2024c) to match the KAN-

generated scattering intensity to the SANS data and obtain

the optimized conformation parameters. To this end, a

conformational study of a well-known lyotropic system,

sodium dioctyl sulfosuccinate (AOT) (Rogers & Winsor,

1969), was conducted using SANS. AOT powders were

dissolved in deuterium oxide (D2O) to prepare aqueous

solutions with concentrations of 30, 40 and 50% by weight.

SANS measurements were performed using the D22 small-

angle diffractometer at the Institut Laue–Langevin. The

experiment employed two neutron wavelengths, 6 and 11.5 Å,

providing Q-range coverage from 0.001 to 0.5 Å� 1, where

coherent neutron scattering was observed.

Fig. 5 displays the SANS intensity, IðQ ~dÞ, measured for

aqueous solutions containing 30, 40 and 50% AOT. The
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Figure 4
I(Q) generated using a separate set of parameters, (a) �k, (b) � and (c) � , which were not included in the training dataset, to evaluate the accuracy of the
KAN-based inversion algorithm. Panels (d)–( f ) display the ratio between KAN-produced curves and the test set. The comparison reveals excellent
quantitative agreement between the I(Q) values obtained from GLW (colored open symbols) and those generated by KAN (solid curves) across the
examined parameter ranges. This agreement underscores the numerical precision and robustness of the KAN-based regression method.

Figure 5
SANS intensity, IðQ~dÞ, for aqueous solutions of AOTat concentrations of
30, 40 and 50%, presented in dimensionless units with Q ~d as the key
parameter. The initial estimate for the average inter-plane distance, ~d, is
determined as 2�= ~Q, where ~Q is the position of the first correlation peak
in IðQ ~dÞ. The black curves represent the optimized IðQ~dÞ obtained from
the KAN model through least-squares regression. Qualitative observa-
tions reveal that, as the AOT weight fraction increases, the height of the
first correlation peak decreases. Distinct variations in lamellar structural
organization are apparent in IðQ ~dÞ, particularly in the height and width of
the second correlation peak.



intensity is presented in dimensionless units, with Q ~d serving

as the key parameter. As the AOT weight fraction increases,

qualitative trends reveal a reduction in the height of the first

correlation peak in IðQ ~dÞ. These observations indicate

changes in the structural organization of the lamellar phases,

consistent with the AOT/water phase diagram (Rogers &

Winsor, 1969). Notably, these structural variations are further

reflected in the height and width of the second correlation

peak in IðQ ~dÞ.

Quantitative analysis demonstrates that the experimental

data (symbols) exhibit strong agreement with the predictions

of the KAN model (black curves) in the high-Q regime,

particularly for Q ~d >� 1. Minor deviations are noted around

the second correlation peak at Q ~d ’ 2. In contrast, significant

discrepancies are observed in the low-Q regime (Q ~d< 1).

Specifically, the experimental data appear flattened in this

region, whereas the KAN model predicts an upturn in IðQ ~dÞ,

with the intensity of this upturn diminishing as the AOT

concentration increases.

Insights into the descriptive framework of the GLW model

for distorted lamellar phases can be gained by examining the

origins of the observed quantitative discrepancies. First, the

instrument resolution can be excluded as the source of these

disagreements, as it has been thoroughly addressed in prior

work (Huang et al., 2023).

In the high-Q ~d region, we hypothesize that the minor

disagreement arises from the ansatz used to quantify the wave

vector distribution, as presented in equation (4). Specifically,

an alternative formulation of P(k), characterized by a zero

mean but non-zero second and fourth moments (Chen & Choi,

1997), has been proposed to satisfy the thermodynamic

requirement of maximum entropy. This contrasts with our

approach, which assumes a non-zero mean alongside second

and fourth moments (Berk, 1991).

Moreover, instead of employing the expression for P(�)

given in equation (4) (Fisher, 1953), a more general formu-

lation involving different bases of Legendre polynomials

(Arfken et al., 2012) could be adopted. This alternative

framework would allow for greater flexibility in describing the

angular dispersion of k by relaxing the degree of freedom

along the polar angle direction, thereby providing a model-

free description. However, this more general approach intro-

duces additional parameters, including those related to the

various polynomials in P(k) and the coefficients associated

with the basis functions of different Legendre polynomial

degrees.

The inclusion of these additional parameters would neces-

sitate a significant expansion of the training dataset to effec-

tively map the features of the evolving I(Q) to the parameters

describing the topology of distorted lamellar structures.

Consequently, the computational cost of the training process

required to establish the KAN for the inversion algorithm

would increase exponentially. This phenomenon, often

referred to as the ‘curse of dimensionality’ (Bishop, 2006),

highlights the inherent trade-off between model complexity

and numerical accuracy in machine-learning approaches when

computational resources are limited.

Regarding the disagreement observed in the low-Q region,

a plausible explanation involves the influence of sample

loading on the distributions of grain orientation in AOT

solutions. According to findings by Kékicheff et al. (1984), the

sample-loading process in lamellar systems notably affects the

orientational distribution of grains within the samples,

providing a potential explanation for the observed scattering

behavior. In the context of a lamellar phase, the sample-

loading process may unintentionally induce a non-uniform

distribution of orientation among the normal vectors of indi-

vidual constituent grains, along with potential variations in

grain size and inter-grain orientational correlation. This could

modify coherent scattering at low values of Q. Conversely, in

the case of a sponge phase, the sample-loading process has no

impact, as the system is inherently isotropic. This argument

clarifies why the discrepancy is most evident in the case of a

30% AOT solution, which exhibits the most prominent

lamellar order, becomes less pronounced in a 40% AOT

solution and virtually vanishes in a 50% AOT solution

displaying a pronounced sponge-like topology.

From the extracted values of �k, � and �, we can construct a

three-dimensional representation of the structures within the

GLW framework, as illustrated in Fig. 6. The inter-planar

spacing is measured in tens of ångströms. Notably, as the AOT

weight fraction increases, pathways between adjacent plates

begin to develop, leading to enhanced interconnections

between layers. This process gradually transforms the initially

anisotropic, two-dimensional plates into a more isotropic

phase at the mesoscopic length scale. The detailed topological

features of these distorted lamellar phases, including the inter-

layer distance, in-plane correlation lengths and local curva-

tures, can be directly calculated from the real-space renderings

shown in Fig. 6. For further details, readers are referred to

Tung et al. (2024c).

5. Identification of defects in distorted lamellar phases

Before introducing the method for defect identification, it is

instructive to examine the wave field representation of

distorted lamellar phases. To classify topological defects in
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Figure 6
Three-dimensional representation of structures constructed using the
extracted �k, � and � within the GLW framework. The inter-planar
spacing is in the range of tens of ångströms. As the AOT weight fraction
increases, pathways between adjacent plates develop, enhancing inter-
connections between layers. This transition leads to a transformation
from initially anisotropic, two-dimensional plates to a more isotropic
phase at the mesoscopic length scale.



systems characterized by an order parameter, de Gennes

proposed that the dimensionality of a defect must satisfy the

following inequality (de Gennes, 1972; Pieranski, 2019):

d � n � � � d � 2; ð6Þ

where d denotes the spatial dimension of the system, n is the

number of components of the order parameter and � repre-

sents the dimensionality of the permissible singularities.

In the case of distorted lamellar phases, the spatial dimen-

sion is d = 3. In the wave field representation, the system has

two degrees of freedom corresponding to the real and

imaginary parts of the order parameter, giving n = 2. Substi-

tuting these values into the inequality yields � = 1. Conse-

quently, the most relevant defect in a distorted lamellar system

is a linear discontinuity. Note that the order parameter

mentioned here is a function of r, which represents the spatial

heterogeneity within the system, in contrast to the real-valued,

system-level parameter � used in equation (4). This topolo-

gical argument aligns with experimental observations, as TEM

studies have demonstrated that topological defects in

distorted lamellar phases can manifest as screw dislocations

(Kléman et al., 1977).

In the wave field representation, for a given partial wave,

the phase shift � in equation (1) is interpreted as a sinusoidal

modulation of mass density along the wave vector direction k̂.

Consequently, differences in the phase shift correspond to the

translation of layers. Specifically, along a trajectory encircling

a discontinuity – where the real and imaginary components of

the partial waves converge to zero amplitude – the phase

undergoes a change equal to an integer multiple of 2�,

representing the displacement of multiple layers.

To systematically identify defects in a distorted lamellar

structure, a three-dimensional wave field S(r) is analyzed using

a grid-based discretization method (Tung et al., 2024a). The

continuous field S(r) is discretized onto a cubic grid of size

N � N � N, enabling the efficient detection of zeros in the

wave field.

The analysis starts with the computation of the argument

field �(r), which is derived from the argument of the complex

wave field S(r) and is defined as

�ðrÞ ¼ arctan
=½SðrÞ�

<½SðrÞ�

� �

; ð7Þ

where <½SðrÞ� and =½SðrÞ� are the real and imaginary compo-

nents of S(r), respectively. The computation employs the atan2

function for accurate phase determination (Hochstadt, 1961).

A two-dimensional visualization of the resulting phase field is

shown in Fig. 7(a).

To locate lines of phase discontinuity, the discretized

argument field �(r) is analyzed in two-dimensional slices of

the three-dimensional grid. For each pixel within a slice, the

cumulative phase difference c is calculated along a closed loop

formed by the eight neighboring pixels, as illustrated in Fig.

7(b). This cumulative difference is given by

c ¼
X7

i¼0

�ðriÞ � �½rði� 1Þmod8�
� �

; ð8Þ

where ri denotes the position of the ith pixel along the loop

and �(ri) represents the phase value at that pixel. The modulo

operation ensures that the calculation is invariant to the

choice of the starting pixel.

This approach enables the systematic identification of phase

discontinuities, which correspond to defect lines in the

lamellar structure. Figs. 7(a) and 7(b) illustrate the circulation

path and its role in detecting these topological defects.

To satisfy the quantization condition of the contour integral

of phase differences by 2�, each pixel is labeled as ‘type 0’ if

the nearest integer of c/2� is zero, and as ‘type 1’ otherwise.

This labeling is applied iteratively across all pixels in each

slice, continuing through subsequent slices until the entire

simulation cell is processed.

To avoid missing lines of phase discontinuity being

perpendicular to the evaluation plane, systematic scans are

performed along the x, y and z axes. This ensures phase

singularities are always encircled by at least one of the loops

on the xy, yz or zx planes. The results from these scans are

consolidated by the union of the set of defect pixels identified

in the three directions.
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Figure 7
Illustration of topological defect identification in lamellar phases: (a)
Two-dimensional representation of the phase field �(r), derived from the
inverted wave field S(r), visualized using a color gradient to highlight the
phase distribution. (b) Magnified view of (a) showing the circulation path
(red squares) used to compute the cumulative phase differences c. Pixels
where the contour integral of the phase differences are equal to zero are
identified, while non-zero values delineate lines of phase discontinuity,
emphasizing the defect locations.

Figure 8
Three-dimensional arrays of lines of linear discontinuity for (a) 30%, (b)
40% and (c) 50% AOT concentrations. The color scheme indicates the
direction of the line segments, which represent the topological defects
observed in the lamellar phases.



A coarse-graining process is then applied to transform the

dispersion of type 1 pixels into a one-dimensional line using a

curve-tracing method (Yan, 2001; Liu et al., 2020) based on a

depth-first search algorithm (Even, 2011). Details of the

technical process can be found in the article by Tung et al.

(2024a). The spatial distribution of linear discontinuities,

derived from the analysis of �(r) corresponding to <½SðrÞ�

(Fig. 6), is shown in Fig. 8. Here, � is the angle between the

direction of the coarse-grained line and the z axis, with cos �

representing the z component of the unit vector.

Two key observations are evident: first, as the AOT

concentration increases, the density of line discontinuities

rises noticeably; second, the type of linear discontinuity

transitions from screw-type dominance at 30% to edge-type

dominance at 50%. Further statistical analysis of these topo-

logical defects is given by Tung et al. (2024a).

6. Prospects

Two natural extensions of plane wave superposition emerge

from this structural study of distorted lamellar phases.

First, the plane wave basis functions in equation (1) can be

replaced by spherical waves as follows:

SðrÞ ¼
1
ffiffiffiffi
N
p

XN

n¼1

exp iknjr � cnj þ �nð Þ

jr � cnj
; ð9Þ

where cn represents the origins of the individual partial

spherical waves. As shown in Fig. 9, this generalization enables

the creation of conformational assemblies resembling globular

onion-like structures. Such configurations are valuable for

modeling density fluctuations in systems such as multilamellar

vesicles, where concentric layers are arranged around an

aqueous core.

To generate interference among the partial spherical waves,

the origins of individual spherical waves (cn) are designed to

exhibit a dispersion around the center of the concentric

multilayer structure. Consequently, the aim of the machine-

learning process is to map the distribution of cn from the

expressive features of I(Q), which encode the topological

information. This information includes the number of layers,

inter-layer spacing, layer curvatures and statistical properties

of defects.

This implementation allows for a detailed conformational

description of multilayer structures that cannot be adequately

captured by conventional core–shell models. By leveraging

these capabilities, we advance our understanding of the spatial

and topological properties of complex layered systems.

Secondly, understanding the dynamics of topological

defects is fundamental for elucidating how imperfections

influence the mechanical properties of lamellar systems. By

incorporating the temporal oscillation of the wave field into

equation (1), the following expression is obtained:

Sðr; tÞ ¼
1
ffiffiffiffi
N
p

XN

n¼1

exp i k̂n � rþ !nt þ �n

� �� �
; ð10Þ

where !n represents the temporal oscillation rate of the nth

partial wave and t is the time. The function S(r, t) describes the

dynamics of density fluctuations in distorted lamellar phases at

equilibrium.

An experimental approach to determine S(r, t) involves

dynamic scattering techniques, such as neutron spin echo

(NSE) or X-ray photon correlation spectroscopy (XPCS). In

this context, the dispersion relation, which defines the rela-

tionship between angular frequency ! and wavevector k, plays

a crucial role. For defective lamellar phases in AOT solutions,

the wavevector probability distribution, p(k), has been

experimentally shown to be well approximated by a Gaussian
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Figure 9
Visualization of a globular onion-like structure generated by the super-
position of spherical waves. The structure consists of concentric layers,
capturing density fluctuations and mimicking features observed in
multilamellar vesicles. The colored lines indicate phase singularities,
emphasizing the intricate wave field topology of this configuration. The
color gradient illustrates the relationship between the orientation of the
line segments and the radial direction.

Figure 10
Visualization of the temporal evolution of linear discontinuities in
distorted lamellar phases. !0 is the mean of the normal distribution used
in this calculation.



distribution with a narrow standard deviation (Tung et al.,

2024c). Consequently, for a given mean wavevector, k0, in this

delta-function-like distribution, the frequency !(k0) must

follow a specific distribution to enable the lamellar system to

initiate ergodic relaxation.

Since the explicit mathematical expression for ! at a given

k0 is currently unknown, a natural starting assumption is that

density of state p(!) follows a normal distribution. The goal of

the machine-learning process is then to infer the mean and

variance of this distribution from experimental features, such

as the Q dependence of the relaxation time extracted from the

intermediate scattering function F(Q, t), which can be

experimentally measured.

Given the mean and variance of the normal distribution

derived from the experimental data, the dispersion relation

can be determined, which in turn allows for the computation

of S(r, t). Through the evaluation of the contour integral, the

temporal evolution of linear discontinuities is obtained. An

example of such a visualization is provided in Fig. 10. These

trajectories facilitate the calculation of the statistical proper-

ties of defect dynamics, thereby opening a new avenue to

explore the rheological characteristics of distorted lamellar

phases. This approach offers a novel perspective by examining

the dynamical heterogeneity of linear discontinuities,

providing deeper insights into the complex interplay between

defects and material behavior.

7. Conclusions

This study demonstrates the synergy between the wave field

representation and KAN for analyzing distorted lamellar

phases. By employing plane wave superposition to model the

anisotropic density fluctuations in lamellar systems, we

successfully capture the structural complexity arising from

distortions and topological defects. This representation

provides a powerful framework for connecting scattering

intensity profiles to real-space conformations through the

parameters �k, � and �.

The introduction of KAN complements this approach by

offering a robust machine-learning-based inversion method

capable of mapping experimental scattering data to structural

parameters with high accuracy. Unlike traditional models,

KAN’s ability to handle variable experimental Q points

overcomes significant limitations in regression-based analysis.

Validation with SANS data on AOT solutions demonstrated

the method’s effectiveness in resolving structural transitions,

from ordered lamellar phases to sponge-like morphologies,

and in identifying topological defects such as screw and edge

dislocations.

Moreover, KAN provides a distinct advantage for SANS

users working with lamellar phases by addressing challenges

that conventional methods often fail to resolve. The flexibility

of KAN in adapting to experimental data with variable Q

points eliminates the need for potentially error-prone inter-

polation and extrapolation processes, ensuring more reliable

and accurate parameter extraction. For practitioners, this

means a significant reduction in analysis time and an increase

in the fidelity of the derived structural models, enabling a

deeper understanding of complex systems. By facilitating the

identification of topological defects and capturing transitions

between distinct structural states, KAN opens new possibi-

lities for studying conformational characteristics using scat-

tering and tailoring material properties through controlled

defect engineering.

Together, the plane wave superposition framework and

KAN establish a versatile toolkit for studying equilibrium and

non-equilibrium behavior in lamellar systems. The ability to

integrate dynamic scattering techniques, such as NSE or

XPCS, with this methodology opens new avenues for under-

standing defect dynamics and their impact on material prop-

erties.

This work advances the field of soft matter physics by

bridging theoretical wave field modeling and machine-

learning innovations. Future extensions could refine the wave

vector distributions or adopt generalized statistical descriptors

to broaden the applicability of this framework to other

mesostructured materials.
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