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The section of the Bilbao Crystallographic Server (https://www.cryst.ehu.es)

dedicated to subperiodic groups includes the program MAXSUB, which gives

online access to the complete database of maximal subgroups of subperiodic

groups. All maximal non-isotypic subgroups as well as all maximal isotypic

subgroups of indices up to 9 are listed individually, together with the series of

maximal isotypic subgroups of subperiodic groups. These data were compared

with those of Litvin [(2013), Magnetic group tables, 1-, 2- and 3-dimensional

subperiodic groups and magnetic space groups], which revealed several differ-

ences, discussed here in detail.

1. Introduction

Crystallographic information about space groups is published

in International tables for crystallography, Vol. A, Space-group

symmetry (Aroyo, 2016; henceforth abbreviated as ITA). The

complete listing of the maximal subgroups of all 230 space

groups, however, is available in International tables for crys-

tallography, Vol. A1, Symmetry relations between space groups

(Wondratschek & Müller, 2010; henceforth abbreviated as

ITA1). Aside from the subgroups of space groups with three-

dimensional lattices which are again space groups, there also

exist subgroups called subperiodic groups with translation

lattices of dimensions one or two. These are the groups

required to describe polymers, nanotubes, nanowires and

layered materials (Müller, 2017; Gorelik et al., 2021; de la Flor

& Milošević, 2024).

The interest in materials with subperiodic symmetry is

constantly growing due to their outstanding properties and

possible technological applications (Xu et al., 2013). There are

three types of subperiodic groups: frieze groups (two-dimen-

sional groups with one-dimensional translation lattices), rod

groups (three-dimensional groups with one-dimensional

translation lattices) and layer groups (three-dimensional

groups with two-dimensional translation lattices). Frieze

groups do not correspond to any physical atomic structure, as

real objects cannot be strictly confined to a two-dimensional

space. While they are useful for describing physical properties

and geometric patterns, they have no direct application to real

structures. The crystallographic data for subperiodic groups

are compiled in International tables for crystallography, Vol. E,

Subperiodic groups (Kopský & Litvin, 2010; henceforth

referred to as ITE). Since there is not a volume in Interna-

tional tables for crystallography for subperiodic groups similar

to ITA1, the maximal subgroups of subperiodic groups are
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listed in ITE. This listing follows the format of ITA (Hahn,

2002) but lacks additional information, such as a complete list

of maximal subgroups. It also omits the series of maximal

isotypic subgroups of subperiodic groups, where isotypic

refers to subgroups belonging to the same subperiodic group

type. (One often refers to the layer, rod and frieze groups

without distinguishing between the terms layer group type, rod

group type and frieze group type. In many cases, this distinc-

tion is not necessary, and in order to avoid unnecessarily

lengthy terminology, the same approach is taken in this

article.) Additionally, the minimal supergroups are not

included in ITE. To the best of our knowledge, the only

complete compilation of maximal subgroups of subperiodic

groups, but only of indices up to 4, can be found in Magnetic

group tables, 1-, 2- and 3-dimensional subperiodic groups and

magnetic space groups (Litvin, 2013; henceforth referred to as

Litvin’s book), an electronic book of about 12000 pages.

However, the series of maximal isotypic subgroups of

subperiodic groups are also not available.

The complete data about the maximal subgroups of

subperiodic groups are now available online in the databases

of the Bilbao Crystallographic Server (https://www.cryst.ehu.

es) (Aroyo et al., 2011; Tasci et al., 2012; hereafter referred to

as BCS), in the section Subperiodic groups: layer, rod and

frieze groups. In contrast to ITE, the BCS database of

maximal subgroups of subperiodic groups provides the

complete listing (not just by type but individually) of all

maximal non-isotypic and all maximal isotypic subgroups of

subperiodic groups of indices up to 9. The list of maximal

subgroups is retrieved by the program MAXSUB, which also

gives access to the series of maximal isotypic subgroups of

subperiodic groups.

The aim of this contribution is to present the complete

database of maximal subgroups and series of maximal isotypic

subgroups of subperiodic groups available in the BCS. The

procedure applied to derive the maximal subgroups of

subperiodic groups is described in Section 3. The data from

Litvin’s book were reviewed and compared with those from

the BCS, and their differences are listed in Section 5 in detail.

2. Subperiodic groups

Subperiodic groups are two- and three-dimensional groups

with one- and two-dimensional translations. The 80 layer

groups together with the 75 rod groups and the seven frieze

groups constitute the subperiodic groups. The section

Subperiodic groups: layer, rod and frieze groups of the BCS

hosts the subperiodic groups crystallographic databases. The

structure of these databases is similar to that of the space

groups – they include information on generators, general

positions, Wyckoff positions and maximal subgroups for

subperiodic groups. Apart from the data shown in ITE, the

server offers additional information and computer tools that

allow the generation of data not available in ITE. The BCS

also hosts the Brillouin-zone database for layer groups (de la

Flor et al., 2021) and more complex programs to calculate, for

example, the site-symmetry induced representations of layer

groups (de la Flor et al., 2019). Note that in the programs of

the BCS the Hermann–Mauguin symbols for frieze and rod

groups do not use the calligraphy font used in ITE to depict

the Bravais-lattice type, i.e. the frieze group p2mg (No. 7) and

the rod group pmcm (No. 22) are represented as p2mg and

pmcm in the BCS, respectively.

The programs and databases of the BCS related to

subperiodic groups use the standard or default settings of the

subperiodic groups. These are the specific settings of subper-

iodic groups that coincide with the conventional subperiodic

group descriptions found in ITE. For layer groups with more

than one description in ITE, the following settings are chosen

as standard: (i) cell-choice 1 description for the two mono-

clinic/oblique layer groups p11a (No. 5) and p112=a (No. 7)

given with respect to three cell choices in ITE, and (ii) origin

choice 2 descriptions (i.e. when the origin is at a centre of

inversion) for the three layer groups p4=n (No. 52), p4=nbm

(No. 62) and p4=nmm (No. 64) listed with respect to two

origins in ITE. For rod groups, the first setting is chosen as

standard for the trigonal and hexagonal groups with two

descriptions (cf. Table 1.2.6.3 of ITE).

Following the conventions of ITE, the ab plane is the plane

of periodicity for layer groups; this means that the translation

vectors are of the form

t1

t2

0

0

@

1

A;

where t1 and t2 are integer numbers.

For rod groups, the c axis is the line of periodicity and the

translation vectors are of the form

0

0

t3

0

@

1

A;

where t3 is an integer number.

In the case of frieze groups, the periodicity is along the a

axis; therefore, the translation vectors are of the form

t1

0

� �

:

As in space groups, for subperiodic groups a group–

subgroup pair H<S is also characterized by the group S,

subgroup H, index ½i� and transformation matrix–column pair

(P, p) relating the basis of H and S. The matrix–column pair

(P, p) describes a coordinate transformation and consists of

two parts:

(i) A linear part P, denoted by a (3� 3) matrix for rod and

layer groups and by a (2� 2) matrix for frieze groups,

describing the change of direction and/or length of the basis

vectors:

ða0; b0; c0ÞH ¼ ða; b; cÞSP for rod and layer groups;

ða0; b0ÞH ¼ ða; bÞSP for frieze groups;
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where ða0; b0; c0ÞH and ða0; b0ÞH represent the bases of the

subgroup H and ða; b; cÞS and ða; bÞS the bases of the

subperiodic group S.

(ii) An origin shift p denoted by a (3� 1) column vector

p ¼ ð0; 0; p3Þ for rod groups and p ¼ ðp1; p2; 0Þ for layer

groups; and by a (2� 1) column vector p ¼ ðp1; 0Þ for frieze

groups. The coefficients of p describe the position of the origin

OH of H referred to the coordinate system of S.

The data of the matrix–column pair (P, p) are often written

in the following concise form for rod and layer groups:

P11aþ P21bþ P31c; P12aþ P22bþ P32c;

P13aþ P23bþ P33c; p1; p2; p3;

where p1 ¼ p2 ¼ 0 for rod groups and p3 ¼ 0 for layer groups.

For frieze groups, the form is

P11aþ P21b; P12aþ P22b; p1; 0:

3. Derivation of the maximal subgroups of subperiodic

groups based on the group–subgroup relations between

subperiodic and space groups

A group–subgroup relationship exists between subperiodic

groups S and space groups G, i.e. S < G. For each subperiodic

group, there is a two- or three-dimensional space group G with

the same symmetry diagram and general-position diagram.

These relationships have been considered in detail in the

literature [see e.g. Wood (1964), ITE and references therein].

The type of space group of which a given subperiodic group is

a subgroup is not defined uniquely. The ‘simplest’ space group

G to which S is related can be expressed as a semi-direct

product of S with a one- or two-dimensional translation group

T i of additional translations G ¼ T i ^ S, where T i is a

normal subgroup of G (Evarestov & Smirnov, 1993; Smirnov &

Tronc, 2006). Thus, subperiodic groups S are isomorphic to

factor groups G=T i (Litvin & Kopský, 1987, 2000). In the case

of layer groups L (defined as a three-dimensional crystallo-

graphic group with periodicity restricted to a two-dimensional

subspace), the three-dimensional space group G to which a

layer group L is related can be expressed as a semi-direct

product of L with the one-dimensional translation group T 3 of

additional translations G ¼ T 3 ^ L. As a result of this, the

layer group L is isomorphic with the factor group G=T 3. For

rod groupsR (defined as a three-dimensional crystallographic

group with periodicity restricted to a one-dimensional sub-

space), the three-dimensional group G to which a rod groupR

is related can be represented as a semi-direct product ofR and

the two-dimensional translation group T 2 of additional

translations G ¼ T 2 ^ R. This means that the rod group R is

isomorphic with the factor group G=T 2. Finally, for frieze

groups F (defined as a two-dimensional crystallographic

group with periodicity restricted to a two-dimensional

subspace), the two-dimensional space group G (plane group)

to which a frieze group F is related can be expressed as a

semi-direct product of F with the one-dimensional translation

group T 1 of additional translations G ¼ T 1 ^ F . Therefore,

the frieze group F is isomorphic with the factor group G=T 1.

The isomorphism between the subperiodic group S and the

factor group G=T i results in a close relationship between the

Wyckoff positions, maximal subgroups, minimal supergroups

and irreducible representations of S and G. For example, one

can show that the set of Wyckoff positions of a subperiodic

group is contained in the set of Wyckoff positions of the

related space (or plane) group (cf. Evarestov & Smirnov,

1993). The restrictions imposed by the loss of periodicity result

in the restrictions of the special-position coordinates of

subperiodic groups.

The maximal subgroups of subperiodic groups S can be

derived from the maximal subgroups of the two- or three-

dimensional space groups, since the set of maximal subgroups

of a subperiodic group is contained in the set of maximal

subgroups of the related space group. The maximal subgroups

database for subperiodic groups was constructed from the

maximal subgroups database of two- and three-dimensional

space groups provided by the BCS (Aroyo et al., 2006). These

subgroups were classified into two types: translationengleiche

and klassengleiche subgroups (for further details, see

Appendix A). Additionally, the classification of maximal

subgroups of subperiodic groups into conjugacy classes can be

derived from the corresponding classification for space groups.

Consider the subgroups Hi and Hk, which are subgroups of

the space group G and the subperiodic group S (where S is

isomorphic to the factor group G=T i). These two subgroups,

Hi andHk, are said to be conjugate if there exists an element g

of the space group G such that gHig
� 1 ¼ Hk. Furthermore, if g

is an element of the subperiodic group S, then Hi and Hk

remain conjugate subgroups within S as well. As an example,

let us determine the maximal subgroups of indices up to 4 for

the layer group p4 (No. 49) and the rod group p4 (No. 23),

isomorphic to factor groups P4=T3 and P4=T2, respectively.

Table 1 shows the maximal subgroups of indices up to 4 for the

space group P4 (No. 75). The loss of periodicity along the z

direction restricts the maximal subgroups of layer groups: only

the maximal subgroups of G without loss of translations

along the c axis are maximal subgroups of the layer groups. In

this case, there are three maximal subgroups for the layer

group p4: one translationengleiche subgroup p112 (No. 3) of

index 2 and transformation matrix (P, p) = a, b, c, and two
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Table 1
Maximal subgroups of indices up to 4 for the space group P4 (No. 75).

Subgroups marked with t are translationengleiche and those marked with k are
klassengleiche.

Group Index Type (P, p)

P112 (No. 3, P2) 2 t b; c; a

P4 (No. 75) 2 k a; b; 2c

a � b; aþ b; c
a � b; aþ b; c; 1

2
; 1

2
; 0

P4 (No. 75) 3 k a; b; 3c

P42 (No. 74) 2 k a; b; 2c

I4 (No. 79) 2 k a � b; aþ b; 2c
a � b; aþ b; 2c; 1

2
; 1

2
; 0



klassengleiche subgroups p4 (No. 49) of index 2 and trans-

formation matrices a � b; aþ b; c and a � b; aþ b; c; 1
2
; 1

2
; 0.

The loss of periodicity along the x and y directions restricts

the maximal subgroups of rod groups: only the maximal

subgroups of G without loss of translations along the a and b

axes are maximal subgroups of the rod groups. Therefore, for

the rod group p4 (No. 23) there are four maximal subgroups:

(i) the translationengleiche subgroup p112 (No. 8) of index 2

and (P, p) = a, b, c; (ii) the klassengleiche subgroup p4 (No. 23)

of index 2 and (P, p) = a, b, 2c; (iii) the klassengleiche sub-

group p4 (No. 23) of index 3 and (P, p) = a, b, 3c; and (iv) the

klassengleiche subgroup p42 (No. 25) of index 2 and (P, p) = a,

b, 2c.

The rest of the maximal subgroups of subperiodic groups of

indices up to 9 were calculated from the series of maximal

isotypic subgroups of subperiodic groups. These series can also

be directly derived from the series of maximal isomorphic

subgroups of space groups. For example, for the space-group

type P4 there are three series of maximal isomorphic

subgroups (see Table 2). Two of these series, Series #2 and #3,

are also the series of maximal isotypic subgroups for the layer

group p4 since the loss of translations occurs in the ab plane.

For the rod group p4, however, only one series of maximal

isotypic subgroups exists with loss of translations along the c

axis; this corresponds to the Series #1 in Table 2.

4. The program MAXSUB

The database of the maximal subgroups of subperiodic groups

of the BCS is accessible from the MAXSUB program (https://

www.cryst.ehu.es/subperiodic/get_sub_maxsub.html) in the

section Subperiodic groups: layer, rod and frieze groups. This

provides the complete listing of (i) all maximal non-isotypic

subgroups for each subperiodic group, and (ii) all maximal

isotypic subgroups of indices up to 9. In addition to this, there

is also an option in the program to retrieve the series of

maximal isotypic subgroups.

The subperiodic-group type (frieze, rod or layer) and the

corresponding ITE number of the group are required as input

to the program MAXSUB. If the ITE number is unknown, this

can be selected from a table with the Hermann–Mauguin

symbols of the selected subperiodic-group type. The program

first returns a table with the maximal subgroup H of the

selected subperiodic group S (see Fig. 1). Each subgroup

H<S is specified by its ITE number, Hermann–Mauguin

symbol, index and subgroup type (t for translationengleiche or

k for klassengleiche subgroup, see Appendix A and Section

2.2.4 of ITA1). The complete list of subgroups and their

distribution in classes of conjugate subgroups is obtained by

clicking on the link ‘show..’. For example, the rod group p6222

(No. 64) has two maximal klassengleiche subgroups p6122 (No.

63) of index 2 distributed in two conjugacy classes of conjugate

subgroups (see Fig. 2). The transformation matrix–column

pairs (P, p) that relate the standard basis of H and S are also

provided by the program.
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Table 2
Series of maximal isomorphic subgroups of the space group P4 (No. 75).

For each of the series, the Hermann–Mauguin symbol of the subgroup, the
index, the transformation matrix (P, p) relating the group and the subgroup,

and the restriction conditions on the parameters describing the series are
provided.

Subgroup Index (P, p) Conditions

Series #1 P4 (No. 49) p 1 0 0 0

0 1 0 0

0 0 p 0

0

@

1

A

p prime

Series #2 P4 (No. 49) p2
p 0 0 u

0 p 0 v

0 0 1 0

0

@

1

A

prime p> 2
p ¼ 4n � 1

0 � u< p
0 � v< p

Series #3 P4 (No. 49) p ¼ q2 þ r2
q r 0 u

� r q 0 0

0 0 1 0

0

@

1

A

prime p> 4
p ¼ 4nþ 1
q> 0; r> 0
0 � u< p

Figure 1
List of maximal subgroups of the rod group p6222 (No. 64) as displayed by
the program MAXSUB. Subgroups marked as t and k correspond to
translationengleiche and klassengleiche subgroups, respectively. Clicking
on ‘show..’ reveals the complete list of subgroups and their distribution in
classes of conjugate subgroups (see Fig. 2). The link ‘Click here to see the
Series of Maximal Subgroups’ gives direct access to the maximal isotypic
subgroups of the rod group p6222 (see Fig. 3). Note that the Hermann–
Mauguin symbols for rod groups in the BCS do not use the calligraphy
font used in ITE to depict the Bravais-lattice type.

Figure 2
The maximal klassengleiche subgroups p6122 (No. 63) of index 2 for the
rod group p6222 (No. 64) obtained by clicking on ‘show..’ in Fig. 1. There
are two subgroups for p6122 distributed in two conjugacy classes. Note
that the Hermann–Mauguin symbols for rod groups in the BCS do not use
the calligraphy font used in ITE to depict the Bravais-lattice type.
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https://www.cryst.ehu.es/subperiodic/get_sub_maxsub.html


For certain applications, it is necessary to represent the

subgroups H as subsets of the elements of S. This is achieved

by the option ‘ChBasis’ (see Fig. 2), which transforms the

general position of H to the coordinate system of S.

Maximal subgroups of index higher than 4 have indices p

for frieze and rod groups, and p and p2 for layer groups, where

p is a prime. These are isotypic subgroups and are infinite in

number. In most of the series, the Hermann–Mauguin symbol

for each isotypic subgroup is the same. However, if the

subperiodic group belongs to a pair of enantiomorphic groups,

the Hermann–Mauguin symbol of the isotypic subgroup is

either that of the group or that of its enantiomorphic pair (see

Fig. 3). Note that among the subperiodic groups there are only

eight pairs of enantiomorphic rod groups: p41 (No. 24), p43

(No. 26); p4122 (No. 31), p4322 (No. 33); p31 (No. 43), p32 (No.

44); p3112 (No. 47), p3212 (No. 48); p61 (No. 54), p65 (No. 58);

p62 (No. 55), p64 (No. 57); p6122 (No. 63), p6522 (No. 67); and

p6222 (No. 64), p6422 (No. 66).

There is a link in the program MAXSUB (see Fig. 1) that

gives direct access to the series of maximal isotypic subgroups

of subperiodic groups. Apart from the parametric descriptions

of the series, the program provides the individual listing of all

maximal isotypic subgroups. The series of maximal isotypic

subgroups are shown in blocks grouped by the index and the

transformation matrix–column pair (P, p) (see Fig. 3). For

each series, the Hermann–Mauguin symbol of the subgroup,

the restrictions on the parameters describing the series, and

the transformation matrix (P, p) relating the group S and the

subgroupH are listed. As an example, Fig. 3 shows the output

of maximal isotypic subgroups for the rod-group type p6222

(No. 64), which is subdivided into two series. There is a special

tool that permits the online generation of maximal isotypic

subgroups of any allowed index. Fig. 4 shows the series of

maximal isotypic subgroups p6422 (No. 66) of index 5 for the

rod-group type p6222 (No. 64) generated by this auxiliary tool.

5. Differences between Litvin’s book and the BCS

maximal subgroups of subperiodic groups database

Litvin’s book gives the complete listing of the maximal

subgroups H of subperiodic groups S of indices up to 4. For

each maximal subgroup H<S, the Hermann–Mauguin

symbol, the index, the transformation relating the setting of

the subperiodic group S to the setting of the group H and the

coset representatives (in Seitz notation) of the coset decom-

position of S relative to H are specified. Note that in Litvin’s

book the standard International Union of Crystallography

Seitz notation is not followed, e.g. a twofold rotation around

the c axis is denoted by 2z instead of 2001 [for details cf. Litvin

& Kopský (2014)].

The maximal subgroups of subperiodic groups of indices up

to 4 of the BCS were compared with a subset of the tables in

Litvin’s book. As a result of this comparison, some differences

were detected for the maximal subgroups of rod and layer

groups; no differences were found for frieze groups. Several

errors were identified in Litvin’s book (for more details, see

Tables 3 to 6). This list of discrepancies was reviewed with D.

Litvin, who has acknowledged them (Litvin, personal

communication).

5.1. Transformation matrix (P, p) relating the basis of S andH

The main difference between Litvin’s book and the BCS is

in the transformation matrix–column pair (P; p) relating the

computer programs
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Figure 3
Output of the program MAXSUB showing the two series of maximal
isotypic subgroups for the rod group p6222 (No. 64). Since the rod group
p6222 belongs to one of the eight pairs of enantiomorphic rod groups, the
subgroup of Series 1 corresponds to its enantiomorphic pair p6422 (No.
66). When the user clicks on the indices below the tables, the program is
able to generate the maximal isotypic subgroups for the chosen index (see
Fig. 4). Note that the Hermann–Mauguin symbols for rod groups in the
BCS do not use the calligraphy font used in ITE to depict the Bravais-
lattice type.

Figure 4
Complete list of the series of maximal isotypic subgroups p6422 (No. 66)
of index 5 for the rod group p6222 (No. 64) generated by the auxiliary tool
of the program MAXSUB (see Fig. 3). Note that the Hermann–Mauguin
symbols for rod groups in the BCS do not use the calligraphy font used in
ITE to depict the Bravais-lattice type.



basis of the subperiodic group S with the subgroup H. Note

that different transformation matrices might specify the same

(identical) subgroup, if these transformation matrices are

related by an element of the affine normalizer NAðHÞ of the

subgroup H. In other words, two subgroups of the same type

H1 andH2 of S defined by the transformation matrix–column

pairs (P1; p1) and (P2; p2) are identical if there is an element

ðN; nÞ of the affine normalizer of the subgroup H such as

ðP1; p1Þ ¼ ðP2; p2ÞðN; nÞ ¼) ðP2; p2Þ
� 1
ðP1; p1Þ

¼ ðN; nÞ 2 NAðHÞ: ð1Þ

The Euclidean and affine normalizers of subperiodic groups

are tabulated and available from VanLeeuwen et al. (2015).

As an example, let us consider the maximal subgroup c222

(No. 22) of index 2 of the layer group p4212 (No. 54). The

transformation matrices describing this group–subgroup

relation in Litvin’s book and the BCS are (P; p)Litvin =

a � b; aþ b; c; 1
2
; 0; 0 and (P, p)BCS = a � b; aþ b; c; 0; 1

2
; 0,

respectively. The affine normalizer NAðHÞ of the layer group

c222 (a, b, c) is the space group p4=mmm with basis vectors

(1=2 a; 1=2 b; c). Applying equation (1), the translation

tð0; 1
2
; 0Þ is obtained. Since tð0; 1

2
; 0Þ is an element of the affine

normalizer of c222, the transformation matrices (P; p)Litvin =

a � b; aþ b; c; 1
2
; 0; 0 and (P, p)BCS = a � b; aþ b; c; 0; 1

2
; 0

are equivalent and thus describe the same identical subgroup.

In general, the differences in (P, p) are due to the use of

different conventions. For the maximal subgroups of rod

groups belonging to trigonal or hexagonal groups with two

descriptions in ITE, Litvin’s book prefers the use of the

transformation 2aþ b; � aþ b; c; 0; 0; 0 (found as the first

option in Table 1.2.6.3 of ITE), while the BCS prefers the

transformation � a � 2b; 2aþ b; c; 0; 0; 0 (second option in

Table 1.2.6.3 of ITE). In the case of layer groups with two

origins, these are described with respect to origin choice 1 in

Litvin’s book and origin choice 2 in the BCS. Therefore, the

information on maximal subgroups in these cases differs, since

the information provided by these two sources corresponds to

different settings.

5.2. List of errors found in Litvin’s book

As a result of the comparison of the two sources, a few

errors were detected in the description of the maximal

subgroups of rod and layer groups in Litvin’s book. Three

types of errors were identified: (i) typographical errors (see

Table 3), (ii) missing subgroups (see Table 4) and (iii) invalid

transformation matrix–column pairs (P; p) (see Tables 5

and 6).

5.2.1. Typographical errors

Several typographical errors were found in the transfor-

mation matrices (P; p) relating the subgroup cm2m (No. 35) of

the layer group p�62m and the subgroups p2=m11 (No. 6), p2221

(No. 14) and p6322 (No. 65) of the rod groups p�31m (No. 51),

p6322 and p63=mmc (No. 75), respectively. In these cases, four

entry transformation matrices are provided (see Table 3) to

relate the bases of these groups with their maximal subgroups.

These are clear typographical errors in Litvin’s book.

Another typographical error can be found in the Hermann–

Mauguin symbol of the only maximal subgroup of index 3 of

the layer group pm21b (No. 28). This subgroup corresponds to

an isotypic subgroup of the group pm21b; therefore, the

symbol of the subgroup cannot be pm2m (No. 25) but should

be pm21b.

5.2.2. Missing subgroups

Among the maximal subgroups listed in Litvin’s book for

the 80 layer, 75 rod and seven frieze groups, only a total of five

maximal subgroups are missing for the rod groups p�42m (No.

37) and p6222 (No. 64) (cf. Table 4). There are two maximal

subgroups p�42m of index 2 for the rod group p �42m:

[2] c0 = 2c.

p �42m (No. 37) a; b; 2c; 0; 0; 0.

p �42m (No. 37) a; b; 2c; 0; 0; 1=2.

In Litvin’s book, however, only the maximal subgroup with

transformation matrix a; b; 2c; 0; 0; 0 is listed. For the rod

group p6222, there are also two maximal subgroups p6422 (No.

66) of index 2:

[2] c0 = 2c.

p6422 (No. 66) a; b; 2c; 0; 0; 0.

p6422 (No. 66) a; b; 2c; 0; 0; 1=2.

In this case, the subgroup with transformation matrix

a; b; 2c; 0; 0; 1=2 is not mentioned. The three conjugated

subgroups p222 (No. 13) of the rod group p6222 of index 3 are

also missing from Litvin’s book.

5.2.3. Invalid transformation matrix–column pairs (P, p)

Several cases can be found in Litvin’s book in which either

the linear part P or the origin shift p of the transformation

matrix–column pair (P, p) relating the basis of the group with

computer programs

J. Appl. Cryst. (2025). 58, 622–629 Gemma de la Flor et al. � MAXSUB: database of maximal subgroups 627

Table 4
List of the missing maximal subgroups of rod groups p�42m (No. 37) and
p6222 (No. 64) in Litvin’s book.

Subgroups marked with t are translationengleiche and those marked with k are
klassengleiche.

Group Subgroup Index Type (P, p)

p�42m (No. 37) p�42m (No. 37) 2 k a; b; 2c; 0; 0; 1=2

p6222 (No. 64) p6422 (No. 66) 2 k a; b; 2c; 0; 0; 1=2

p6222 (No. 64) p222 (No. 13) 3 t � aþ b; � a � b; c; 0; 0; 1=3
� a � 2b; a; c; 0; 0; 0
2aþ b; b; c; 0; 0; 1=6

Table 3
Typographical errors found in Litvin’s book related to the transformation
matrix–column pairs (P; p) of the maximal subgroups of rod and layer
groups.

The subgroups marked with t correspond to translationengleiche subgroups.

Group Subgroup Index Type (P, p)

p�31m (No. 51) p2=m11 (No. 6) 3 t b; aþ b; b; c; 0; 0; 0

p6322 (No. 65) p2221 (No. 14) 3 t b; � 2a � b; b; c; 0; 0; 1=4

p63=mmc (No. 75) p6322 (No. 65) 2 t a; aþ 2b; a; c; 0; 0; 0

p�62m (No. 79) cm2m (No. 35) 3 t a, aþ 2b, � a, c; 0; 0; 0



the subgroup are not valid (see Tables 5 and 6). A non-zero

origin shift p 6¼ ð0; 0; 0Þ is defined in Litvin’s book for the

transformation matrix relating the maximal subgroup cmm2

(No. 48) of the layer group p4=nbm (No. 62) and the maximal

subgroups p2221 (No. 14), p�6 (No. 59), p �6c2 (No. 72) and p6322

(No. 65) of the rod groups p6322 (No. 65), p�6c2 (No. 72),

p6=mcc (No. 74) and p63=mmc (No. 75), respectively. The non-

zero origin shifts shown in Table 5 (column six) are not valid,

since they do not properly describe their corresponding

group–maximal-subgroup relation. In all these cases, it is

necessary to have an origin shift p ¼ ð0; 0; 0Þ. The transfor-

mation matrix relating the maximal subgroup p312 (No. 46)

with the rod group p�6c2, defined in Litvin’s book with a zero

origin shift, is also not valid. The problem is again in the origin

shift, which instead of zero is p ¼ ð0; 0; 1=4Þ. The origin shift of

the transformation matrix describing the relation between the

maximal subgroup pb2b (No. 30) of the layer group pb2n (No.

34) is not p ¼ ð1; 0; 0Þ, but p ¼ ð1=2; 0; 0Þ.

There are only a few maximal subgroups of rod groups in

Litvin’s book in which the linear part P of the transformation

matrix is not correctly defined (see Table 6). The transfor-

mation matrix ðP; p)Litvin = ðb; c; a; 0; 0; 0Þ, provided by

Litvin’s book, describes the relationship between the maximal

subgroups p112 (No. 8) and p1121 (No. 9) of index 3 of the rod

groups p6 (No. 53) and p63 (No. 56), respectively. This trans-

formation matrix results in different maximal subgroups: p211

for p6, and p2111 for p63 (No. 53). The valid transformation

matrix for these cases requires a linear part P equal to the

identity matrix, i.e. P ¼ a; b; c. The linear part P of the

transformation matrix–column pairs of the three conjugated

maximal subgroups p4322 (No. 33) of index 3 for rod group

p4122 (No. 31), defined in Litvin’s book as a; b; c, is also not

valid. In this particular case, the correct P is a; b; 3c. Similar

problems (see Table 6) can also be found for the maximal

subgroups p3c1 (No. 50) and p2=c11 (No. 7) of index 3 and 2 of

the rod group p �31c (No. 52).

6. Conclusions

The Bilbao Crystallographic Server offers the only complete

and freely accessible database of maximal subgroups of

subperiodic groups through the program MAXSUB. This

program provides detailed information on both maximal non-

isotypic and isotypic subgroups with indices up to 9, along with

series of maximal isotypic subgroups.

A thorough comparison with the existing reference by

Litvin (2013) has been conducted, revealing several discre-

pancies (which are analysed). These findings underscore the

completeness of the BCS data, reinforcing their value as the

most comprehensive resource for crystallographic research

and subgroup analysis.

APPENDIX A

Types of subgroups of subperiodic groups

On the basis of Hermann’s theorem (Hermann, 1929) for

space groups, the following types of subgroups of subperiodic

groups can be distinguished:

(i) A subgroup H of a subperiodic group S is called a

translationengleiche subgroup or a t subgroup of S if the set

computer programs
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Table 5
Maximal subgroups of rod and layer groups and their corresponding transformation matrices (P, p) as listed in Litvin’s book, whose origin shift p is
invalid.

The valid origin shift pvalid is given in the last column of the table. Subgroups marked with t are translationengleiche and those marked with k are klassengleiche.

Group Subgroup Index Type P p pvalid

p6322 (No. 65) p2221 (No. 14) 3 t a; aþ 2b; c 0; 0; 1=4 0, 0, 0

p�6c2 (No. 72) p�6 (No. 59) 2 t a; b; c 0; 0; 1=4 0, 0, 0
p312 (No. 46) a; b; c 0; 0; 0 0, 0, 1/4

p6=mcc (No. 74) p�6c2 (No. 72) 2 t a; b; c 0; 0; 1=4 0, 0, 0
2aþ b; � aþ b; c 0; 0; 1=4 0, 0, 0

p63=mmc (No. 75) p6322 (No. 65) 2 t a; aþ 2b; a; c 0; 0; 1=4 0, 0, 0

pb2b (No. 30) pb2n (No. 34) 2 k 2a, b, c 1; 0; 0 1/2, 0, 0

p4=nbm (No.62) cmme (No. 48) 2 t a � b, aþ b, c 1=4; 1=4; 0 0, 0, 0

Table 6
List of the maximal subgroups of rod groups and their corresponding transformation matrices (P, p) as listed in Litvin’s book, whose linear part P is
invalid.

The correct linear part Pvalid is given in the last column of the table. Subgroups marked with t are translationengleiche and those marked with k are klassengleiche.

Group Subgroup Index Type P p Pvalid

p4122 (No. 31) p4322 (No. 33) 3 k a; b; c 0; 0; 0 a, b, 3c
a; b; c 0; 0; 1 a, b, 3c
a; b; c 0; 0; 2 a, b, 3c

p�31c (No. 52) p31c (No. 50, p3c1) 2 t aþ b; � aþ b; c 0; 0; 0 � a � 2b, 2aþ b, c

p�31c (No. 52) p112=c (No. 7, p2=c11) 3 t aþ b; b; c 0; 0; 0 � 2a � b; � b; c

p6 (No. 53) p112 (No. 8) 3 t b; c; a 0; 0; 0 a; b; c

p63 (No. 56) p1121 (No. 9) 3 t b; c; a 0; 0; 0 a; b; c



T S of translations is retained, i.e. T H ¼ T S , but the order of

the point group PS is reduced.

(ii) A subgroup H<S of a subperiodic group S is called a

klassengleiche subgroup or a k subgroup if the set T S of all

translations of S is reduced to T H< T S but the point group

PH is the same as that of PS.

(iii) A klassengleiche or k subgroup H<S is called an

isotypic subgroup if it belongs to the same affine subperiodic

group as S.

(iv) A subgroup of a subperiodic group H<S is called

general or a general subgroup if it is neither a translationen-

gleiche nor a klassengleiche subgroup, i.e. T H< T S and

PH<PS .
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