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Recent advancements in X-ray sources and detectors have dramatically

increased data generation, leading to a greater demand for automated data

processing. This is particularly relevant for real-time grazing-incidence wide-

angle X-ray scattering (GIWAXS) experiments which can produce hundreds of

thousands of diffraction images in a single day at a synchrotron beamline. Deep

learning (DL)-based peak-detection techniques are becoming prominent in this

field, but rigorous benchmarking is essential to evaluate their reliability, identify

potential problems, explore avenues for improvement and build confidence

among researchers for seamless integration into their workflows. However, the

systematic evaluation of these techniques has been hampered by the lack of

annotated GIWAXS datasets, standardized metrics and baseline models. To

address these challenges, we introduce a comprehensive framework comprising

an annotated experimental dataset, physics-informed metrics adapted to the

GIWAXS geometry and a competitive baseline – a classical, non-DL peak-

detection algorithm optimized on our dataset. Furthermore, we apply our

framework to benchmark a recent DL solution trained on simulated data and

discover its superior performance compared with our baseline. This analysis not

only highlights the effectiveness of DL methods for identifying diffraction peaks

but also provides insights for further development of these solutions.

1. Introduction

The recent development of next-generation X-ray sources

such as diffraction-limited synchrotrons and X-ray free-

electron lasers has led to a drastic increase in the amount of

data produced (Ludwig, 2019; Dong et al., 2021; Qin & Bauer,

2010; Helliwell, 2019; Helliwell et al., 2017). Furthermore, the

latest generations of detectors enable experiments with high

resolution in both the spatial and the temporal dimensions

(Wang et al., 2018; Heiss, 2019). The volume of data opens up

new possibilities but makes manual data analysis infeasible.

Large datasets demand the use of automated solutions for

processing and analysis, while deep learning (DL) receives

significant attention in the field (Hinderhofer et al., 2023;

Karniadakis et al., 2021). DL stands out with its ability to

comprehend intricate relationships, its capacity for general-

ization and its ability to handle vast amounts of data (Pithan et

al., 2023; Starostin et al., 2022b; Greco et al., 2022; Hinderhofer

et al., 2023; Guo et al., 2016; Du et al., 2016). A notable

application of DL in this respect is the detection of Bragg

peaks in X-ray scattering data, as demonstrated in the litera-

ture (Sullivan et al., 2019; Liu et al., 2022; Hadian-Jazi et al.,

2021; Yin et al., 2022). The present paper evaluates the per-

formance of the DL-based Bragg-peak-detection algorithm
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proposed by Starostin et al. (2022a) and compares it with a

conventional region-growing peak-finding algorithm. More

specifically, these algorithms are applied to grazing-incidence

wide-angle X-ray scattering (GIWAXS) data, which can be

used to extract a wealth of structural information from thin

films on the atomic scale (Feidenhans’l, 1989; Banerjee et al.,

2020; Robinson & Tweet, 1992). The ability to determine the

arrangement and periodicity of crystal structures and their

preferred orientations makes it indispensable in materials

research and development (Steele et al., 2023; Hu et al., 2017;

Brinkmann et al., 2022). To extract this information, a key step

is to accurately determine the positions, widths and intensities

of Bragg peaks. However, expert knowledge is required to

effectively fit the peaks due to the presence of diffuse back-

ground, experimental artefacts, scattering from the substrate

and other environmental factors (Pauw, 2013). With hundreds

of thousands of images captured per beam time, this laborious

and time-consuming manual process becomes a bottleneck

and presents a compelling case for implementing automated

data analysis. The work by Starostin et al. (2022a) introduces

such an automated peak detection using a two-stage object

detection model. In the present study, we provide a test

dataset, metrics and a baseline to evaluate the suggested

approach. For our test dataset, we collected a diverse set of

labelled GIWAXS data from perovskite films. This dataset

encompasses a range of background signals, Debye–Scherrer

rings with diverse widths and intensities, and Bragg peaks of

varying shapes, intensities and proximities to one another. We

find that traditional object detection metrics fail to capture

critical aspects of peak-detection quality, which are essential

for the subsequent analysis. As a result, we propose a physics-

informed metric that prioritizes the radial over the azimuthal

direction. For context, we implemented a baseline using a

conventional region-growing algorithm (see Appendix B in

the supporting information) commonly used for peak detec-

tion (Guo et al., 2019). The introduced dataset, metrics and

baseline were used for a comprehensive evaluation of the DL

solution.

2. Dataset

2.1. Dataset

To facilitate a comparative analysis of peak detection in

GIWAXS patterns, we curated a dataset collected during

different steps of crystallization and annealing of various

perovskite thin films prepared by spin coating as detailed by

Kneschaurek et al. (2023). This includes various 2D and 3D

perovskites with varying cations (caesium, methylammonium,

formamidinium or their mixtures), anions (iodine, bromine)

and spacer molecules [phenethylammonium, phenylene-

dimethylammonium, pentafluorophenylethylammonium or

(1-adamantyl)methylammonium]. The selected patterns con-

tain features corresponding to the final perovskite structures

as well as different intermediate products (e.g. complexes with

solvents) and precursors (lead iodide, lead bromide etc.). A

glass slide covered with indium tin oxide (ITO) or fluorine-

doped tin oxide (FTO) and (optionally) mesoporous titanium

oxide layers was used as a substrate. A full list of the selected

compositions and structures is provided in the supporting

information.

The dataset was measured at two experimental facilities: the

P08 beamline at the Deutsches Elektronen-Synchrotron

(DESY) and the ID10 beamline at the European Synchrotron

Radiation Facility (ESRF). The X-ray energy varied between

18 and 22 keV, and the incidence angle varied between 0.1 and

0.5� (i.e. below and above the critical angle). Furthermore, our

dataset features patterns that exhibit different resolutions,

since they were measured using a PerkinElmer XRD 1621

detector with 2048 � 2048 pixels with a pixel size of 200 mm at

the P08 beamline and a Pilatus 300K detector with 487 � 619

pixels with a pixel size of 172 mm at beamline ID10. For the

latter, we merged several images of the same sample at

different detector positions to fill the detector gaps.

2.2. Preprocessing

The raw data in detector coordinates contain Debye–

Scherrer rings, in the form of arcs and arc segments, and Bragg

peaks. This geometric configuration poses a challenge for the

majority of computer vision algorithms, as many object

detection techniques rely on rectangular bounding boxes and

rectangular-shaped image filters. Consequently, we transform

the GIWAXS images into a more computer-vision-compatible

representation, utilizing a two-step image transformation. The

GIWAXS image is first mapped from detector coordinates to

sample-associated reciprocal space (Q||, Qz) (Als-Nielsen &

McMorrow, 2011), and then converted to polar coordinates

(|Q|, �) defined as

jQj ¼ Q2
z þQ2

k

� �1=2
; � ¼ arctan Qz=Qk

� �
; ð1Þ

where |Q| is the radial coordinate and � is the azimuthal angle

counted from the sample horizon. For the region-growing

approach, we discovered better performance with a conver-

sion that does not distort the length of the peaks along the

azimuthal direction. Instead, it focuses on the conservation of

the azimuthal width of each peak, as shown in Fig. 1. We

therefore chose the following conversion to (|Q|, Q�) defined

as

jQj ¼ Q2
z þQ2

k

� �1=2
; Q� ¼ jQj arctan Qz=Qk

� �
; ð2Þ

where Q� is the distance along an azimuthal arc of radius |Q|

counted from the sample horizon. Note that Q� is not an

actual scattering vector. The resulting images have a resolu-

tion of 1024 � 512. We provide an HDF5 file with the

GIWAXS images in reciprocal space, along with a conversion

script, on Zenodo (Völter et al., 2024).

Depending on the specific measurement conditions and

model of X-ray detector employed, the images exhibit

unevenly distributed intensity levels, which can make it chal-

lenging to identify the peaks. To address this, we employed a

contrast-limited adaptive histogram equalization (CLAHE)

(Ketcham et al., 1974), which distributes the intensities evenly
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across the histogram. Note that the histogram equalization is

applied exclusively for peak detection. Further analysis and

fitting of the Bragg peaks is performed using the original data.

2.3. Annotation

To assess the precision of automated peak fitting, we

manually annotated the radial and azimuthal positions of each

Bragg peak in the described patterns with a bounding box. In

the radial dimension, we separately fitted each peak with a

Gaussian function on top of a linear background:

IðjQjÞ ¼ I0 exp �
jQj � Qfitð Þ

2

2�2

� �

þ BjQj þ C: ð3Þ

For the corresponding radial box width, we used the full width

at half-maximum w ¼ 2ð2 ln 2Þ1=2� of the Gaussian function.
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Figure 2
(a) Number of peaks per image in the evaluation dataset, sorted by the number of peaks. (b) Azimuthal length of peaks in the evaluation dataset. (c) and
(d) Exemplary GIWAXS images from the dataset with labelled peaks. The colour is chosen according to the confidence level; the contrast is enhanced by
CLAHE as described in Section 3.1.

Figure 1
Geometry of GIWAXS experiments. Following the measurement, two acquired images are merged to remove the detector gaps and are subsequently
converted from (a) detector coordinates to (b) reciprocal space coordinates and finally to (c) polar coordinates. For peak detection, the contrast is
enhanced by CLAHE as described in Section 2.2. All shown images are already contrast-enhanced for visualization.



In contrast, the peaks exhibit different shapes in the azimuthal

direction, ranging from homogeneous segments of Debye–

Scherrer rings to sharp and isolated Bragg peaks. This makes it

impossible to use a single function for fitting. Consequently,

we manually establish the boundaries for each peak in the

azimuthal direction. We employ three confidence levels to

characterize the prominence of the peaks. Bright peaks exhi-

biting a distinct Gaussian shape are assigned a high confidence

rating, while peaks that are more challenging to discern

receive a medium confidence level. The low-confidence cate-

gory encompasses peaks that are scarcely visible and pose

considerable difficulty in detection. They are barely above the

background level or are covered by more intense neigh-

bouring peaks. Fig. 2(a) shows both the peak count and the

distribution of confidence levels of the 1448 peaks in the

dataset. Fig. 2(b) shows the distribution of the azimuthal

lengths of the peaks attributed to different confidence levels.

3. Automatic peak detection

3.1. Deep learning

The work by Starostin et al. (2022a) introduces a two-stage

object detection model for peak detection and algorithms to

further process the information obtained. We focus on the

peak detection which employs a modified faster region-based

convolutional neural network (Faster R-CNN) (Ren et al.,

2015) tailored to the GIWAXS geometry.

Ren et al. (2015) used convolutional neural networks

(CNNs) to create feature maps from the given input image.

These feature maps are abstract representations of the input

image generated by a dot product operation with a convolu-

tional kernel (LeCun et al., 2015). We adapted the kernels of

the CNN to be asymmetric, which reduces the image size

mostly in the vertical direction. This elongated shape is well

optimized for Debye–Scherrer rings and Bragg peaks, which

are typically broadened in the azimuthal direction due to the

sample mosaicity.

For the second detection stage, the Faster R-CNN archi-

tecture uses feature maps of multiple scales. We modified this

behaviour by including only the largest feature map. This

prevents the network from confusing several distinct segments

with one pronounced segment. A key part of the Faster

R-CNN is the region-proposal network (RPN). It slides over

the feature maps and creates proposals for potential objects.

We pad the target boxes for the RPN such that the proposed

regions contain more background area, which provides more

context for the second detection stage. Furthermore, the RPN

uses a reduced number of 64 channels. This shallower network

architecture was found to be sufficient for this task. Additional

customizations leverage the grey-scale nature of the images by

using a single colour input channel. Since Bragg peaks are the

only relevant class, the classifier component of the network is

eliminated. These modifications lead to a substantial increase

in processing speed while maintaining a high degree of accu-

racy. Fig. 3 shows the general structure of the Faster R-CNN

and highlights the modifications of Starostin et al. (2022a).

3.2. Region-growing approach

To compare the performance of the DL approach against a

standard solution, we developed a conventional algorithm

based on a region-growing approach. Though tailored for the

specific analysis of GIWAXS patterns, this algorithm serves as

an exemplary demonstration of the differences between

conventional and DL approaches. To provide an overview of

the algorithm, Fig. 4 outlines the workflow.

Since this peak-detection method is primarily based on the

difference in brightness between the peaks and the back-

ground, it is essential to smooth the background while keeping

the shape of the original peaks [Fig. 4(a)]. In our experiments,

we discovered that the Gaussian and box filters produce an
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Figure 3
Overview of the modified Faster R-CNN structure. The feature extractor in (a) produces feature maps of different sizes and hands them on to the RPN in
(b). This layer extracts regions of interest (Rois) from the feature maps at different scales. The pooling layer in (c) aligns the proposed boxes from (b) and
the largest feature map in (a). Non-maximum suppression eliminates overlapping boxes, resulting in the final predicted boxes together with their
confidence scores.



optimal blurred image for further processing. This denoising

process significantly impacts the peak intensity and can

noticeably shift the peak positions. Consequently, accurate

peak positions must be determined through a peak fitting on

the original, non-denoised image data.

As explained in Section 2.2, we used a different conversion

to polar coordinates. This geometry is chosen because the

distortion along the azimuthal direction presents a significant

challenge for the region-growing algorithm (see Fig. 5). We

find the geometry in Fig. 5(b) unsuitable for the region-

growing algorithm due to the high number of false detections

in the low-|Q| range. We believe this is a result of the blurring

filters applied after the interpolation. Though noise of only a

few pixels can be blurred, noisy pixels in the low-|Q| region

can expand in the polar coordinates and cannot be smoothed

by the blurring. As a consequence, the region-growing algo-

rithm detects them as maxima.

In the next step, the preprocessed image is utilized to detect

intensity maxima in a two-way approach. Initially, local

maxima are detected [Fig. 4(b)], and subsequently, the most

prominent ones are selected among them [Fig. 4(b)]. We

employ the Python implementation of Waithe (2023) which

was initially proposed by Rueden et al. (2017).

To identify the local maxima, the algorithm employs a 3 �

3 pixel maximum filter, comparing the highest value within a

3 � 3 pixel neighbourhood with the corresponding values in

the unfiltered image. Locations with identical values are

identified as local maxima. Once the local maxima have been

identified, the algorithm finds the global maxima across the

entire image. This is achieved by growing the region around a

maximum until an intensity threshold of 14 is met. This

threshold corresponds to 5.5% of the absolute image bright-

ness. The algorithm then combines the local maxima of a

region into a single maximum. We determined the tunable

parameters shown in Table 1 through systematic experi-

mentation to achieve the highest recall values on the dataset

described in Section 2.

To compare with the work of Starostin et al. (2022a), relying

solely on the approximate peak position is not sufficient.

In the radial direction, we employed the least-squares method

to fit each peak with a Gaussian function on top of a linear

background [Fig. 4(c)]. The boundary in the azimuthal
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Figure 4
Peak-detection pipeline using a region-growing algorithm. (a) Image is smoothed using a 3� 25 pixel Gaussian filter and a 3� 3 pixel box filter. (b) The
region-growing implementation detects peaks and fits their profile in the azimuthal direction. (c) A least-squares algorithm fits the radial profile using a
Gaussian function with a linear background.

Figure 5
Detection results of the region-growing algorithm on the (a) undistorted
and (b) distorted polar geometry. The red boxes and green points show a
detected peak.

Table 1
Tunable parameters of region-growing approach.

Parameter Value

Size of input image 1024 � 512 pixels
Filters used for image smoothing Gaussian filter with kernel size

3 � 25
Box filter with kernel size 3 � 3

Kernel size of maximum filter 3 � 3 pixels
Threshold for region-growing algorithm 5.5% of image intensity

Threshold for fit in azimuthal direction 5.5% of image intensity
Fitting function in radial direction Gaussian function



direction is determined by the region-growing algorithm using

the intensity threshold of 14 [Fig. 4(b)].

4. Metrics

To evaluate the effectiveness of the two peak-detection

methods, it is necessary to employ a metric designed specifi-

cally for Bragg peak detection. Hence, we will briefly examine

metrics from related areas and tailor them to our specific use

case. Hinderhofer et al. (2023) classify the task of Bragg peak

detection as an object detection problem in the context of

computer vision. This categorization is advantageous as it

provides access to a range of well established metrics for

evaluating and quantifying performance (Padilla et al., 2020).

One commonly used metric is the average precision, which

assesses the accuracy by estimating the area under the preci-

sion–recall curve. The fundamental concept revolves around

determining the intersection over union (IoU) criterion

between the predicted box and the ground truth box:

IoU ¼
area of overlap

area of union
: ð4Þ

The identified bounding boxes are subsequently categorized

as true positives, false positives or false negatives on the basis

of the selected threshold for the IoU criterion (see Table 2).

The precision P and recall R are then determined by

calculating the ratio of correct positive detections over all

detections and all ground truths, as

P ¼
TP

TPþ FP
; ð5Þ

R ¼
TP

TPþ FN
; ð6Þ

where TP, FP and FN are the numbers of true positives, false

positives and false negatives, respectively. The precision

represents the algorithm’s ability to accurately identify rele-

vant objects among the predicted instances. On the other

hand, the recall quantifies the algorithm’s capacity to identify

all of the given ground truth instances. Different confidence

scores of the model result in different trade-offs between

precision and recall points, which form a precision–recall

curve P(R). A high area under the curve indicates that many

objects are recalled with high-quality intersections. Instead of

integrating the whole area, a traditional approach is to inter-

polate the shape at 11 precision values (Schütze et al., 2008).

The result is the average precision

AP ¼ 1=11
X

R2 0;0:1;:::;0:9;1

PðRÞ; ð7Þ

where P(R) is the precision value P at the corresponding recall

value R.

4.1. GIWAXS-specific metrics

While equation (7) is a commonly used metric for standard

object detection tasks, we have identified the need for some

adjustments to suit our specific peak-detection methods

better. The rationale stems from the features typically

observed in GIWAXS patterns. The GIWAXS patterns

contain Bragg peaks with a small, sharp Gaussian shape in the

radial direction, whereas the azimuthal width is typically

substantially larger. For determining the crystalline structure,

the radial peak position is more important and requires a

significantly higher level of precision in the radial direction

compared with the azimuthal one. The IoU as a criterion of

intersection is only partially suitable for this purpose since it

treats both directions equally. Furthermore, the average

precision is a single number to determine the quantity of

intersections and only partially takes into account the quality

of intersections. Therefore, we propose splitting the metric as

explained in the following. The accurate determination of

intensity requires a robust fit in both the radial and the

azimuthal angles. Therefore, the average IoU (hIoUi) is well

suited for this specific purpose. To place additional emphasis

on the radial direction, we propose to compute the IoU based

only on the overlap in the radial direction (IoUr). The average

IoU in the radial direction hIoUri reliably measures the

quality of intersection among detected peaks. Given a specific

IoUr threshold, the average precision can be determined using

the Pr and Rr values:

APr ¼ 1=11
X

Rr 2 0;0:1;:::;0:9;1

PrðRrÞ: ð8Þ

We adhere to the conventional 11-point interpolation because

of its clear computational advantage in estimating the shape of

the entire area under the curve.

Given the significance of the peak positions in the radial

direction |Q|, the average distance between the detected

|Qdetected| and ground truth |Qtruth| peak positions –

h�jQji ¼ hjjQdetectedj � jQtruthjji; ð9Þ

where the averaging is performed over all detected peaks – is

of particular interest.

5. Results and discussion

We applied the peak-detection methods described in Section 3

with the composed dataset described in Section 2 and eval-

uated the results using the proposed metrics. For the classifi-

cation of peaks as TPs, a minimum IoUr value of 0.1 was used.

Since the region-growing approach does not have a confidence

score, we did not calculate the average precision but used the

Pr of equation (5) based on a minimum IoUr value of 0.1. The

Pr value of the modified Faster R-CNN is calculated for a

minimum confidence score of 0.1 and an IoUr value of 0.1. The

research papers

518 Constantin Völter et al. � Benchmarking deep learning for automated peak detection J. Appl. Cryst. (2025). 58, 513–522

Table 2
Classification of detection results based on the IoU criterion.

True positive (TP) Detection successful: IoU threshold for intersection
with ground truth box is met

False positive (FP) Detected box has not met an IoU intersection
threshold with a ground truth box

False negative (FN) No box found meets the IoU threshold of the

ground-truth box



results are summarized in Table 3. We observe that the DL

approach outperforms the region-growing algorithm in almost

all metrics.

Using the region-growing approach as a reference, the

‘Recall’ metric demonstrates that the Faster R-CNN approach

detects more peaks in the high and medium confidence levels,

whereas the region-growing approach has a slightly higher

value for the low-confidence peaks. The detection of weaker

peaks poses a challenge for both methods. Although the APr

cannot be determined for the region-growing algorithm, the

modified Faster R-CNN shows a promising value of 70% on

experimental data. Note that the DL model is trained and fine-

tuned on simulations, for which it reaches an APr value of 99%

(Starostin et al., 2022a). This gap could be reduced by

including annotated, experimental data into the fine-tuning

process. When contrasted with the region-growing approach,

the Faster R-CNN shows a significantly higher Pr of 87% as

opposed to 62%. Although both approaches have the same

IoUr in the radial direction, the average peak distance h�jQji

shows that DL detects peak centres more precisely. The IoU

shows the same behaviour in the azimuthal direction: the DL

approach demonstrates a superior fit.

Fig. 6 is an example from the evaluated dataset, visually

confirming the results in Table 3. It demonstrates that the

region-growing approach has a lower recall for high- and

medium-confidence peaks. The hIoUi is lower for the region-

growing approach due to significant issues with azimuthally

extended peaks, especially with Debye–Scherrer rings. In

contrast, the radial intersection over union (hIoUri) performs

equally well for both algorithms. Evaluating h�jQji visually is

challenging without seeing the ground-truth boxes. All eval-

uated GIWAXS images, including the marked detection

results, are available on Zenodo (Völter et al., 2024).

5.1. Recall

We consider Bragg peak detection as effective if it achieves

the highest possible recall value. As we can see in Table 3, both

algorithms excel at detecting the brighter, high-confidence

peaks, with recall values of more than 88%, but have problems

detecting the less intense low-confidence peaks, showing

results of 55 and 60%. We explain these results by examining

how the algorithms extract relevant features.

In our specific case of detecting Bragg peaks, the region-

growing algorithm uses the intensity of the peaks as a feature.

The expert must determine a suitable intensity threshold to

distinguish meaningful peaks from noise and background

artefacts. Unfortunately, this feature is highly vulnerable to

background scattering; the intensity as a characteristic alone

may not be sufficient to achieve excellent results. This task

requires more sophisticated features to enhance the perfor-

mance further.

In contrast, a DL model possesses an intrinsic ability to

detect features from a dataset. The DL model employed by

Starostin et al. (2022a) is trained on a simulated dataset with

varying peak intensities and captures these features by

employing millions of training parameters. Nonetheless, the

recall metrics in Table 3 indicate that the model struggles to

detect less prominent peaks. Hence, enhancing the perfor-

mance of feature detection could be realized through either a

broader range of simulations or modifications to the model

that enable the identification of peaks with low intensity.

Bragg peaks in GIWAXS data can manifest at arbitrary

spatial positions, including border regions of the image. It is

not uncommon for peaks to be located close to each other or

even be situated on top of the Debye–Scherrer rings. Ensuring
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Table 3
GIWAXS-specific metrics for the peak-detection results in the composed
dataset.

Better results are marked in bold.

Metric Modified Faster R-CNN Region-growing approach

Confidence High Medium Low High Medium Low
Recall (%) 95 83 55 88 73 60

APr (%) 70 –

Pr (%) 87 62
hIoUi (%) 49 35
hIoUri (%) 64 64

Percentile 5 50 95 5 50 95
h�jQji (10� 3 Å� 1) 0.47 6.24 17.76 0.83 6.26 24.25

Figure 6
Peak-detection results from (a) the modified Faster R-CNN and (b) the
region-growing approach. The colours in (a) are chosen according to the
confidence score of the DL-model, not the confidence score of the ground
truth labels. The different geometries are explained in Section 2.2, the
blurring of (b) in Section 3.2. (b) Detected maxima are shown as green
points. The red bounding boxes are the result of the fitting explained in
Section 3.2.



a high recall in peak detection demands a robust algorithm

capable of handling these characteristics.

Both of the discussed peak-detection methods demonstrate

the capability to identify Bragg peaks at various positions. The

approach to GIWAXS peak detection introduced by Starostin

et al. (2022a) uses a diverse training dataset encompassing

peaks with multiple spatial arrangements and therefore

enables the identification of Bragg peaks across the entire

image. Similarly, the region-growing approach detects local

maxima across the entire image, highlighting its translational

equivariance in peak detection.

We observe that Bragg peaks often appear very close to

each other, which can result in missing out on individual peaks

or mistakenly combining two into one. To achieve a high recall

value, we require an algorithm that can accurately detect even

these closely spaced peaks. However, the non-maximum

suppression mechanism inherent in the Faster R-CNN archi-

tecture introduces challenges when dealing with these adja-

cent peaks. If a neighbouring peak holds lower confidence

compared with another peak but significantly overlaps with it,

the non-maximum suppression may erroneously suppress it

(Bodla et al., 2017). Furthermore, the non-maximum

suppression mechanism is not equipped to handle instances

where objects are nested, as exemplified by a Bragg peak atop

a Debye–Scherrer ring. In contrast, the region-growing

approach distinguishes peaks from one another on the basis of

intensity thresholds. This approach performs effectively for

prominent peaks, but it encounters challenges when dealing

with peaks that do not meet the intensity difference require-

ment.

5.2. Peak refinement and box fitting

The hIoUi value in Table 3 gives the intersection between

the labelled and detected peak positions. We deem the values

of 49 and 35% not good enough for subsequent Bragg peak

analysis, such as intensity determination. We believe these

values can be partially attributed to the ambiguity of the peak

position determination in the azimuthal direction. The

azimuthal intensity distribution is not always peaked but may

be more complex. Therefore it is not always possible to

determine a reliable peak position. Consequently, the auto-

mated solutions encountered difficulties with it. While both

models leave room for improvement, the Faster R-CNN,

trained on a diverse range of peak shapes, demonstrates

superior capability in the azimuthal position determination.

In contrast, hIoUri in the radial direction exhibits signifi-

cantly better results with the value of 64%. The models can fit

the radial shape accurately due to the Gaussian-like shape of

the peaks and ring segments, which reduces ambiguity. The

accurate determination of the radial peak position is crucial

since it directly determines the uncertainty of lattice para-

meter estimation. The median shows similar results for both

methods of 6.24 � 10� 3 and 6.26 � 10� 3 Å� 1. However, the

modified Faster R-CNN outperforms the region-growing

approach in the 5th and 95th percentiles, achieving 0.47 �

10� 3 and 17.76 � 10� 3 Å� 1 versus 0.83 � 10� 3 and 24.25 �

10� 3 Å� 1. The values for both approaches are deemed

acceptable for further processing such as structure identifica-

tion.

5.3. Real time analysis

Modern X-ray sources allow measurement of X-ray scat-

tering patterns at frequencies from a few hertz to megahertz

(Li et al., 2024; Decking et al., 2020; Buffet et al., 2012).

Manually analysing hundreds of images per second is unrea-

listic. Consequently, a conventional approach would involve

selecting a single image and analysing it, which could take

anywhere from minutes to several hours depending on the

complexity of the patterns. In contrast, the high processing

rate in automated data analysis unlocks new types of experi-

ments such as closed-loop experiments (Pithan et al., 2023).

The modified Faster R-CNN model evaluated here benefits

from the optimized software packages that are readily avail-

able, leveraging massively parallel algorithms, which results in

an impressive number of 122 images processed per second

(Starostin et al., 2022a). This represents a significant accel-

eration when contrasted with the sequential region-growing

approach, which handles approximately one image per

second.

6. Conclusions

We have established a comprehensive benchmark for auto-

mated Bragg peak detection in the GIWAXS geometry. We

have provided a labelled dataset, which spans a wide spectrum

of practically relevant scenarios. We have proposed a new

metric tailored to the specifics of the GIWAXS data that focus

on physically relevant aspects of the detection performance. It

is well adapted for Bragg peak detection, emphasizing the

overlap in the radial direction instead of employing plain IoU.

As a baseline, we developed a region-growing algorithm that

was fine-tuned on this dataset. Our framework based on a

recent DL method exhibits superior performance compared

with this classical baseline fine-tuned on the test dataset. The

findings indicate that the DL-based approach particularly

excels at identifying the peak positions and boundaries.

Noteworthy advantages of the DL method lie in accurately

determining the azimuthal profile. Detecting low-intensity

peaks is challenging due to the complexity of differentiating

them from the background. Furthermore, identifying adjacent

peaks poses difficulties, particularly in the context of non-

maximum suppression used for the Faster R-CNN. Future

work could aim to enhance the simulation or incorporate

experimental data for training purposes. Furthermore, DL

architectures that do not use non-maximum suppression could

prove beneficial.
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