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We have carried out theoretical analysis, Monte Carlo simulations and machine-

learning analysis to quantify microscopic rearrangements of dilute dispersions of

spherical colloidal particles from coherent scattering intensity. Both mono-

disperse and polydisperse dispersions of colloids were created and underwent a

rearrangement consisting of an affine simple shear and non-affine rearrange-

ment using the Monte Carlo method. We calculated the coherent scattering

intensity of the dispersions and the correlation function of intensity before and

after the rearrangement and generated a large data set of angular correlation

functions for varying system parameters, including number density, poly-

dispersity, shear strain and non-affine rearrangement. Singular value decom-

position of the data set shows the feasibility of machine-learning inversion from

the correlation function for the polydispersity, shear strain and non-affine

rearrangement using only three parameters. A Gaussian process regressor is

then trained on the data set and can retrieve the affine shear strain, non-affine

rearrangement and polydispersity with relative errors of 3%, 1% and 6%,

respectively. Altogether, our model provides a framework for quantitative

studies of both steady and non-steady microscopic dynamics of colloidal

dispersions using coherent scattering methods.

1. Introduction

Quantification of the microscopic dynamics of materials made

of nanometre- to micrometre-scale constituents is vital in

understanding the origins of macroscopic mechanical prop-

erties and designing novel functional materials for pharma-

ceutical, environmental and other industrial applications (Wu

et al., 2020). While traditional optical microscopy can provide

real space information, it is limited by its resolution and the

opacity of the materials (Badon et al., 2017). Scattering tech-

niques (Murphy et al., 2020; Guinier et al., 1955) like X-ray

photon correlation spectroscopy (Chu & Hsiao, 2001;

Shpyrko, 2014; Leheny et al., 2015; Madsen et al., 2020),

dynamic light scattering (Goldburg, 1999; Aime & Cipelletti,

2019) and small-angle neutron scattering (Shibayama, 2011;

Chen, 1986) provide great opportunities to probe the micro-

scopic information of such materials, and they have been

deployed to study the microstructural dynamics of colloidal

(Chen et al., 2020a; Donley et al., 2023), polymeric (Ruocco et

al., 2013) and atomic materials (Lüttich et al., 2018). However,

the challenge of scattering techniques is the quantification of

microscopic rearrangement in real space back from the scat-

tering patterns (Fourier space) which, most of the time, are

only available in a limited range of two dimensions (in the case

of an area detector) and sometimes even one dimension (in

the case of a photon-counting device). Previous efforts have

investigated steady shear (Burghardt et al., 2012), diffusion
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(Leitner et al., 2009), localization of particles (Chen et al.,

2020b) etc. Most of the schemes characterize the temporal

correlation function of the scattering intensity and require an

average of the intensity or/and the correlation function of the

intensity in a time interval assuming steady dynamics. On the

other hand, non-steady microscopic dynamics, like non-affine

rearrangement, are widely observed in real space and play an

important role in the non-linear properties of soft materials

(Keim & Arratia, 2015; Wen et al., 2012), like yield (Jana &

Pastewka, 2019) and memory effects (Galloway et al., 2022).

However, they are much less studied in coherent scattering

experiments due to their non-linear and transient nature, and

their interpretation often requires intensive modeling and

computation (Ma et al., 2014; Banetta et al., 2022; He et al.,

2024).

To address these issues, we developed a generalized theo-

retical and machine-learning (ML) framework (Murphy, 2012;

Carleo et al., 2019) to quantify affine and non-affine rearran-

gements of dilute, both monodisperse and polydisperse,

colloidal dispersions using the correlation function of coherent

scattering intensity. Recently, various ML frameworks have

been developed to interpret scattering experiments, such

as SCAN [SCattering Ai aNalysis (Tomaszewski et al.,

2021)], which automates structural analysis using predefined

particle shape models, and CREASE [computational reverse-

engineering analysis for scattering experiments (Anker et al.,

2023; Lu & Jayaraman, 2024; Akepati et al., 2024; Heil et al.,

2023; Wu & Jayaraman, 2022; Wessels & Jayaraman, 2021)],

which leverages genetic algorithms and surrogate ML

methods (e.g. XGBoost) to reconstruct 3D structural features,

including domain size, shape, orientation and spatial distri-

butions from scattering profiles. In particular, CREASE-2D

(Akepati et al., 2024) enabled analysis of 2D scattering

patterns, avoiding the traditional approximate analysis of

scattering intensity profiles. Other ML methods have also

been applied for particle tracking and ordered structures in

soft materials (Clegg, 2021) and surface scattering analysis

(Hinderhofer et al., 2023). Our approach is distinct from these

methods in that it directly correlates coherent scattering

intensity with physical parameters such as shear strain, non-

affine rearrangement and polydispersity in dynamically

sheared colloidal systems. Unlike generalizable tools, our ML

approach utilizes Monte Carlo (MC) simulation (Krauth,

2006) to generate particle configurations and rearrangements

in two dimensions. The coherent scattering intensity of the

particles and the correlation function of the intensity were

calculated before and after the rearrangement, and using

singular value decomposition (SVD) we extracted three

essential features of the correlation function that reliably

recover the magnitude of both affine and non-affine rearran-

gements and polydispersity. Similar approaches have been

applied to other soft-matter systems including colloids (Chang

et al., 2022; Huang et al., 2023; Tung et al., 2022; Tung et al.,

2024a), lamellae (Tung et al., 2024b; Tung et al., 2025) and

polymers (Tung et al., 2023; Ding et al., 2024a; Ding et al.,

2024b; Ding et al., 2025). We then used Gaussian process

regression (GPR) (Williams & Rasmussen, 2006) to map from

scattering data to the system parameters including poly-

dispersity, shear strain and non-affine rearrangement. We also

tested our trained GPR using simulation data aside from the

training data; good agreement between the ML-extracted

system parameters and the MC references was achieved,

showing the accuracy of our approach. Our model can be

easily applied to coherent scattering experiments to extract

microscopic rearrangements between two scattering patterns,

which is especially useful for studies of non-steady and tran-

sient dynamics.

The rest of this paper is organized as follows: Section 2

introduces our colloidal systems, the theoretical analysis of

coherent scattering intensity, MC simulation and a brief

summary of the GPR; our results are presented in Section 3 to

illustrate the scattering intensity and correlation function of

the colloidal dispersions under rearrangements, validate the

feasibility for ML inversion of system parameters using SVD

of the correlation and show the application of ML analysis for

scattering data using GPR; finally, we summarize our paper

and discuss potential future directions following this work in

Section 4.

2. Methods

2.1. Coherent scattering and rearrangement transformation

The normalized scattering intensity of a polydisperse

dispersion of N spherical particles with a configuration of 2D

coordinates S = {(x, y)} is given by (Chen, 1986)

Iðq;SÞ ¼

hPN

i¼1ViFiðqÞ expð� iq�riÞ
ihPN

i¼1ViF
y
i ðqÞ expðiq�riÞ

i

PN

i¼1 V2
i

;

ð1Þ

where Vi = (4�/3)R3
i is the volume of particle i with radius Ri, q

is the scattering wavevector and ri = (xi, yi) is the position of

particle i. Fi(q) is the form factor amplitude of the ith particle

such that (Guinier et al., 1955)

FiðqÞ ¼ 3
sinðqRiÞ � qRi cosðqRiÞ

ðqRiÞ
3

; ð2Þ

where q = |q| is the magnitude of the scattering wavevector.

The rearrangement transformation of the particle positions

consists of an affine simple shear deformation along the x axis

(shear gradient runs along the y axis) with a shear strain �, as

shown in Fig. 1(a), and a non-affine rearrangement where the

particles are randomly displaced by �xi and �yi, which follow a

Gaussian distribution with zero mean and a standard devia-

tion D2. Such a transformation � is expressed as

�
xi

yi

� �

¼
xi þ �yi þ �xi

yi þ �yi

� �

: ð3Þ

In homodyne scattering, the average translation of all the

particles has no effect on the scattering intensity, so we choose

the form of equation (3) to have a fixed origin for the affine

shear.
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The correlation function of two scattering intensities before

and after the transformation � is

gðqÞ ¼
hIðq;SÞI½q; � ðSÞ�iS

hIðq;SÞi2S
; ð4Þ

where h. . .iS is the average over different realizations of the

configuration.

In the case of dilute dispersions of monodisperse spherical

particles, including materials doped with a dilute amount of

monodisperse tracer particles, the positions of different

particles and, thus, their rearrangements are uncorrelated, and

the correlation function g(q) associated with the transforma-

tion � is predicted as [similar to that in Aime & Cipelletti

(2019)]

gðqÞ ¼ 1þ sinc2 q�L cos �

2

� �

expð� q2D2
2Þ; ð5Þ

where sinc(x) = sin(x)/x, L is the size the scattering beam, and

� is the angle between q and the x axis.

2.2. Monte Carlo simulation

We sampled the positions of particles S in a [� L, L]2 square

with a number density n. The radius of the particles follows a

log-normal distribution such that ln Ri � Nðln R0;RsÞ, where

the polydispersity index of the dispersion, PDI =

hV2
i ii=hVii

2
i ¼ hR

6
i ii=hR

3
i i

2
i ¼ expð9R2

s Þ, is controlled by Rs

(Kotz et al., 2019).

We calculated the scattering intensity I(q) = I(qx, qy) =

I½q cosð�Þ; q sinð�Þ� in the polar coordinates for all the particles

inside the box of [� 0.5L, 0.5L]2 before and after the �

transformation, and then calculated the correlation function

g(q). The values of I(q) and g(q) are averaged over 2 � 104

samples of S for each set of system parameters (nL2, Rs,

D2, �L). We also calculated the radial and angular average

of the correlation function such that gðqÞ ¼ hgðqÞi� and

gð�Þ ¼ hgðqÞiq, where h. . .i� and h. . .iq are averages over all

measured � and q, respectively. Without loss of generality, we

use the natural unit R0 = 1 for the size of particles and the

beam size L = 800R0. We measured I(q) and g(q) with respect

to 100 different values of q 2 ½0:5; 5� uniformly distributed on

a log scale, and 101 different values of � 2 ½0; �� uniformly

distributed on a linear scale, and we note that I(q, � + �) =

I(q, �) due to �q symmetry of equation (1). The choice of R0,

L and the range of q is to mirror experimental conditions: a

colloidal dispersion of particles with a radius of 10 nm, a

synchrotron X-ray beam size of 8 mm and an area detector at a

small-angle scattering setup that covers a wavevector ranging

from 0.05 to 0.5 nm� 1.

2.3. Gaussian process regression

To obtain the inverted mapping from the scattering corre-

lation function x = g(q) to the system parameters or inversion

targets y = (nL2, Rs, D2, �L), we trained a GPR using the

data generated by MC simulation. In the context of GPR,

the prior on the regression function is a Gaussian process,

gðxÞ � GP½mðxÞ; kðx; x0Þ�, where m(x) is the prior mean

function and k(x, x0) is the covariance function or kernel. The

goal of the GPR is to find the optimized posterior

pðY�jX�;X;YÞ of the function output y. The joint distribution

of the Gaussian process is (Williams & Rasmussen, 2006)

Y

Y�

� �

� N
mðXÞ

mðX�Þ

� �

;
kðX;XÞ kðX;X�Þ

kðX�;XÞ kðX�;X�Þ

� �� �

; ð6Þ

where a constant function is used for the prior mean m(x), and

the kernel consists of a Radial basis function and white noise.

kðx; x0Þ ¼ exp � jx � x0j2=ð2lÞ
� �

þ ��ðx; x0Þ, where � is the

Kronecker delta function. l and � denote the hyperparameters

corresponding to the correlation length and variance of

observational noise, which can be obtained by training on

simulation data. In practice, we use the scikit-learn Gaussian

process library (Pedregosa et al., 2011) for convenience of

implementation and efficiency.

To investigate the distribution of X, we define the pair

distance distribution function (PDDF) for X,

pðzÞ ¼
1

M2

XM

i;j¼1

� jxi � xjj � z
� �

; ð7Þ

where M = |X| is the number of data points. In addition, to help

determine the appropriate range of hyperparameter l when

initiating then optimization process, we calculated the auto-

correlation function (ACF) for feature � (Chang et al., 2022),

C�ðzÞ ¼
h�ðxÞ�ðx þ zÞix � h�ðxÞi

2
x

h�2ðxÞix � h�ðxÞi
2
x

; ð8Þ

where the h. . .ix is averaged over all data points in X.

3. Results

3.1. Scattering function of the dispersion

Fig. 1(a) shows an example of the configuration S of

monodisperse particles before and after the rearrangement

transformation � , where �L = 30 and D2 = 0.5. Figs. 1(b) and

1(c) show the corresponding coherent scattering patterns of

configurations S and � ðSÞ, respectively. Speckles are clearly

observed in the scattering patterns. Fig. 1(d) shows the

product of the two instances of scattering intensity shown in

Figs. 1(b) and 1(c).

Fig. 2(a) shows an example of the scattering pattern I(q) of

monodisperse particles after averaging over 20000 config-

urations of S. The scattering intensity I(q) is isotropic and

reflects the form factor F 2(q) of the spherical particles. Fig.

2(b) shows the correlation g(q) averaged over 20000 samples.

g(q) is highly anisotropic with a high correlation in the y axis

(� = �/2). The non-affine rearrangement is isotropic and

causes the decay of structural correlation in all directions. For

the affine shear rearrangement [equation (3)], the y coordi-

nates of the particles remain unchanged, so the affine shear

only leads to the decay of correlation in other directions

except the y axis (gradient of the affine shear). The pattern of

g(q) is captured very well by the theoretical prediction of

equation (5) as shown in Fig. 2(c), and the mean percentage
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error between the MC calculation g(q) and the theoretical

prediction gtheo(q) is Err = h½gðqÞ � gtheoðqÞ�=gtheoðqÞiq = 0.9%,

where h. . .iq is the average over all q.

To further quantify the effect of polydispersity, shear strain

and non-affine transformation on the correlation function, we

used (Rs, D2, �L) = (0, 1, 10) as a baseline to demonstrate the

effect of the three system parameters (Rs, D2, �L) on g(q) and

g(�). Fig. 3 shows the radial and angular averaged correlation

function g(q) and g(�) with different values of (Rs, D2, �L),

which alter the correlation function in different ways. The

radial correlation function, g(q), peaks at the lowest q and

decays at higher q. The variation of particle size Rs controls

the height of the plateau of g(q) at the high-q limit, which

increases with larger Rs. Affine shear strain �L and non-affine

rearrangement D2 affect the peak of g(q) at the lowest q in a

similar way, where increasing both shear strain �L and D2

lowers the peak. The effect of the three system parameters on

the angular correlation function g(�) is more distinguishable,

as shown in Figs. 3(b), 3(d) and 3( f). The angular correlation

function g(�) has a peak at � = �/2 (affine shear gradient

direction), and �L, D2 and Rs affect the width, height and

baseline of the peak. Therefore, we focus on the angular

correlation function for the rest of the work. However, radial

correlation functions also show significant enough feature

differences, which can be used for the same inversion analysis

presented here.

3.2. Feasibility of machine-learning inversion

We generated a data set of 6000 angular scattering corre-

lation functions, F = {g(�)}, whose corresponding system

parameters Y = {(nL2, Rs, D2, �L)} are randomly distributed

such that nL2 2 Uð100; 200Þ, Rs 2 Uð0; 0:3Þ, D2 2 Uð0:5; 3Þ

and �L 2 Uð5; 30Þ, where U(a, b) is a uniform distribution in

the interval [a, b]. Note that g(�) is measured for 101 �

uniformly in [0, �], so F is a 6000 � 101 matrix. Following a
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Figure 2
Scattering function I(q) and scattering correlation function g(q) of the
particles with (nL2, Rs, D2, �L) = (150, 0, 0.5, 10). The range of the
scattering wavevector is q ¼ jqj 2 ½0:5; 5�, plotted in linear scale. (a)
Averaged scattering intensity. (b) Averaged correlation function. (c)
Theoretical predicted correlation function for the monodisperse system
as in equation (5).

Figure 3
Radial (left column) and angular (right column) correlation functions,
g(q) and g(�), for various polydispersity Rs, non-affine rearrangement D2

and affine shear �L with a reference of (n, Rs, D2, �L) = (150, 0, 1, 10)
represented by the black lines. (a) and (b) Variable Rs, (c) and (d) vari-
able D2, and (e) and ( f ) variable �L.

Figure 1
Illustration of a single configuration of particles undergoing transfor-
mation � , in which (nL2, Rs, D2, �L) = (150, 0, 0.5, 30). The black frame
indicates the region the beamline shines on. (a) Spatial distribution of
particles before (S) and after [� ðSÞ] the transformation. For better
visualization, the particles are not to scale. Scattering intensity of the
configuration (b) before and (c) after the transformation � . (d) Product
of the correlation function between the scattering intensity of trans-
formed and non-transformed configurations.



similar framework to the literature (Chang et al., 2022; Ding et

al., 2024b), we carried out a principle component analysis of

the data set matrix F using the SVD F ¼ URVT, where U, R

and V are matrices of size 6000 � 6000, 6000 � 101 and 101 �

101, respectively. Matrix V consists of the singular vectors, and

the entries of R2 are the corresponding coefficients of the

projection of F onto the principal vectors in V.

Projecting each g(�) in the data set F onto the three singular

vectors (V1, V2, V3) yields three corresponding projection

values (FV0, FV1, FV2), which can be considered as a

dimension reduction of the original g(�). This converts each

g(�), as well as the system parameter Y = {(nL2, Rs, D2, �L)}

associated with it, in the data set F to a point in 3D space

spanned by the three projection values (FV0, FV1, FV2). Fig. 4

shows the distribution of (nL2, Rs, D2, �L) in such a space. The

distribution shows the feasibility of mapping the features of

g(�) back to these system parameters. From the color distri-

bution, we note that the values of (Rs, D2, �L) are well spread

out in the (FV0, FV1, FV2) space, indicating a smooth and

continuous mapping from the projection values of g(�) to

these corresponding system parameters. However, the distri-

bution of number density nL2 in (FV0, FV1, FV2) is rather

random, implying it is not suitable for the inverted mapping.

The inability to extract the number density information from

our scattering correlation function is not surprising, as we are

working in the limit of dilute dispersions where the number

density of particles does not play a role in the microscopic

structure or the rearrangement.

3.3. Inference of the system parameters

For the ML inversion of system parameters (Rs, D2, �L)

from angular scattering correlation function g(�), we split the

data set F = {g(�)} into two groups, a training set Ftrain =

{g(�)}train consisting of 70% of F, and a test set Ftest = {g(�)}test

consisting of the remaining 30%. We used the training set to

optimize the GPR, especially the hyperparameters (l, �) for

each system parameter individually by maximizing the log

marginal likelihood using gradient descent (Williams &

Rasmussen, 2006). We then used the trained GPR to predict

the system parameters of the test set and compare the GPR

predicted system parameters with those actually used for the

MC simulations.

Fig. 5 shows the determination of the log marginal like-

lihood contour in the (l, �) space for each system parameter

(Rs, D2, �L). To gauge the appropriate range of l for each

system parameter, as shown in Fig. 5(a), we first analyzed the

PDDF of gð�Þ 2 F and then investigated the ACF for (Rs, D2,

�L), which gave us a rough range in which we could search for

the optimized l. The resulting log marginal likelihood contours

are shown in Figs. 5(b)–5(d), and the values of optimized (l, �)

are shown in Table 1.

We applied the trained GPR with the optimized hyper-

parameters on the test set Ftest to infer ML inverted system

parameters (Rs, D2, �L) and compared the inferred results

with MC references. Fig. 6 shows the comparison of system
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Figure 4
Distribution of the system parameters in the singular value space. (a)
Number density nL2. (b) Variation of particle size Rs. (c) Non-affine
transformation D2. (d) Shear rate �L.

Figure 5
Determining the hyperparameters l and � for system parameters. (a)
PDDF p(z) of the data set F and ACF for three system parameters. Log
marginal likelihood of hyperparameters for system parameters: (b) Rs, (c)
non-affine rearrangement D2 and (d) affine shear strain �L.

Table 1
Optimized hyperparameters for each feature, obtained from the
maximum log marginal likelihood.

l �

Rs 1.338 � 10� 1 2.673 � 10� 3

D2 2.419 � 10� 1 2.717 � 10� 3

�L 1.405 � 10� 1 1.927 � 10� 2



parameters (Rs, D2, �L). Almost all of the data points lie

around the diagonal line, indicating a good estimation. For

each system parameter �, the relative error between the MC

reference �MC and ML inversion �ML is estimated by

Err ¼ hj�MC � �MLj=maxð�MC; �MLÞi, where h. . .i here is

averaged over all data points. The relative error is labeled for

each system parameter in each panel of Fig. 6 and shows a very

high precision: 1% for D2, 3% for �L and 6% for Rs. The

precise quantification of system parameters demonstrates the

power of our ML approach for analyzing and extracting

microscopic rearrangement from coherent scattering data.

4. Summary

We have presented an ML-informed analysis framework that

successfully recovers the polydispersity and microscopic

rearrangements, including both affine simple shear and non-

affine transformation, with high precision from the correlation

function g(q) of coherent scattering intensity of the dilute

dispersions of spherical particles.

Our simulated colloidal systems and scattering intensity aim

to mirror real synchrotron scattering setups, including the

beam size, particle size and range of the detectable wave-

vector; therefore, our SVD features and GPR models can

easily be compared and adopted to analyze real experimental

data. The direction of affine shear is not necessarily always in

the x direction for experimental data. However, the direction

is easy to identify by the high correlation strip in the g(q)

pattern; one can rotate the scattering data before applying our

model. Currently, our approach applies to dilute dispersions of

spherical colloids. If the system deviates significantly from

these assumptions, such as involving anisotropic particles or

nonlinear turbulent flow, our model would require retraining

with simulations that capture the corresponding scattering

behavior. Additionally, incorporating experimental data sets

labeled with known microscopic rearrangements, such as

shear-driven viscous laminar fluids (Aime & Cipelletti, 2019),

could further enhance its applicability. By leveraging such

data, the model could generalize better to real-world experi-

ments, including those with sparse or incomplete data sets. If

the experimental scattering data are taken on a different grid

of wavevector q, interpolated data can be utilized to feed into

our GPR model. Alternatively, we can also use generative

models such as Kolmogorov–Arnold networks (Liu et al.,

2024b; Liu et al., 2024a) to obtain I(q) as a continuous function

of the system parameters and use it to directly fit the experi-

mental data.

Further, similar methods can be deployed to study the

microscopic rearrangement of disordered colloidal systems,

like glasses and gels, where ML-assisted quantification

methods have a great potential to overcome the challenges

imposed by the out-of-equilibrium nature (Schoenholz et al.,

2016; Horwath et al., 2024). However, for such highly

concentrated systems, the MC direct sampling method often

suffers from a high rejection rate. As a result, alternative

techniques like Brownian dynamics or molecular dynamics

simulations are better suited for capturing the intricate

dynamics and interactions in these systems.

APPENDIX A

Singular value decomposition of the data set

Fig. 7(a) shows the singular value versus its rank, where the

rapid decay of the singular value indicates that the significance
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Figure 6
Comparison between the system parameters extracted from the angular scattering correlation function g(�) using the GPR and their corresponding MC
reference used for generating scattering data. Averaged relative error Err is indicated in each plot. (a) Variation of particles size Rs. (b) Non-affine
rearrangement D2. (c) Affine shear strain �L.

Figure 7
SVD of the angular scattering correlation data set. (a) Singular value �
versus singular value rank (SVR); the top three ranked values are
highlighted with red circles. (b) Singular vectors corresponding to the first
three singular values.



of the projection onto higher-rank singular vectors quickly

becomes negligible. Therefore, decomposition of g(�) into the

top three singular vectors will provide a good approximation

of the whole g(�). Fig. 7(b) shows the singular vectors (V1, V2,

V3) corresponding to the first three singular values.
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