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This paper describes a method that can (1) generate random packing of hard

disks in 2D using Monte Carlo simulation, (2) extract the corresponding pair

distribution function using normalization by disk line picking probability and (3)

convert it to the structure factor. The generated structure factor agrees well with

the analytical form based on the Percus–Yevick equation at a low area fraction

(that is, within 1% at an area fraction below 0.2 and 2% at an area fraction of

0.3) but differs at a higher area fraction with more pronounced peaks and

oscillations. Above an area fraction of 0.69, the hexagonal packing feature

appears as sharp peaks at low Q, which are absent in the analytical solution. The

structure factors up to an area fraction of 0.65 as a function of QR and the area

fraction are stored in table form. The structure factor table can be combined

with the cylinder form factors to simulate the X-ray/neutron scattering intensity

of wood cell wall scattering.

1. Introduction

Determining the shape/dimension of the particles and their

arrangement in a dense system of particles by small-angle

scattering techniques is challenging since the characteristic

features of form factors and structure factors appear on the

same length scale, sometimes leading to misinterpretation of

X-ray/neutron scattering data. An example is the packing of

cellulose microfibrils in wood cell walls with a volume fraction

of typically 30–50% (Rowell et al., 2012). Ultimately, there is

no unique solution to simultaneously determine the particle

shape and structure factor if neither is known.

The arrangement of hard disks, the equivalent of hard

spheres in 2D, is what Metropolis studied in his seminal work

on the Monte Carlo algorithm in 1953 (Metropolis et al., 1953).

Since Monte Carlo simulation that involved explicitly calcu-

lating the arrangement of particles was expensive at the time,

more analytical approaches using integral equations were also

developed (Lado, 1968). The Percus–Yevick (PY) approx-

imation is one such method that leads to an analytical pair

distribution function (PDF) which shows relatively good

agreement with the Monte Carlo simulation, except for the

underestimation of the population at contact (Lado, 1968).

Rosenfeld (1990) proposed an even simpler analytical form

that reproduces the structure factor of the PY approximation

at low number density but fails at higher density. Here the

structure factor

SRosenfeld ¼

1

1þ 4� A½J1ðQÞ=Q�
2
þ B J0ðQÞJ1ðQÞ=Q þGJ1ð2QÞ=Q

� � ; ð1Þ

where � is the area fraction, Jn is the nth-order Bessel function

and
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G ¼ ð1 � �Þ
� 1:5
; ð2Þ

A ¼
1þ ð2� � 1Þ�þ 2�G

�
; ð3Þ

B ¼
ð1 � �Þ� � 1 � 3�G

�
; ð4Þ

� ¼
1þ �

ð1 � �Þ
3
: ð5Þ

Another possibility is to start with hexagonal packing and

introduce an analytical form of disorder of the second kind

(i.e. paracrystallinity) as proposed by Hashimoto et al. (1994).

Penttilä et al. (2019) incorporated this in the WoodSAS model

to fit X-ray scattering from wood. This allows the extraction of

parameters such as lattice constants and disorder parameters.

This paracrystalline model is adapted for a crystallizing system

with well defined crystalline peaks that broaden at higher

resolution. However, Penttilä et al. (2019) had to artificially

trim the central scattering that tends to significantly deviate

toward high intensity at low Q using the original mathematical

model.

Since the structure factor of a hard disk liquid is a smooth

function of the scattering vector magnitude Q, one can also

establish a sparse tabulation to accurately reproduce the

structure factor by a spline function. Here, we report a method

to explore the liquid structure factor via Monte Carlo simu-

lation and store the data in a readily utilizable form, which can

be a more physical model than the ‘paracrystalline hexagonal

packing’ in many cases. This type of packing is typical of

fibrillar systems without a strong long-range interaction, for

example sterically stabilized colloidal systems (Grelet & Rana,

2016) or biological systems such as collagen fibril packing

(Meek & Boote, 2009).

2. Methods

2.1. Generation of random distribution

The Monte Carlo simulation performed here is very similar

to what was originally used by Metropolis, with small modi-

fications. The disks are initially positioned on a hexagonal

array within a square periodic boundary box, and they are

then moved in random steps under the condition of not

colliding with another particle. In the following, we take the

radius of the disk as a unit of length. In the case of a radius that

is not one unit long, Q can be replaced by QR where R is the

radius. Given a target volume (area) fraction �0, the center-to-

center distance, a, between disks in a hexagonal packing is

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�

�0

ffiffiffi
3
p

s

: ð6Þ

We can fill a square with side length l, chosen as l = 500 here,

with

nx ¼ bl=ac ð7Þ

disks in the horizontal direction and

ny ¼
2
ffiffiffi
3
p

l

a

� �

ð8Þ

discs in the vertical direction. This corresponds to a real

volume fraction

� ¼
�nxny

l2
; ð9Þ

which is slightly smaller than �0 . The step size vi along the x

and y directions follows a normal probability function:

PðviÞ ¼
1

�
ffiffiffiffiffiffi
2�
p exp �

v2
i

2�2

� �

½i ¼ x; y�: ð10Þ

At each step, one randomly chosen disk is moved by a step

(vx, vy) and we check for a collision with other disks. If the

distance between two disks is smaller than two, this move is

rejected and the disk returns to the initial position. � is taken

as a/2 � 1 but is reduced if more than 50% of the movements

are rejected: 10N moves were applied here, where N = nxny is

the number of disks, to check the rejection ratio. When the

rejection rate was greater than 50%, � was multiplied by 0.8

and the rejection rate was checked again. This operation was

repeated until the rejection rate was below 50%.

2.1.1. Collision check

To minimize the number of distance calculations for colli-

sion check, the periodic boundary is divided into tiles with side

length
ffiffiffi
2
p

, which can accommodate only one disk. A unique

serial number is assigned to each disk whose current coordi-

nates are stored in memory. In total (dl=
ffiffiffi
2
p
e2) tiles are

represented in an integer array that hosts � 1 if there is no disk

at the position and the serial number of the disk if there is one.

To check the collision, we only need to verify 20 tiles whose

center-to-center distance is within a distance of 4, excluding

the tile on which the disk that is moved sits, and calculate the

distance only if there is a disk on the tile.

2.2. Pair distribution function

A histogram of the distances between particles for all pairs

of particles is calculated within a circle centered on the peri-

odic boundary box with a diameter of l. This corresponds to

TðN0Þ ¼ N0ðN0 � 1Þ=2 distance calculations, where N0 is the

number of particles in the circle. This histogram was normal-

ized by TðN0Þ using a theoretical number N0 ¼ ð�=l2Þ=4

instead of N0, which fluctuates around the value N0. The width

of the histogram bin wb was 0.1, with the total number of bins

Nb = 1/wb. The normalized histogram is an array of prob-

abilities pi for each bin i, which sum to 1:

XNb

pi ¼ 1:
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The probability density of the distance between two random

points, �(r), in a circle with radius R, is (Mathai, 1999)

�ðrÞ ¼
4r

�R2
cos� 1 r

2R

� �
�

r

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
r2

4R2

r" #

; ð11Þ

which can be further simplified in discrete form with xi ¼ �rri

as

ni ¼ nðxiÞ ¼
16�r

�
cos� 1 xi � xi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

i

p� �
; ð12Þ

where ni is the expected count in the ith bin and �r is the bin

width divided by 2R, or 1/Nb.

Finally, the discrete PDF is obtained by dividing each

histogram element by n(xi):

gðriÞ ¼
pi

ni

: ð13Þ

ni only needs to be calculated once, and thus the calculation

time is essentially spent obtaining the histogram. The discrete

PDF was calculated and stored every 50N moves.

2.3. Structure factor calculation

The structure factor S of a two-dimensional isotropic or

cylindrically symmetric system in the radial direction is (Oster

& Riley, 1952)

SðQÞ ¼ 1 � �

Z1

0

2�r 1 � gðrÞ½ � J0ðQrÞ dr; ð14Þ

¼ 1þ �

Z1

0

2�rhðrÞ J0ðQrÞ dr; ð15Þ

where g(r) is the PDF and h(r) = g(r) � 1 is the correlation

function, J0 is the Bessel function of zero order, and � is the

number density of the disks. g(r) tends to 1 at large distance r,

and thus h(r) tends toward 0. Thus, integration can be stopped

at some finite distance r. In the discrete form,

SðQiÞ ¼ 1þ 2��
Xjmax

j¼0

rj J0ðQirjÞ hðrjÞ: ð16Þ

rj J0(Qirj) can be stored in a matrix

A ¼ aij

� �
¼ rjJ0 Qirj

� �
; ð17Þ

such that the structure factor array S can be obtained by

simple matrix operation:

S ¼ 1þ 2��Ah; ð18Þ

where the ith element of h is h(rj) of equation (16). The extent

of r, rmax, was typically chosen to be l/2. g(r) was linearly scaled

down from l/4 to reach 0 at l/2 to reduce noise at low Q, but

was also varied between 5 and 200 to check the influence on

the calculated structure factor.

2.4. Spline fitting

Due to the oscillation in the very low Q region, the

numerically calculated structure factors below Q = 0.6 were

fitted to a parabolic function

S ¼ m2Q2 þm0b; ð19Þ

with the weighting proportional to Q2, and the direct results

from the simulations were replaced with the values according

to (19). The one-dimensional curves were smoothed with a

Savitzky–Golay filter (Savitzky & Golay, 1964) using a window

width of 29 and using the Python package savgol_filter from

the SciPy library (Virtanen et al., 2020) to decrease the

numerical noise. Curves over the whole Q range from 0 to 10

and for an area fraction from 0.05 to 0.65 were approximated

with a bivariate smoothing second-order B spline using the

bisplrep function from SciPy. The weight was set to unity for

all points with smoothing factor 0.1.

3. Results

3.1. Pair correlation function

Fig. 1 shows the averages of 100 consecutive pair correlation

functions calculated for an area fraction of 0.6 [Fig. 1(a)] and

0.71 [Fig. 1(b)], sequentially selected from 1000 data points.

There is an almost perfect superposition up to r = 250 but, at

larger distances, slow fluctuation can be seen in addition to the

white noise close to 500 because of the small sampling number.

Also, due to the periodic boundary conditions, disks at a

distance well beyond half the box size correlate as they are at a

shorter distance on the other side of the boundary. Thus, a

small oscillation can be seen close to the maximum distance

limit.

The corresponding short-distance part of the pair correla-

tion function is enlarged in Figs. 1(c) and 1(d), in which all

curves exactly superpose for a given system.

3.2. Influence of integration limit on the structure factors

Fig. 2 shows the average structure factors corresponding to

the pair distributions in Fig. 1 calculated according to equation

(18) using the different extents of r, equivalent to truncating

the right side of the matrix A and the bottom of the vector h.

Structure factors were calculated for 1000 PDFs and then

averaged. At an area fraction of 0.6 [Figs. 2(a) and 2(c)], there

is almost no difference beyond the integration limit of 25,

except at very small Q where the oscillation started at a

smaller Q with a larger integration limit. However, at higher

density with an area fraction of 0.71, taking a smaller limit

than 100 starts to smear out the peak around Q = 5.6 [Fig.

2(d)] and also introduces oscillation around the main peak.

3.3. Structure factors as a function of area fraction

Fig. 3 shows the structure factors of the disks as a function

of area fraction, which exhibit more and more pronounced

features with increasing area fraction. At an area fraction of

0.71, three sharp peaks at Q = 3.24, 5.61 and 6.47, which
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Figure 2
Structure factors corresponding to Fig. 1, with the area fractions (a) 0.6 and (b) 0.71, calculated with different integration limits in r, from 5 to 200,
distinguished by color; (c) and (d) are zoomed-in images of (a) and (b), respectively. Q = QR as R = 1.

Figure 1
Pair correlation function of random disks with the area fractions (a) 0.6 and (b) 0.71. Each curve is an average of 100 consecutive pair correlation
functions; (c) and (d) are enlargements of the small-distance regions of (a) and (b), respectively. The 10 lines correspond to 10 segments of the run.



correspond to the typical Q ratios of 1,
ffiffiffi
3
p

and 2 of a hexa-

gonal lattice, are present. The diffraction features fade away at

higher Q.

4. Discussion

4.1. Comparison with the previous structure factor calcula-

tions

The PDF and the structure factor at an area fraction of

about 0.6 agree well with that reported by Lado (1968) using a

192-molecule constant-pressure system. The structure factor

based on this calculation reported by Rosenfeld (1990) at � =

0.6 also agrees with our calculation of the structure factor.

Using a larger system than Lado (1968) is unnecessary for this

area fraction because the pair correlation function fades out

quickly, as seen in Fig. 1.

Above � = 0.69, a larger system size was necessary to

capture the structure since the pair correlation function

extends over a long distance, giving rise to a few sharp peaks

corresponding to the hexagonal lattice. In addition, the

structure evolves slowly at this level of crowding and might be

jammed into a state dependent on the sample’s history. A

more disordered state might be achievable by other methods,

such as the expansion of disks from a given configuration to

achieve a high area fraction (Weber et al., 1995; Torquato et al.,

2000), which is not addressed in this work.

Fig. 4(a) shows a general view of the interpolated structure

factors within the simulated range. The tabulated structure

factor data are provided in binary form to be directly loaded

as a numpy array. Fig. 4(b) shows the ratio of the interpolated

structure factor over SRosenfeld of equation (1). The structure

factor ratio at � ¼ 0:4, marked in black, shows that the rela-

tive difference from the analytical form is within 5% at this

area fraction. At smaller �, the agreement is even better:

below 2% when � < 0.3 and below 1% when � < 0.2. The
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Figure 3
Structure factors of random disks at different area fractions. Spline fitting
curves are superposed on the simulation data as faint solid lines (visible
only at low Q).

Figure 4
Smoothed and interpolated curves of structure factors as a function of
area fraction from 0.05 to 0.7. (a) Interpolated structure factors. (b)
Relative difference from the analytical function provided by Rosenfeld
(1990) in the � range 0.05 to 0.65. (c) Same as (b) but for � below 0.3.

Figure 5
Snapshots of randomly distributed disks at the area fractions (a) 0.35, (b)
0.5, (c) 0.65 and (d) 0.7.



deviation becomes more and more pronounced at higher disk

densities.

One of the advantages of explicit simulation is visualization

in real space. Fig. 5 shows snapshots of the disk dispositions at

different disk densities. It can be seen that up to an area

fraction of 0.5 [Figs. 5(a) and 5(b)] there is not much occur-

rence of hexagonal arrangements. At higher densities [Figs.

5(c) and 5(d)], the figures show some regularity and impres-

sion of the ‘crystalline’ zone, but even at such regular filling,

the structure factor fades away quickly as seen in Figs. 3 and

4(a).

4.2. Interpretation of X-ray correlation peak

Fig. 6 shows the experimental X-ray scattering of native

birch wood. When the anisotropic component is isolated and

the orientation correction applied, there is a clear correlation

peak at Q = 0.15. This peak is often interpreted as repre-

senting the interfibrillar distances. However, this peak can also

be reproduced by multiplying the structure factor with the

cylinder form factor

PðRQÞ ¼
J1ðQRÞ

QR

� �2

; ð20Þ

drawn in green in the figure arbitrarily assuming R = 1.3 nm.

The dotted profiles show the structure factors calculated

above, replacing Q with QR for different area fractions. The

expected intensity profiles

I ¼ PðRQÞ SðRQÞ ð21Þ

are shown as solid lines. The peak position of the scattering

does not correspond to the peak of the structure factor, which

is about 0.21 Å� 1 (2.75 on the QR scale) in this area fraction

range. However, the peak of the product of the structure

factor and form factor is much closer to that of the experi-

mental scattering data, and the position shifts to lower Q for a

lower volume fraction. The same type of small-angle peak is

reported (Kuribayashi et al., 2023) in a wide range of wood

samples with some variation in peak positions, which can also

be changed by hydrothermal treatment.

5. Conclusions

An exhaustive simulation of the random packing of hard disks

in a plane confirmed the validity of Rosenfeld’s analytical

expression of the structure factor at small area fractions � <

0.3. However, the analytical form deviates at higher volume

fractions. The interpolation of structure factors calculated for

a limited number of models provides an alternative to the

analytical form and allows further interpretation of scattering

from dense systems where the form factor and structure factor

interfere. This approach can be further extended for softer

interparticle interactions with small modifications in the

Monte Carlo procedure.
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Figure 6
Comparison of X-ray small-angle scattering data of birch wood reported
by Chen et al. (2021) with calculated structure factors and the form factor
assuming a random packing of infinitely long cylinders with a radius of
13 Å. The intensity is multiplied by Q to compensate for the measured
intensity being an average over an azimuthal angle, while the model
assumes a line trace of a perfectly aligned system.
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M., Tartre, M., Pak, M., Smith, N. J., Nowaczyk, N., Shebanov, N.,
Pavlyk, O., Brodtkorb, P. A., Lee, P., McGibbon, R. T., Feldbauer,
R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T. J., Robitaille, T. P., Spura, T., Jones,
T. R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U.,
Halchenko, Y. O. & Vázquez-Baeza, Y. (2020). Nat. Methods, 17,
261–272.

Weber, H., Marx, D. & Binder, K. (1995). Phys. Rev. B, 51, 14636–
14651.

short communications

J. Appl. Cryst. (2025). 58 Yoshiharu Nishiyama � Structure factors of random hard disk packing in 2D 7 of 7

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jl5112&bbid=BB16

	Abstract
	1. Introduction
	2. Methods
	2.1. Generation of random distribution
	2.1.1. Collision check

	2.2. Pair distribution function
	2.3. Structure factor calculation
	2.4. Spline fitting

	3. Results
	3.1. Pair correlation function
	3.2. Influence of integration limit on the structure factors
	3.3. Structure factors as a function of area fraction

	4. Discussion
	4.1. Comparison with the previous structure factor calculations
	4.2. Interpretation of X-ray correlation peak

	5. Conclusions
	Acknowledgements
	Data availability
	References

