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We present a theoretical framework for understanding diffuse multiple scat-

tering (DMS) in single crystals, focusing on diffuse scattering Bragg channels.

These channels, when probed with high-flux low-divergence monochromatic

synchrotron X-rays, provide well defined visualizations of Bragg cones. Our

main contribution lies in modelling the intensity distribution along these lines by

considering diffuse scattering (DS) around individual reciprocal-lattice nodes.

The model incorporates contributions from both general DS and mosaicity,

elucidating their connection to second-order scattering events. This compre-

hensive approach advances our understanding of DMS phenomena, enabling

their use as probes for complex material behaviour, particularly under extreme

conditions.

1. Introduction

X-ray diffuse scattering (DS) in crystals arises from any

deviation from perfect periodicity, encompassing phenomena

such as atomic thermal vibrations, defects and local disorder

(Debye, 1913; Waller, 1923; Woo, 1931; Zachariasen, 1940;

Warren, 1990). Thermal DS contains information about lattice

dynamics and, historically, it was the first tool utilized for

experimental determination of phonon dispersion relations

(Olmer, 1948; Cole & Warren, 1952; Joynson, 1954; Jacobsen,

1955).

The advent of synchrotron radiation technology has not

only revitalized DS as a feasible probe for studying phonons

(Holt et al., 1999; Xu & Chiang, 2005; Mei et al., 2015) but also

transformed it into a powerful technique for investigating a

wide range of order/disorder-related phenomena (Welberry,

2010; Barabash et al., 2012; Kopecký et al., 2012; Roth et al.,

2021; Holm et al., 2021; Schmidt et al., 2022; Takada et al., 2022;

Weadock et al., 2023; Osborn, 2023; Guo et al., 2023; Britt &

Siwick, 2023; Subires et al., 2023; Zacharias et al., 2023).

Synchrotron X-rays of very high flux density, approaching

1015 photons s� 1 mm� 2, have also revealed relatively un-

known second-order scattering processes between DS sources

and Bragg reflections. While the Bragg-DS channel produces

nebulous and poorly localized intensity distributions, the DS-

Bragg channel, where X-rays originating from DS undergo

subsequent Bragg diffraction, yields well defined intensity

lines (Ramsteiner et al., 2009; Nisbet et al., 2015). The diffuse

multiple scattering (DMS) lines, as they have been called, are

similar in appearance to pseudo-Kossel lines (Tixier & Waché,
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1970; Morelhão & Cardoso, 1991; Bortel et al., 2005) but are

produced without using divergent-beam X-ray generators or

any instrumental artefacts to provide divergent beams of

monochromatic X-rays. Conversely, DMS lines become visible

only with very narrow and highly parallel monochromatic

beams, arising primarily from DS sources within the crystal.

Increasingly accessible with advanced X-ray sources and

detectors, DMS lines offer unique insights into crystal defects,

strain fields and lattice dynamics, complementing traditional

diffraction techniques (Nisbet et al., 2021; Nisbet et al., 2023).

The growing interest in utilizing DMS lines stems from their

sensitivity to subtle crystallographic changes, coupled with the

ability to monitor these changes across many directions

simultaneously by analysing scattered X-rays within a single,

relatively small, solid angle. This capability makes DMS lines a

powerful probe in experiments with limited instrumental

degrees of freedom, such as those conducted under extreme

conditions. To exploit this potential fully, a comprehensive

approach for structure modelling based on DMS lines is

essential. While determining the geometric positions of these

lines from the projection of Bragg cones (BCs) is relatively

straightforward with existing software tools, like the klines

module in the PyDDT package (Penacchio et al., 2023),

modelling the intensity distribution along the lines is chal-

lenging. This work introduces a theoretical framework to

achieve this capability.

2. Theoretical framework

One approach for accomplishing this task is to exploit the

concept of BCs further, but distinguishing between two sets of

wavevectors that are related to a reciprocal-lattice vector Q

[Q = (4�/�) sin(�), where � is half the scattering angle and � is

the wavelength of the incident radiation]. In Fig. 1 these two

sets are depicted: the bright cone representing the set of

wavevectors kb that fulfil the condition 2kb · Q = |Q|2, and the

dark cone representing the set of wavevectors kd that fulfil

2kd · Q = � |Q|2, where kb = Q + kd.

Fig. 2 shows the Ewald construction in reciprocal space,

where dark cones have their apex at the centre of the Ewald

sphere. The dark cones represent possible directions of

wavevectors capable of undergoing Bragg diffraction,

meaning these wavevectors terminate on the sphere’s surface.

This also implies that the dark cones move as the direction of

the incident wavevector k changes. The intersection of the

dark cone with the surface of the Ewald sphere defines a ring

containing all physically possible elastic scattering vectors S =

kd � k capable of providing an intensity contribution to the

bright cone through diffraction vector Q. Bright cones have

their apex fixed at the origin of reciprocal space, as their

positions are independent of the incident beam direction. The

intensity along a DMS line – the projection of the bright cone

onto the detector area – is influenced by three key factors

besides the X-ray polarization:

(i) Proximity of the S-ring (the set of scattering vectors S) to

reciprocal-lattice nodes: closer proximity to a node results in

higher intensity at specific points along the line.

(ii) Intensity distribution around each node: the unique

intensity pattern surrounding each node creates peculiar

features in the line.

(iii) Amount of DS between nodes: DS contributes to the

overall visibility of the DMS line.

In the example of Fig. 2, the dark cone of reflection Q

intercepts the Ewald sphere close to the node of reflection H.

As the corresponding S-ring probes the node’s nearby inten-

sity, an enhancement in intensity can be seen over the DMS
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Figure 1
Bright and dark BCs for diffraction vector Q. X-rays with wavevector kd

propagating along the dark cone are attenuated by diffraction as they are
scattered towards the bright cone with wavevector kb = Q + kd.

Figure 2
Modified Ewald construction to describe second-order scattering events
giving rise to DMS lines. Bright cones have their apex at the reciprocal-
space origin, while dark cones have their apex at the centre of the Ewald
sphere, as shown for reflections Q and Q0. When scattering vectors of first
order (S vectors) terminate at S-rings (dark cone–sphere intersections),
the resulting second-order scattering is directed along the bright cones.
For instance, the S-ring of reflection Q touches an intensity distribution
near the reciprocal node of reflection H (arrow 1), defining the wave-
vector kd = S + k that is re-scattered as kb = Q + kd along the Q bright
cone (arrow 2); the kd direction on the bright cone is indicated as a
dashed line.



line of reflection Q. When the S-ring touches the node, there is

a vector S coinciding with the node’s reciprocal-lattice vector

H and, in this case, multiple diffraction (MD) dynamical

theory (Chang, 1984; Weckert & Hümmer, 1997; Authier,

2008) is necessary for a proper description of the intensities of

the strongly coupled X-ray waves propagating inside the

crystal: one wave from the reflection H and another from the

reflection P = H + Q.

Aiming to treat DMS intensities that are visible away from

strong Bragg reflections, the second-order solution of the MD

(Shen et al., 2000; Morelhão & Kycia, 2002; Shen et al., 2006)

provides a suitable approach for describing situations where

the wavefield D1 of the P reflection, usually referred to as the

primary reflection, is much weaker than the wavefield D2 from

the sequence of H and Q reflections, also known as the Umweg

wave (Stetsko et al., 2000; Morelhão & Avanci, 2001). When

the S vectors are away from any reciprocal-lattice node, the

wavefield inside the crystal, D = D1 + D2, simplifies to

D ’ D2 ¼RðHÞ FHFQ k̂b � k̂b � k̂d � k̂d �D0

� �� �� �� �

¼D0RðHÞ FHFQ""": ð1Þ

In standard MD treatments concerned with phase measure-

ments by the interference between the D1 and D2 wavefields

(Shen et al., 2006; Morelhão et al., 2011; Amirkhanyan et al.,

2014; Morelhão et al., 2015; Morelhão et al., 2017; Valério et al.,

2020; Penacchio et al., 2023), the resonance term R(H)

determines the excitation of the Umweg wave as a function of

the H node distance to the surface of the Ewald sphere or,

equivalently, to the S-ring. FX stands for the structure factor of

reflection X (= H or Q), and the directions k̂d and k̂b of the

wavevectors on the dark and bright cones, respectively, of the

Q reflection provide the polarization factor """ � """�, computed

with respect to the state of polarization of the incident wave

D0 ¼ D0"̂""0.

An expression for simulating the intensity distribution

along the DMS line of a given reflection Q follows directly

from equation (1) as

IQðSÞ ¼ I0 FQ

�
�

�
�2""" � """�

X

H

FH

�
�

�
�2WðS � HÞ; ð2Þ

where the previous resonance term is replaced by a more

general function W(S � H) to take into account elastic scat-

tering that occurs away from exact Bragg conditions. Within

this simple approach, the same function W applies to all H

nodes and the DS intensities can be described as a discrete

superposition of contributions from each individual H node.

However, this approach can easily be extended to more

complex situations that require a particular W function for

each node to give a proper description of DS in the whole

reciprocal space accessible by a given S-ring.

To compute the relative widths of observable DMS lines,

the dynamic intrinsic width �� of the reflectivity curve in

specular scattering geometry is used as a reference (Authier,

2008; Als-Nielsen & McMorrow, 2011; Morelhão, 2016).

In reciprocal space, it is accounted for as a variation in

the modulus Q of the diffraction vector, that is, Q2 ! (Q �

�/2)2 ’ Q2 � Q�, where � ¼ ð4�=�Þ cos �B�� and �B is the

Bragg angle of reflection Q. This results in a selection criterion

for the full set of wavevectors on the bright BC, in which

2kb �Q � Q2
�
�

�
� �

1

2
Q� ¼

8�2re

3Vcell

FQFQ

�
�
�

�
�
�

1=2

: ð3Þ

Here, re = 2.818 � 10� 5 Å is the classical electron radius and

Vcell is the unit-cell volume in Å3. In practice, equation (3)

implies that the widths of DMS lines are proportional to the

structure factor modulus of the corresponding Q reflection, as

FQ refers to the � Q reflection and jFQFQj
1=2 ’ jFQj. Note

that the full set of wavevectors on the bright BC of reflection

Q match, exactly, the set of wavevectors on the dark BC of

reflection � Q. Consequently, when DS intensities from

primary sources are directly measurable, dark BCs can

become visible as shadows against such diffuse signals. In

other words, the intensity along a DMS line can appear, in

principle, as either positive or negative with respect to the

existing scattered intensity in the detector area.

Simulating the intensity of DMS lines requires modelling

the three-dimensional intensity distribution around each node.

Besides general DS sources such as point defects, stacking

faults, atomic thermal vibrations and many other types of

deviation from the average periodic structure (Holt et al.,

1999; Xu & Chiang, 2005; Mei et al., 2015; Roth et al., 2021;

Weadock et al., 2023; Osborn, 2023), crystal truncation is a

deviation from infinite periodicity and must be taken into

account as extended scattering sources close to the nodes, in

addition to DS sources. As a first approximation to identify

experimental conditions favourable to the visibility of DMS

lines, isotropic DS centred on each node and truncation rods

in crystal slabs of outward surface normal direction ẑ are

modelled as follows.

WðuÞ ¼ �1

1

1þ ð�NuÞ
2
þ �2

sinð�NzuzÞ

�Nzuz

�
�
�
�

�
�
�
�

2
1

1þ ð�NxyuxyÞ
2
ð4Þ

in equation (2) is written in terms of the distance

u ¼
h0 � hð Þa� þ k0 � kð Þb� þ l0 � lð Þc�

hL�i
ð5Þ

from each node, that is, from each reflection H of indices hkl.

The non-integer indices of the scattering vectors S are

obtained as described in Appendix C or, in simpler terms, as

h0 = S · a/2�, k0 = S · b/2� and l0 = S · c/2� through the unit-cell

edge vectors a, b and c, while hL�i3 ¼ a� � ðb� � c�Þ is the

reciprocal unit-cell volume. The extent hL�i/(�N) of isotropic

DS from the nodes is adjustable by the number N. �1 and �2

weight the DS and crystal truncation rod (CTR) contributions

in the case of a thin slab with a thickness of Nz unit cells of

mean edge 2�/hL�i. For slabs thicker than the beam coherence

length and/or X-ray penetration depth, the sinc-squared

function is replaceable by its enveloping Lorentzian function

1/[1 + (�Nzuz)2] and Nz becomes an effective number, as the

one in the last term regarding the effective in-plane slab

dimension Nxy with uxy = |u � uz| and uz ¼ ðu � ẑÞ ẑ. For nodes

that are anisotropic regarding in-plane x̂ and ŷ orthogonal
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directions, this last term gives way to other functions having,

for instance, �Nxux and �Nyuy as arguments where ux ¼ u � x̂

and uy ¼ u � ŷ.

3. Results and discussion

Fig. 3 shows simulated DMS lines in silicon, where the line

widths are proportional to |FQ| [equation (3)]. The incident

beam direction is fixed at a chosen azimuth (�0) and incidence

angle (!0), ensuring that no allowed Bragg reflection is

directly excited by the incident X-rays. This creates a null

primary wavefield D1, a necessary condition for simulating

DMS line intensities with equation (2) over wide solid angles.

In Fig. 3(a), the very smooth intensity variation of the DMS

lines along their entire length results from the presence of DS

intensities in all regions between reciprocal nodes. This is

demonstrated using an isotropic DS centred on each node with

a Lorentzian-like profile, that is, equation (4) with �2 = 0. In

Fig. 3(b) a different situation is demonstrated, where intensity

distributions in between reciprocal nodes are well pronounced

along one direction only, that is, equation (4) with �1 = 0 and

Nz << Nxy; the appearance of these nodes is shown in Fig. 3(b)

(left-hand inset). The anisotropy of the nodes creates a

dynamic pattern of line contrast enhancement, shifting with

changes in the incident beam direction (see animated GIFs in

the supporting information).

Because the intensities at DMS line intersections come from

uncorrelated DS sources at different reciprocal-space loca-

tions, as implicit in the deduction of equation (2), only

intensity superposition is expected, without interference

effects. Observing DMS lines and their intersections on the

detector area requires a fixed incident beam; conversely,

modulating the reflectivity of individual reflections is achieved

by scanning the incident beam across the intersection of BCs

(Morelhão & Cardoso, 1996; Hayashi et al., 1997; Avanci et al.,

1998; Avanci et al., 1999). For instance, the reflectivity of the

‘forbidden’ 002 reflection in silicon is observable only near BC

intersections, as demonstrated in Fig. 4 through n-beam

dynamical theory calculations for a thick crystal slab (Colella,

1974; Shen, 1993).

Observation of long DMS lines in perfect crystals is possible

due to DS from thermal vibrations (Holt et al., 1999), as in

materials of high thermal conductivity such as copper. X-ray

beams of high flux density are also necessary to observe DMS

lines, such as the one available on beamline I16 at the

Diamond Light Source: an in-vacuum undulator as the

beamline insertion device, photon flux (beam intensity) above

1012 photons s� 1 at 7.8 kev, energy resolution of a Si(111)

double-crystal monochromator, beam size of 35 (vertical) �

184 (horizontal) mm and divergence of 0.04 (vertical) � 0.11

(horizontal) mrad (Collins et al., 2010). Minimizing back-

ground noise in the detector area, such as that from air gaps in

the beam path, helps enhance the contrast of the lines.

Figs. 5(a)–5(d) and Fig. 7(a) show experimental DMS lines

in a Cu(311) single crystal obtained on either vertical or

horizontal scattering planes, �- or �-polarization, respectively;

see Appendix A for the solid angles recorded on each scat-

tering geometry in comparison with DMS lines on a wide solid

angle. While most of the lines are easily simulated within the

isotropic DS model, there are a few intensity features

demanding more complex models than can be accomplished

by the DS or CTR models in equation (4), in particular the

well defined intensity spot on the 420 DMS line [Figs. 5(a)–

5(d)] that is observed to move along the [111] direction,
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Figure 3
Simulation of bright DMS lines in Si(001) using equation (2). (a) Lines
with smooth contrast variation due to the presence of an isotropic
intensity distribution around each reciprocal node. Simulation para-
meters: �1 = 1, �2 = 0 and N = 1000 in W(u) [equation (4)]. Line indexing
by klines (Penacchio et al., 2023). (b) Lines with abrupt contrast variation
due to an anisotropic intensity distribution around the reciprocal nodes.
Simulation parameters: �1 = 0, �2 = 1, Nxy = 1000 and Nz = 100 in W(u),
providing nodes elongated along the L reflection index (left inset,
isosurface at 3% of the maximum). General simulation parameters: 8 keV
�-polarized X-rays, incidence direction with �0 = 0 and !0 = 16.58� in the
chosen reference frame (right-hand inset). Images are shown from the
sample’s perspective (� values increasing from right to left) and with a
resolution of 0.04� (pixel size).

Figure 4
X-ray reflectivity of the ‘forbidden’ 002 reflection in silicon near the
intersection of the 002 and 111 BCs, as a function of the incident beam
direction (�0 and !0 angles). Dynamical diffraction theory was applied
for X-rays of 8 keV in a 100 mm thick Si(001) slab. (Inset) A 3D view of
the reflectivity line profiles (on a linear scale) along the 002 and 111 BCs.
Experimental data are reported elsewhere (Morelhão et al., 2002;
Domagała et al., 2016).

http://doi.org/10.1107/S1600576725003553


exactly as expected for a CTR in �/2� scans of symmetrical

reflections (specular reflection geometry).

However, the direction normal to the sample surface is the

[311] direction rather than [111], as depicted in Fig. 5(j), and

this intensity spot moves in the opposite sense to what was

predicted by our simulation when specifically accounting for

CTR effects (animated GIFs in the supporting information).

After each pixel of the detector area has been transformed,

e.g. in Fig. 5(e), onto hkl coordinates around the 420 S-ring,

the scattering vector responsible for the spot intensity ends at

coordinates like h0 = � 1.7988, k0 = 0.2246 and l0 = 2.1703 on the

S-ring, whose modulus squared is very close to 8. The

experimental data were then exactly simulated in Figs. 5(e)–

5(h) by taking the source of spot intensity as located at the

intersection between the 420 S-ring and a sphere of radius
ffiffiffi
8
p

,

as shown in Fig. 6(a). Perfect agreement between the experi-

mental and theoretical sets of hkl coordinates is demonstrated

in Fig. 6(b), where the former set was obtained from the

central pixel of the spot in each experimental image according

to (see also Appendix C)

pixel ðm; nÞ !!;�! kb ! kd ¼ kb � Q

! S ¼ kd � k! h0k0l0;

while the latter set was calculated by the intersection of three

surfaces:

Q dark cone \ Ewald sphere ð¼ S-ringÞ \ sphere of radiusjHj:

Q and H stand for diffraction vectors of reflections 420 and

202, respectively. The shape and relative intensity of the spot

were adjusted by adding to W(u) in equation (4) the term
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Figure 5
(a)–(d) Experimental observations and (e)–(h) simulations of DMS lines in a Cu(311) single crystal with high-flux synchrotron X-rays of 7.82 keV (� =
1.585486 Å), �-polarization (vertical scattering plane). (i ) Detector assembly with pixel array rotated by 35� and centred at 565 mm from the sample,
Diamond Light Source beamline I16 (Collins et al., 2010), Pilatus 100k detector (487 � 195 pixels of 0.172 mm). (j ) Crystal reference frame. !0 and !
(detector’s central pixel) are both equal to the Bragg angle �hkl with h = k = l in the range from 2.17 to 2.23, as indicated in the top panels. �0 = � 134.56�

and � = �0 + 180� in all cases. DMS line indices are shown in the bottom left-hand panel. Simulations are based on isotropic diffuse scattering to
illuminate the DMS lines plus mosaicity at reflection 202 to account for the behaviour of the intensity spot (red spot) on the 420 DMS line (more images
available in the supporting information).

Figure 6
(a) Three surface intersection spots (arrow) between the 420 dark cone
and Ewald sphere (S-rings) and a spherical shell of radius

ffiffiffi
8
p

(mesh
surface) standing for mosaicity around the 202 node. S-rings 1 to 7
correspond to changes in the incidence angle !0 = �hkl with h = k = l
varying from 2.17 to 2.23 in steps of 0.01, �0 = � 134.56� and � = �0 +
180�. (b) Theoretical (red spheres) and experimental (blue cubes)
intersection spots of the S-rings with the shell of grain misorientation.
Projections of the interception points on the HK, HL and KL planes
(open circles and open rectangles in dark grey) are also shown.

http://doi.org/10.1107/S1600576725003553
http://doi.org/10.1107/S1600576725003553


�3

1

1þ ð�Ng�Þ
2

exp �
�2

S

2�2

� �

; ð6Þ

where � = (|S| � |H|)/|H| and �S is the angle between the S

and H vectors, that is, � =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h02 þ k02 þ l02
p

=
ffiffiffi
8
p
� 1. cos �S =

ðl0 � h0Þ 2ðh02 þ k02 þ l02Þ
� �� 1=2

, as copper is a cubic crystal. The

simulations in Figs. 5(e)–5(h) were obtained using �1 = 1, N =

4/�, �2 = 0, �3 = 40, a grain size Ng = 242 Bragg planes (31 nm)

and a mosaic spread � = 3.2�. As the grain size is the only

parameter determining the spot shape along the DMS line, it is

the most accurate value with an uncertainty of about 20%. The

other parameter values are related to each other and are

therefore adjustable within wide ranges capable of generating

similar images. Gaussian mosaicity was assumed for simplicity,

but the actual sample mosaicity is far from Gaussian, as

discussed in Appendix B.

Fig. 7(a) shows the actual lengths of DMS lines tracked on a

wide-area detector in horizontal scattering geometry

(�-polarization). By adjusting the scattering angle to 2� =

!0 + ! ’ 90� (� = 0, 2�d = 0 and ’d ’ 90� in Appendix A),

X-ray photons from single scattering events are strongly

suppressed by polarization near the centre of the detection

area, enhancing the visibility of DMS lines. Most of the lines

are much shorter than expected within the long-range

isotropic DS model in equation (4). A short-range model,

obtained by exchanging 1/[1 + (�Nu)2] for exp � ð�NuÞ2 lnð2Þ
� �

in equation (4), was used instead for better reproduction of

the length of the lines. According to the theoretical approach

in equation (2), the 400 line is expected to be 40% weaker

than the 331 line and 80% weaker than the 020 line when

considering only the nearest nodes of the respective dark

cones as F400j j2jF222j
2 ’ 0:6 F331j j2jF

111
j2 ’ 0:2 F020j j2 F202j j2.

Simulation of this extra intensity of the 400 line was accom-

plished by adding mosaicity to the 222 node, as in equation (6).

For the other nodes, mosaicity contributions appear further

away from the imaged area. �1 = 1, N = 5/�, �2 = 0, �3 = 2, �S =

0 and Ng = 11 were the parameter values used for the simu-

lation shown in Fig. 7(b). A random value between zero and

0.1 was added as statistical noise to all pixels, except for those

at the position of the 222 line (white arrow).

The 222 bright cone, devoid of intensity contributions from

DS sources, allows the 222 dark cone (white arrow) to become

visible as a shadow in areas detecting nebulous scattering from

Bragg-DS channels. In Fig. 8, Bragg reflections involved in

these channels are identified by plotting the total integrated

intensity across the entire detector area as a function of the

sample’s azimuth, in comparison to a 2D graphic representa-

tion of Bragg cones as a function of incidence angles !0 and

�0. A stronger Bragg-DS channel, distinct from the one in

Fig. 7(a) (caused by the 202 Bragg reflection), is excited at a

slightly different azimuth, �0 = 218.4� (inset of Fig. 8).

Observation of these second-order scattering channels

provides further evidence of DS and/or mosaicity around

reciprocal-lattice nodes. Their images represent the inter-

section of the Ewald sphere associated with the Bragg-

diffracted beam and the distribution of intensity in reciprocal

space, analogous to the case of the incident X-ray beam’s

Ewald sphere. However, Bragg-DS channels exhibit a strong

dependence on azimuth, limiting their utility in 3D reciprocal-

space mapping applications.

4. Conclusions

In conclusion, this work has introduced a robust theoretical

framework for simulating X-ray diffuse multiple scattering

lines, filling a significant gap in existing methodologies and

providing a valuable tool for the detailed analysis of experi-
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Figure 7
(a) Experimental observation and (b) simulation of DMS lines in a
Cu(311) single crystal with high-flux synchrotron X-rays of 7.82 keV,
�-polarization (horizontal scattering plane). A dark cone is also visible in
the imaged area (white arrows). Detector area perpendicular and centred
at 850 mm from the sample, Diamond Light Source I16 (Collins et al.,
2010), Pilatus 2M detector (1679 � 1475 pixels of 0.172 mm). !0 =
! (pixel m0n0) = 45�, corresponding to h = k = l = 1.8618, �0 = 216� and
� (pixel m0n0) = �0 � 180� in the reference frame of Fig. 5(j ). Pixel m0n0

is defined in Appendix A1. Simulation based on a short-range DS model
plus mosaicity; see text for details.

Figure 8
(a) Integrated detector intensity versus sample azimuthal angle �0

around [111]. Images at selected azimuths (arrows 2 and 3) are shown as
insets and in Fig. 7(a) (arrow 1). (b) A 2D representation of Bragg cones
versus incidence angles !0 and �0. Intersections with a fixed value of !0 =
45� (dashed line) indicate azimuths where Bragg-DS channels are excited.



mental data. The successful application to both silicon and

copper single crystals, accounting for isotropic diffuse scat-

tering and crystal truncation, demonstrates the broad applic-

ability of this approach. The inclusion of grain misorientation

effects highlights the potential of this framework to elucidate

complex microstructural features. This work opens a new

avenue for investigating diffuse scattering phenomena and

their relationship to material properties, with the promise of

furthering our understanding of crystal defects and their

influence on a material’s behaviour.

APPENDIX A

Reference frames for area detectors and single crystals

A1. Detector reference frame

The laboratory reference frame of the synchrotron

diffractometer is defined as follows (Penacchio et al., 2022):

the x axis is parallel to the incoming X-ray beam, pointing

downstream; the y axis is horizontal and perpendicular to the x

axis; and the z axis is vertical, perpendicular to both the x and

y axes. This configuration forms a right-handed Cartesian

coordinate system in which the detector central pixel, of

indices m0n0, is placed at

D ¼ D cosð2�dÞ cosð’dÞ; cosð2�dÞ sinð’dÞ; sinð2�dÞ
� �

X; ð7Þ

where D is the sample-to-detector distance and X = x̂; ŷ; ẑ½ �
T

;

hereinafter the superscript T stands for a transposed matrix.

On the detector area, an array of Ny rows and Nx columns of

pixels of size p, the position of each pixel is given by

rmn ¼ ðm � m0Þ p; � ðn � n0Þ p; 0
� �

Xd; ð8Þ

with m = 1, 2, . . . Nx varying from left to right and n = 1,

2, . . . Ny varying from top to bottom, as shown in Fig. 9. When

accounting for possible tilts and rotations of the detector area,

its reference frame in terms of the laboratory frame becomes

Xd ¼Rxð�xÞRyð�yÞRzð�zÞRxð90ÞRzð� 90ÞRyð� 2�dÞRzð’dÞX

¼MdX ¼ x̂d; ŷd; ẑd

� �T
; ð9Þ

where Rx, Ry and Rz are right-handed rotation matrices. �x, �y

and �z tilt the pixel array around the central row (direction x̂d),

central column (direction ŷd) and its normal direction

(direction ẑd), respectively. Substituting Xd ¼MdX in equa-

tion (8), the 3D coordinates of the pixels in the laboratory

frame are then computed as

Rmn ¼ rmn þD ¼ Rx;Ry;Rz

� �

mn
X: ð10Þ

A2. Crystal reference frame

By choosing two non-collinear reciprocal vectors, such as A

and B, a Cartesian reference frame for the crystal is built as

follows,

Xc ¼
A� B

jA� Bj
�

A

jAj
;

A� B

jA� Bj
;

A

jAj

� �T

¼ x̂c; ŷc; ẑc

� �T
¼ MrX

�;

ð11Þ

where X� is any Cartesian system upon which the reciprocal

base vectors a�, b�, c� were defined. A reciprocal-lattice vector

such as

Q ¼ ha� þ kb� þ lc� ¼ h; k; l½ �MQX
� ¼ Qx;Qy;Qz

� �
X�

ð12Þ

is projected in this new crystal reference frame as QðcÞ =

Qx;Qx;Qz½ �MT
r Xc = Qx;Qx;Qz½ �ðcÞXc. As Xc and X� are

Cartesian systems, Mr is a rotation matrix and MT
r Mr ¼ I is

the identity matrix.

The orientation of the crystal in the laboratory frame is

based on three rotation angles: � as the rotation of the scat-

tering plane around the x axis, measured from the xy plane; !0

as the incidence angle for which /(k, A) = 90� + !0; and �0 as

the angle of azimuthal rotation around vector A. As depicted
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Figure 9
Laboratory reference frame X ¼ x̂; ŷ; ẑ½ �

T
with the incident wavevector

k ¼ ð2�=�Þx̂ along the x axis. 2�d and ’d are the detector arm elevation
and azimuthal angle, respectively. The pixel of indices m0n0 is the one hit
by the direct beam when 2�d = ’d = 0. Tilt angles �x, �y and �z are required
for a general orientation of the pixel array, as in equation (9) where Xd =
MdX = x̂d; ŷd; ẑd

� �T
.

Figure 10
Orientation of the crystal reference frame Xc = x̂c; ŷc; ẑc

� �T
= McX with

respect to the laboratory frame X = x̂; ŷ; ẑ½ �
T

. (a)–(d) Vertical scattering
plane (xz plane), � = 90�. (e)–(h) Horizontal scattering plane (xy plane),
� = 0. (b) and (f ) Setting x̂c pointing to the X-ray source. (c) and (g)
Counter-clockwise !0 = 20� rotation around ŷc. (d) and (h) Clockwise
�0 = 25� rotation around ẑc.



in Fig. 10, we choose x̂c pointing to the X-ray source when !0 =

�0 = 0, implying the following rotation matrix to orient the

crystal in the laboratory frame:

Xc ¼ Rzð� �0ÞRyð!0ÞRzð180�ÞRxð� � 90�ÞX ¼McX: ð13Þ

In this frame, the incident wavevector k = ð2�=�Þ x̂ =

ð2�=�Þ½1; 0; 0�X is written as

kðcÞ ¼ ð2�=�Þ½1; 0; 0�MT
cXc

¼ � ð2�=�Þ cosð!0Þ cosð�0Þ; cosð!0Þ sinð�0Þ; sinð!0Þ
� �ðcÞ

Xc:

ð14Þ

From equation (10), X-rays hitting the pixel array have

wavevectors

kmn ¼ ð2�=�ÞRmn= Rmn

�
�

�
� ¼ kx; ky; kz

� �

mn
X ð15Þ

that are projected as

kðcÞmn ¼ kx; ky; kz

� �

mn
MT

cXc

¼ ð2�=�Þ cosð!Þ cosð�Þ; cosð!Þ sinð�Þ; sinð!Þ½ �
ðcÞ
mnXc;

ð16Þ

providing the ! and � angles on which each pixel is seen in the

crystal frame. The entire solid angle monitored by an area

detector is then obtained as a function of nine degrees of

freedom (one translational and eight rotational): sample-to-

detector distance (D), sample rotation angles (�, !0 and �0),

detector arm rotation angles (2�d and ’d) and tilt angles of the

detector area (�x, �y and �z). This is summarized in a parameter

vector P = [D, �, !0, �0, 2�d, ’d, �x, �y, �z] used as input to a

computer program that provides matrices of ! and � angles

from a pixel array. As an example, Fig. 11 compares the solid

angles monitored by actual area detectors with the expected

DMS lines of a Cu crystal.

APPENDIX B

Three-dimensional reciprocal-space map (3D-RSM)

A more general version of the simple recipe for generating

3D-RSMs (Penacchio et al., 2022) is obtained by using the

reference systems described above. For a given detector pixel,

the diffraction vector

QðcÞmn ¼ kðcÞmn � kðcÞ ¼ Qx;Qy;Qz

� �ðcÞ
mn
Xc ð17Þ

in the crystal’s Cartesian frame is readily projected, through

the change of reference Xc = MrX
� [equation (11)], into the

crystal’s reciprocal space as

Qmn ¼ Qx;Qy;Qz

� �ðcÞ
mn
MrX

� ¼ Qx;Qy;Qz

� �

mn
X�; ð18Þ

or in hkl coordinates

h; k; l½ �mn¼ Qx;Qy;Qz

� �

mn
M� 1

Q ; ð19Þ

given that MQM
� 1
Q = I as defined in equation (12).

A 3D-RSM of the Cu(311) sample, shown in Fig. 12, reveals

pronounced mosaicity preferentially oriented along one in-

plane direction. This mosaicity primarily affects the intensities

below the half-width of the diffraction peak, being about 0.5�

at 30% of the log-transformed maximum intensity on its

preferential direction and much wider at lower intensities. Its

behaviour deviates significantly from a Gaussian mosaicity, in

which the expected relative separation between the 30% and

50% isosurfaces (logarithmic scale) is only 1.76. As shown in

Fig. 12(c), the observed separation between these isosurfaces

is substantially larger, ranging from approximately 2.5 to 11.

The surface finishing processes applied to the sample are the

likely cause, introducing defects in a thin layer beneath the

surface. The absence of crystal truncation rods, that is, an

enhanced intensity along the [311] surface normal direction, is

further evidence of poor surface crystalline quality.
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Figure 11
Simulation of bright DMS lines in Cu. Isotropic DS model for 7.82 keV
X-rays, �-polarization (� = 90�). Incidence direction !0 = 49.435� (Bragg
angle of reflection 222) and �0 = 227.5� (multiple diffraction 222/202) in
the chosen crystal reference frame (inset), where A k [111] and B k [100]
in equation (11). Line contrast is on a logarithmic scale. Solid angles are
as observed by the arrays of the 100k (Ny = 487, Nx = 195) and 2M (Ny =
1679, Nx = 1475) detector pixels are indicated (white-outlined areas). For
the 100k detector, P = [565 mm, 90�, 56.683�, 225.5�, 113.365�, 0, 35�, 0, 0].
For the 2M detector, P = [850 mm, 0,45�, 220�, 0, 91�, 0, 0, 0].

Figure 12
A 3D-RSM around the Cu(311) reflection, acquired using 8.0436 keV
X-rays. The map is composed of 44 images with varying !0 values,
collected using a 100k detector with parameter vector P = [565 mm, 90�,
!0, 80.727�, 89.965, 0, 35�, 0, 0]. Crystal frame, A k [311] and B k [100].
Isosurfaces on a logarithmic scale are shown at 50% (red), 35% (green)
and 30% (blue) of the log-transformed maximum intensity. (a) hkl
coordinates, 311 diffraction vector (red arrow) not to scale. (b) Side view
along the [011] in-plane direction. (c) Top view along [311].



APPENDIX C

Computational procedure

For simulating DMS lines, the following procedure has been

used. Within the set of wavevectors kðcÞmn collected by the pixel

array [equation (16)], those satisfying the bright cone equation

2k
ðcÞ
mn;b � QðcÞ

� �
�QðcÞ

�
�
�

�
�
� � � FQ

�
�

�
� ð20Þ

for the reciprocal-lattice vector Q(c) are used to compute the

corresponding wavevectors k
ðcÞ
mn;d = k

ðcÞ
mn;b � QðcÞ on the dark

cone, as well as the scattering vectors SðcÞmn = k
ðcÞ
mn;d � kðcÞ =

Sx; Sy; Sz

� �ðcÞ
mn
Xc of the S-ring. The intensity IQ(S) [equation

(2)] of the DMS line for reflection Q is then computed either

as a function of reciprocal-space coordinates,

Sx; Sy; Sz

� �

mn
¼ Sx; Sy; Sz

� �ðcÞ
mn
Mr; ð21Þ

or hkl coordinates,

h0; k0; l0½ �mn¼ Sx; Sy; Sz

� �

mn
M� 1

Q ; ð22Þ

of the scattering vectors. See the supporting information for

details of how to adjust the line sharpness.

For the DMS line simulation in Fig. 11, we have used

� ¼ g
8�2re

3Vcell

¼ 0:001 Å
� 2
;

where re = 2.818 � 10� 5 Å, Vcell = 47.238 Å3 and the scale

factor g = 64 for better visualization of the lines with the used

angular resolution of 0.02�. The exact function for intensity

simulation was

IQ h0; k0; l0½ �mnð Þ ¼ I0 FQ

�
�

�
�2""" � """�

�
X

H

FH

�
�

�
�2

1þ ð�NÞ
2
ðh0 � hÞ

2
þ ðk0 � kÞ

2
þ ðl0 � lÞ

2
� � ;

ð23Þ

where the sum runs over all H reflections of integer hkl

indices, �N = 100,

""" ¼ ð2�=�Þ
� 4

k
ðcÞ
mn;b � k

ðcÞ
mn;b � k

ðcÞ
mn;d � k

ðcÞ
mn;b � "̂""0

� �h in o� �
;

"̂""0 ¼ cosð�Þp̂ þ sinð�Þr̂;

r̂ ¼
kðcÞ � ẑc

kðcÞ � ẑc

�
�

�
�

and

p̂ ¼ ð2�=�Þ
� 1

r̂ � kðcÞ:
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