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Approximately 50% of entries in the Inorganic Crystal Structure Database

(ICSD; https://www.fiz-karlsruhe.de/en) exhibit some form of structural

disorder. This work aims to provide a thorough analysis of structurally disor-

dered materials within the ICSD, using data extracted from crystallographic

information files. To achieve this, we derive a classification of structurally

disordered crystalline materials described by their spatially averaged structures

and introduce a range of quantitative measures of structural disorder. The

overarching aim of this classification and analysis is to facilitate high-throughput

and machine learning studies of disordered materials. To demonstrate the

application of our approach, we perform statistical analysis of the disordered

compounds reported in the ICSD to identify general trends in the distribution of

disorder across different chemical elements, structures and classes of materials.

1. Introduction

Disorder, defined as a deviation from order (Ziman, 1979), can

manifest in various forms and degrees. In crystalline materials,

disorder in the types and positions of atoms, in the orienta-

tions of molecules or multi-atomic sub-units, or in atomic

magnetic spins or dipolar moments may coexist with long-

range structural order. Disordered materials are fairly

common, with approximately 50% of entries in the Inorganic

Crystal Structure Database (ICSD; https://www.fiz-karlsruhe.

de/en) (Zagorac et al., 2019) containing disorder as a structural

feature. We specifically focus here on disorder in inorganic

materials; other disordered systems such as amorphous poly-

mers, glasses and organic crystals are not considered in this

work.

Disorder affects the properties of materials. Classical

examples include a decrease in thermal conductivity upon

introduction of structural disorder (Ghosh et al., 2022), or

higher ionic conductivity in compounds with Li-ion site

disorder compared with ordered compounds (Jonderian &

McCalla, 2021). The utilization of disorder as an instrument in

the design of functional materials advances in parallel with a

deeper understanding of structure–property relationships in

disordered materials (Simonov & Goodwin, 2020). For

example, in spinel ferrites, (Zn1� xFex)[ZnxFe2� x]O4, site

disorder can be used to control photocatalytic activity (Li et

al., 2019). Substitutional disorder is used to enhance ionic

conductivity in Li-ion solid conductors, by means of introdu-

cing Li-ion vacancies upon aliovalent doping and lowering the

activation energy (Feng et al., 2020), and to improve cathode

materials, for example to design a Co-free cathode material

LiNi0.5Mn0.43Ti0.02Mg0.02Nb0.01Mo0.02O2 with high cycling

https://doi.org/10.1107/S1600576725003000
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=disorder%20classification&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=CIFs&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=entropy%20calculation&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=entropy%20calculation&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=mixing%20entropy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=configurational%20entropy&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=configurational%20entropy&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Antypov,%20D.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Collins,%20C.M.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Dyer,%20M.S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Claridge,%20J.B.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Rosseinsky,%20M.J.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Rosseinsky,%20M.J.
mailto:m.j.rosseinsky@liverpool.ac.uk
https://www.fiz-karlsruhe.de/en
https://www.fiz-karlsruhe.de/en
https://www.fiz-karlsruhe.de/en
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576725003000&domain=pdf&date_stamp=2025-05-29


stability due to a complex concentrated doping strategy

(Zhang et al., 2023). More generally, disorder can also be used

as a stabilization mechanism to access novel materials, which

was demonstrated through the discovery of high-entropy

alloys and ceramics (Miracle & Senkov, 2017; George et al.,

2019; Oses et al., 2020).

Systematic large-scale high-throughput studies aiming to

discover new disordered materials are still rare. One of the

reasons is that, although approaches to simulating disordered

materials to predict their thermodynamic stability and prop-

erties have been developed (Madrid & Ghuman, 2021;

Puchala et al., 2023; Chang et al., 2019; Yang et al., 2022; Grau-

Crespo et al., 2007; Yang et al., 2016), they remain much more

computationally expensive than analogous methods for

ordered materials. Machine learning as a complementary

approach is a promising way of exploring the complex rela-

tionships between disorder in materials and properties

connected to it. To help developments in this area, high-

quality data sets describing disorder and connecting it to

properties are required.

In this paper, we explore one of the most abundant sources

of experimental information about disorder in crystalline

materials, the ICSD (Zagorac et al., 2019). The ICSD contains

information about the average structures of crystalline

materials obtained by X-ray and neutron diffraction. Using

this source of information imposes limitations on the types of

disorder available for analysis. The possible types of disorder

reduce to structural features which are reflected in a crystal-

lographic information file (CIF) (Hall et al., 1991; Brown &

McMahon, 2002). The first limitation arises because X-ray and

neutron diffraction experiments deliver globally averaged

information, so correlations and local ordering phenomena

cannot be observed. The second limitation is that the positions

of hydrogen and other light atoms such as lithium are often

omitted (as most of the data were obtained by X-ray diffrac-

tion).

In a CIF, a structure is represented as a list of crystal-

lographic orbits, each of which is characterized by the element

occupying the orbit and by its oxidation state, multiplicity,

Wyckoff symbol, fractional coordinates, site occupancy and

anisotropic displacement parameters. Disorder is revealed by

fractional site occupancies. At the most general level, if there

are any fractional occupancies, the compound is disordered,

and it is ordered otherwise.

By combining information on site occupancies with infor-

mation on the proximity of the sites to each other, we obtain a

more detailed description of disorder. Specifically, we assign

the positional disorder label (P) to orbits containing sites that

intersect because they are too close to each other to be

occupied simultaneously. If an individual site or a combined

site produced by positional disorder is not fully occupied, we

assign it as containing vacancies (V), thus reserving the term

‘positional disorder’ exclusively for those sites that are inter-

secting. This is a narrower definition than that often used for

positional disorder and is made in order to recognize the role

of site intersection in creating disorder of this type rather than

vacancy disorder. We define ‘vacancy disorder’ as the presence

of a combined site with a total occupancy of less than 1, which

covers any vacancy unexplained by positional disorder, for

example partially occupied interstitials. As a result, we

distinguish the following types of structural disorder: substi-

tutional (different elements occupying the same site), posi-

tional (the presence of intersecting sites), vacancy formation

(total site occupancy is below 1) and their combinations. We

have developed a tool that, for a given CIF, assigns labels to

each crystallographic orbit to classify the type of disorder it

contains. This classification of orbits allows us to classify

complete crystal structures according to the type of disorder

they harbour and to study the distribution of disorder in the

ICSD.

Introducing a disorder classification in inorganic materials

based on the disorder classification of orbits aligns well with

the general guidance on determining structure types in in-

organic materials (Lima-De-Faria et al., 1990; Allmann &

Hinek, 2007; Hicks et al., 2021b) and may help to distinguish

different disordered structure types in materials where

disorder is common and plays an important role, such as

spinels, argyrodites and other crystalline ion conductors.

To quantify the disorder we propose to use the fraction of

disordered sites (either for a particular disorder type or for all

disorder types combined) in the compound and review the

expressions for mixing and configurational entropies (De

Souza & Harrington, 2023). These quantitative measures

allow comparison of the degree of disorder in materials. As

our calculations are based on crystallographic average struc-

tures, the resulting entropies represent the upper bound of the

true values of the configurational or mixing entropies, which

will be reduced by any local correlations present.

Facilitated by the disorder classification, we analyse the

distribution of different types of disorder in the ICSD. The

consequent understanding of the general trends in the

different types of disorder with respect to elements and

structures provides useful insights for future studies and the

design of disordered materials.

The paper is organized as follows (see Fig. 1). First, we

discuss the quantitative and qualitative characteristics of

disorder. To do so, we introduce different disorder types for

the classification of orbits based on the information available

in a CIF. We discuss how compounds can be classified with

respect to the disorder they contain and how the description of

structure types can be modified to include information about

disorder. Then we study the distribution of the introduced

disorder types in the ICSD. We are mostly interested in the

distribution over elements, because they determine interac-

tions, and over structures, defining underlying geometries, as

any model of disorder contains these two components

(Simonov & Goodwin, 2020). We analyse the statistics of these

distributions in different classes of materials. Finally, we

analyse the statistics of the distribution of elements on

substitutionally disordered orbits and juxtapose it with the

Pettifor scale (Pettifor, 1984; Glawe et al., 2016), which

describes the ability of elements to substitute each other in

ordered compounds without causing a change in structure

type. We end with conclusions.

research papers

660 Dmytro Antypov et al. � Classification and statistical analysis of structural disorder J. Appl. Cryst. (2025). 58, 659–677



2. Qualitative and quantitative characteristics of

disorder

At the highest level of classification, all the richness of

experimental compounds in the ICSD can be reduced to two

classes, ordered and disordered, based on the presence of

partial occupancies in a CIF. If a compound contains occu-

pancies smaller than 1 for any element listed it is disordered.

Otherwise it is ordered. Here we consider only entries at

atmospheric pressure and room temperature (270 < T <

310 K) which have identical lists of elements in the composi-

tion formula and the structural part of the CIF and which do

not contain hydrogen (which amounts to �64% of all entries

in the ICSD). More details about data preparation can be

found in Section 2.1; retaining compounds with hydrogen

would give �70% of all entries. Later in the paper we refer to

this data set as ‘the ICSD’. When analysing the data in Section

2.4, we additionally remove duplicates, which we define as

compounds with the same composition and the same space

group type number. Only the duplicate with the largest

configurational entropy is retained in the data set (see Section

2.3 for the definition of configurational entropy).

2.1. Data preparation

Experimental CIFs were downloaded from the ICSD in

March 2024 with the help of ICSDClient (https://github.com/

lrcfmd/ICSDClient), returning 221688 entries. Approximately

10% of CIFs failed to be processed for reasons such as non-

standard formatting, unphysical occupancies [all CIFs with

occupancies for orbits larger than 1.05 were discarded, while

those in the range (1, 1.05) were re-scaled to 1], the presence

of element symbols which are not in the periodic table

(generic letters like X or M) or entries with a reported

composition different from the composition found in the

structure. After excluding entries with hydrogen (there were

approximately 9% of such entries) and entries with more than

500 crystallographic sites (there were approximately 0.4% of

such entries), we arrived at 176792 entries. We kept only

compounds measured under ambient conditions, which we

define as T = 270–310 K and P < 0.11 MPa. This reduced the

number of entries to 140903.

For the data analysis conducted in Section 2.4, duplicates

with the same composition and space group were removed.

Unless stated otherwise, we retained a single entry in each

case, selected according to the largest entropy for a given

composition and space group. This duplicate-free data set

contained 101662 entries.

To prepare the oxide data set we filtered out all compounds

containing hydrogen and any anions but oxygen. An analo-

gous method was used to create the data sets for carbides,

nitrides, fluorides, phosphates, sulfides, chlorides, selenides,

bromides and iodides.

To create the intermetallics/alloys data set, we retained

compounds containing only metals in their composition

formula.

2.2. Classification of crystallographic orbits

By using the information stored in the CIF about the

occupancy and location of atomic sites, we distinguish

different types of structural disorder. Our classification of

structural disorder is based on assigning different disorder

labels to the crystallographic orbits described in a CIF.

A crystallographic orbit is a set of points which are gener-

ated from one site by the symmetry operations of the space

group G (Souvignier, 2016). The space group G is called the

generating space group of the orbit. The orbit is completely

determined by its points in the unit cell. In a CIF, each orbit is

specified by the fractional coordinates, multiplicity, Wyckoff

symbol, species occupying it, value of occupancy by species

and atomic displacement parameters.

With respect to disorder type, we distinguish ordered orbits

(O), orbits with substitutional disorder (S), orbits with posi-

tional disorder (P), orbits with vacancies (V) and mixed types:

a combination of substitutional disorder and vacancies (SV), a

combination of substitutional disorder and positional disorder

(SP), a combination of positional disorder and vacancies (VP),

and a combination of positional and substitutional disorder

and vacancies (SVP).
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Figure 1
In this paper we analyse the statistical distribution of disorder in the
ICSD. To do this, we (i) introduce a method of classification of crystal-
lographic orbits with respect to the type of disorder they contain, using
labels O (order), S (substitutional), V (vacancies) and P (positional), (ii)
introduce quantitative measures of disorder such as mixing and config-
urational entropy, fraction of vacancies, and fraction of disordered sites,
and (iii) propose how the description of disorder can be added to the
description of structure types, as 50% of compounds in the ICSD contain
disorder.

https://github.com/lrcfmd/ICSDClient
https://github.com/lrcfmd/ICSDClient


Table 1 shows the way the classification works. To decide

which type of disorder to assign to the orbit, we consider six

parameters: (i) the number of different elements occupying

the orbit, or orbits in the case of their intersection, (ii) the total

occupancy, which is defined for each crystallographic site as

the sum of occupancies over all the elements located at this

site, (iii) whether there is internal intersection (defined below)

of sites within the orbit, (iv) whether there is external inter-

section of sites of a given orbit with the sites of another orbit,

(v) ‘the total occupancy of the combined site’ which is the sum

of the occupancies of crystallographic sites that intersect, and

(vi) whether the elements occupying the intersecting orbits are

the same or not.

We say that two sites intersect if the distance between them

rij < maxf1; 0:5ðRi þ RjÞg, where the distance is measured in

ångströms, and Ri and Rj are, respectively, the average ionic

radii of species occupying crystallographic sites i and j. The

ionic radii are taken from Shannon’s tables of ionic radii

(Shannon, 1976). The oxidation states of the species are taken

from the CIF. Since the coordination number is not deter-

mined in a CIF, the smallest radius is taken for a given

oxidation state of an element. If the ionic radius of a species is

not available in Shannon’s table (for example, if the oxidation

state is zero), the atomic radius (Slater, 1964) is used instead.

More details and explanations of the choice of criteria for

intersection of sites are given in the supporting information.

We combine all of the neighbouring intersecting sites into a

combined site. Thus, a combined site is a group of intersecting

sites that do not intersect with other combined sites. More

formally, if we represent sites as nodes and intersections as

edges of a graph, then each connected component of this

graph is defined as a ‘combined site’.

We define internal intersection for a given crystallographic

orbit as a situation when at least two sites belonging to this

orbit intersect. In order to deal with internal intersections, we

combine intersecting sites into combined sites, which leads to a

corresponding decrease in the combined orbit multiplicity, as

the total number of atoms on the orbit remains unchanged.

For each orbit with internal intersection we define what the

combined sites are and calculate their occupancy and multi-

plicity.

We say that two different orbits intersect externally if any

sites belonging to these two orbits intersect. In order to deal

with the external intersection of two or more orbits, we

combine the intersecting orbits into a single combined orbit.

We use ‘combined orbit’ and ‘orbit’ interchangeably, in

contrast to the traditional meaning of the crystallographic

orbit given above. Similar to an internally intersecting orbit,

the description of a combined orbit requires the calculation of

the total occupancy of the combined site and its multiplicity.

To demonstrate examples of internal and external inter-

sections, in Fig. 2 we consider a 2D unit cell containing two

mirror planes and one four-fold rotation axis. We consider two

types of crystallographic sites which can be present in our cell:

Site A which is occupied by the ‘blue’ element and has an

occupancy of 0.25, and Site B which is occupied by ‘blue’ and

‘red’ elements and has a mixed occupancy of 0.125 blue and

0.125 red. In Fig. 2(a), Site B is placed on one of the mirror

planes and the symmetry operators generate three additional

positions (giving a total multiplicity of 4), which make up the

orbit. Since none of these four positions are close to each

other, the disorder present comes purely from Site B, where

we have a site which is not fully occupied and contains two

elements, so we define this as substitutional and vacancy

disorder (SV). In Fig. 2(b), Site A is placed on a general

position near to one of the mirror planes and the symmetry

operators generate seven additional positions (giving a

multiplicity of 8). These eight positions group into four pairs

which do not intersect with each other. Since all the inter-

secting sites are generated by the same crystallographic orbit,

we refer to this as internal intersection. We consider each of

the pairs of intersecting sites as one combined site, because the

distance marked in green is too short for simultaneous occu-

pation of both connected positions, with a total occupancy of

2 � 0.25 = 0.5 blue and a multiplicity of 4. The combined site

not being fully occupied results in the classification of posi-

tional and vacancy disorder (PV). In Fig. 2(c), both Site A and

Site B have been included, with both sites placed on one of the

mirror planes and close enough to each other so they intersect.

For both sites, three additional positions are generated when

applying the symmetry operators to complete the orbits. Since

Site A and Site B intersect and are from different orbits, we
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Table 1
Rules to determine the disorder type of an orbit.

N/A corresponds to parameters that are not applicable to the definition of that orbit type.

Line

No.

No. of

elements

Total

occupancy

Internal

intersection

External

intersection

Total occupancy of

the combined site

Same intersecting

element

Type of

orbit

1 1 1 N/A N/A N/A N/A O
2 1 < 1 False False N/A N/A V
3 > 1 � 0.989 False False N/A N/A S

4 > 1 < 0.989 False False N/A N/A SV
5 1 < 1 True False � 0.989 N/A P
6 1 < 1 True False < 0.989 N/A VP
7 > 1 < 1 True False � 0.989 N/A SP
8 > 1 < 1 True False < 0.989 N/A SVP
9 1 < 1 N/A True � 0.989 True P

10 1 < 1 N/A True < 0.989 True VP
11 � 1 < 1 N/A True � 0.989 False SP
12 � 1 < 1 N/A True < 0.989 False SVP

http://doi.org/10.1107/S1600576725003000


refer to this as an external intersection. Each of the four pairs

of intersecting Site A and Site B creates a combined site with a

multiplicity of 4 and an occupancy of 0.375 blue and 0.125 red,

and thus contains substitutional disorder. The combined site

additionally contains vacancies, as its total occupancy is less

than 1 and as it also contains intersecting sites (indicating

positional disorder). The combined orbit is thus classified with

the symbol SVP. In Fig. 2(d), Site A is placed on the same

eight-fold site shown in Fig. 2(b) and Site B is placed on the

same site as shown in Fig. 2(a), so the resulting combined sites

now contain both external and internal intersections. The total

occupancy of the combined site is now 0.625 blue and 0.125

red. This combined site is another example of an SVP site,

resulting from the same reasoning as in Fig. 2(c).

The rules for classification of orbit disorder are shown in

Table 1. Lines 1–4 describe orbits without positional disorder,

or in other words, orbits without internal or external inter-

sections. If the orbit is occupied by one element with occu-

pancy 1, then the orbit is ordered (O). If the orbit is occupied

by one element but the occupancy is smaller than 1, then this

orbit is classified as a vacancy (V) orbit. If the orbit is occupied

by more than one element but the total occupancy is close to 1

(we allow a tolerance of 0.011 to account for a possible

rounding error), then the orbit is classified as an orbit with

substitutional disorder (S). If the orbit is occupied by more

than one element and the total occupancy is smaller than 1

minus the tolerance factor, then the orbit is classified as an

orbit with substitutional disorder and vacancies (SV).

If internal or external intersection of orbits is present, then

we consider the orbit as having positional disorder. First, we

consider the case when there is an internal but no external

intersection, which is described by lines 5–8 in Table 1. If there

is only one type of element occupying the orbit and the

occupancy of the combined site is close to 1 (here and

thereafter we again allow for a tolerance of 0.011 to account

for a possible rounding error), then the orbit is classified as a

purely positionally disordered orbit (P). If there is only one

type of element occupying the orbit but the occupancy of the

combined site is less than 1 minus the tolerance factor, then

the orbit is classified as having both positional disorder and

vacancies (VP). The total occupancy of the combined site is

used to detect vacancies in positionally disordered orbits. If

there is more than one element occupying the orbit and the

occupancy of the combined site is close to 1, then the orbit is

classified as having both substitutional and positional disorder

(SP). If there is more than one element occupying the orbit

and the occupancy of the combined site is less than 1 minus the

tolerance factor, then it is classified as having positional

disorder, substitutional disorder and vacancies (SVP).

In the case when there is an external intersection of orbits

(lines 9–12 of Table 1), we look at the list of elements occu-

pying all intersecting orbits and the occupancy of the

combined site. If the intersecting orbits are occupied by one

element and the occupancy of the combined site is above 1

minus the tolerance factor, then the orbit is classified as purely

positionally disordered (P). If the intersecting orbits are

occupied by one element and the occupancy of the combined

site is less than 1 minus the tolerance factor, then the orbit is

classified as positionally disordered with vacancies (VP). If the

list of elements on all intersecting orbits has more than one

element and the occupancy of the combined site is close to 1,

then the orbit is classified as having positional disorder and

substitutional disorder (SP). If the list of elements on all

intersecting orbits has more than one element and the occu-

pancy of the combined site is less than 1 minus the tolerance

factor, then the orbit is classified as having positional disorder,

substitutional disorder and vacancies (SVP). The combined

orbit produced by the external intersection of orbits A and B

in Fig. 2 is an example of an SVP orbit.

In this analysis we do not distinguish between combined

orbits produced via internal and external intersection, e.g. in

Table 1 we use designations P for rows 5 and 9, VP for rows 6

and 10, SP for rows 7 and 11, and SVP for rows 8 and 12, thus

defining seven distinct types of disordered orbits.

To illustrate how the classification works, let us consider

K0.3Ta0.125V0.125W0.75O3, collection code 239274 (Rahman et

al., 2016) (Fig. 3). There are four crystallographic orbits in this

structure. Two of them are ordered (O) and occupied by

oxygen. The third orbit is substitutionally disordered (S) as it

is occupied by Ta (occupancy 0.125), V (occupancy 0.125) and
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Figure 2
Internal and external intersections. (a) An orbit with no intersection, (b)
an orbit with internal intersection, (c) a combined orbit produced by two
crystallographic orbits that have no internal intersections, and (d) a
combined orbit containing both external and internal intersections. When
intersecting positions within (b) a single orbit or (c) and (d) multiple
orbits form a combined site, then in order to preserve the total number of
atoms in the cell while describing the structure in terms of combined sites
we introduce the appropriate multiplicity for that site.



W (occupancy 0.75) whose total occupancy adds up to 1. The

fourth orbit is occupied by K with occupancy 0.45 and has an

internal intersection of sites, which splits all K sites into pairs

(dark-blue atoms in Fig. 3). There is no external intersection.

The occupancy of the combined site is 0.45 � 2 = 0.90 which is

less than 1, so this orbit is classified as VP. Other examples are

listed in Table 2 and further details can be found in the

supporting information.

2.3. Quantitative measures of disorder: mixing and config-

urational entropy, fraction of disordered sites

Next we turn to consideration of the quantitative char-

acteristics of disorder in crystalline materials. We give a short

overview of the existing approaches in this area and describe

the improvements introduced in our approach.

The common way of quantifying substitutional disorder in

solid solutions is the mixing entropy (Ziman, 1979; Miracle &

Senkov, 2017; McCormack & Navrotsky, 2021; Krivovichev et

al., 2022). Recently there was an upsurge of interest in it due

to the discovery of high-entropy materials. The expression for

mixing entropy per site used to quantify it is (Miracle &

Senkov, 2017; McCormack & Navrotsky, 2021; Krivovichev et

al., 2022)

Smix ¼ � kB

Pn

j¼1 mj

Pnij

i¼1 fij ln fij

� �

Pn

j¼1 mj

; ð1Þ

where kB is the Boltzmann constant, n is the number of

crystallographic orbits, mj is the number of sites on the jth

orbit (or orbit multiplicity), nij is the number of species on the

ith sublattice of the jth orbit and fij are the occupancies of

these species. It is assumed that
Pnij

i¼1 fij = 1 and vacancies are

treated as separate species. The mixing entropy is used to

classify materials with structural disorder into low-entropy

(Smix < 0.69kB), medium-entropy (0.69kB < Smix < 1.61kB) and

high-entropy (Smix > 1.61kB) materials (Miracle & Senkov,

2017).

Another line of research related to quantification of

disorder in crystalline materials is focused on the estimation of

the complexity of crystals (Krivovichev, 2016; Hornfeck, 2020;

Kaußler & Kieslich, 2021; Krivovichev et al., 2022). The

overall idea of this approach is that the information entropy,

which can be defined for both ordered and disordered

materials, can be used as a measure of the complexity of

crystals (Krivovichev, 2016). It has been shown that in some

cases information entropy can be related to the thermo-

dynamic entropy (Krivovichev, 2016). The CrystIT Python

package (Kaußler & Kieslich, 2021) enables the calculation of

different types of information entropies and mixing entropies

from CIFs. For the calculation of mixing entropy, CrystIT uses

equation (1), assuming that only substitutional disorder and

vacancies are possible. When calculating mixing entropy,

vacancies are considered as additional species, so they

contribute to the mixing entropy. In this paper, we distinguish

between vacancies and positional disorder when interpreting

partial occupancies in CIFs. By definition, positionally dis-

ordered sites are located too close to each other to be occu-

pied simultaneously, and therefore the direct use of equation

(1) will overestimate the mixing entropy. To address this

limitation, we consider positional disorder as the delocaliza-

tion of atomic positions, which does not contribute to mixing

in the sense of atomic substitutions or vacancies but increases

the overall number of crystal configurations. As a result, we

distinguish between mixing entropy, which accounts only for

mixing between atomic species and vacancies, and configura-

tional entropy, which accounts for all possible crystal config-

urations, including permutations due to mixing and

contributions from positional disorder.

Note that interpreting positional disorder as the disorder of

individual atomic positions is an approximation that might not

always be justified. For example, observed positional disorder

may in fact reflect the tilting of larger atomic groups (such as

polyanions, or octahedra in perovskites), stacking disorder of

entire layers etc. In these cases, thinking about positional

disorder as the disorder (static or dynamic) of individual
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Table 2
Examples of orbit classification.

The figures referred to are all in the supporting information.

No. Formula

Collection

code Orbit types Figure

1 Fe3Mn4Ge6 74 {S, O} S1
2 Sm0.3Ce0.7O1.85 28793 {S, V} S2
3 Sr2NiN2 91272 {P, P, O} S3

4 (Ca0.4Eu0.1Gd0.3)WO4 253699 {O, O, SV} S4
5 Ca2Co12As7 94411 {O, V, P} S5
6 Ca0.82F2.36Th0.18 202039 {VP, S} S6
7 Ga2Te3 67709 {V} S7
8 RbCr(SO4)2 173671 {O, P} S8
9 Ca0.97Co0.199Mg0.831Si2O6 74470 {O, S, SP} S9

10 Al12Br0.54Cs6.559Na4.43O48Si12Zr0.091 6319 {O, V, S, SVP} S10
11 Li7Zn0.48SiS6 116351 {O, V, SP} S11

Figure 3
An example of a compound with a VP orbit formed by internal inter-
section of K sites with the occupancy of the combined site less than 1.
Chemical formula K0.3Ta0.125V0.125W0.75O3, collection code 239274
(Rahman et al., 2016). Colour code: dark blue K, brown V, yellow Ta,
grey–blue W and red O.
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atomic positions leads to overestimation of the configurational

entropy, because the displacements involved are locally

correlated with each other rather than independent. However,

as we are dealing with spatially averaged information we

cannot distinguish between correlated displacements and

positional disorder, and thus we state that we calculate the

upper bound of the configurational entropy.

There are contributions to entropy that are beyond the

scope of this paper. Specifically, the entropy of a crystalline

solid apart from configurational entropy (or mixing entropy if

there is no positional disorder) will also include vibrational

entropy, entropy of electrons, magnetic moments and spins of

nuclei. In most disordered materials, configurational and

vibrational entropies dominate other terms (Miracle &

Senkov, 2017). Vibrational entropy can be estimated from

X-ray and neutron scattering data using atomic displacement

parameters (Huang & Widom, 2022) or calculated from lattice

dynamic simulation (Tolborg & Walsh, 2023). However, here

we are focusing exclusively on the configurational and mixing

entropies. Below we derive formulae to calculate them in the

general case.

Let us first consider mixing entropy. According to Boltz-

mann’s formula,

S ¼ kB ln �; ð2Þ

where kB is the Boltzmann constant and � is the number of

microstates that realize a particular macrostate. We assume

that distributions of atoms on different orbits and on sites

within orbits are independent of each other, such that the total

entropy is the sum of the mixing entropy within the different

orbits. In this case, � ¼
Q

j �j and Smix = kB

P
j ln �j =

kB

P
j Smix;j. For an S orbit with index j, there are several

species i which occupy it with partial occupancies fij so that
P

i fij = 1. Then the number of atoms of the ith species on the

jth S orbit is mj fij, where mj is the multiplicity of the orbit. The

number of ways of distributing atoms over this orbit is

�j ¼ mj!=½ðmj f1jÞ!ðmj fijÞ!�, so the total entropy associated with

the orbit is Smix;j = � mj

P
i fij ln fij [Stirling’s formula n! ’

(n/e)n was used]. The same approach works for V and SV

orbits if we consider vacancies as additional atomic species.

Then per mole of atoms, for S, V and SV orbits, the mixing

entropy is

Smix ¼ �
kB

N

X

i;j

mj fij ln fij; ð3Þ

where N is the number of atoms in the unit cell, mj is the

multiplicity of the jth orbit, fij is the occupancy by the ith

element of the jth orbit and vacancies are treated as a special

type of atom in this formula (more precisely, we count their

contribution to the number of permutations, but not to N).

This formula coincides with equation (1) when there are no

vacancies (the difference is only in the normalization per atom

rather than per site) and can be directly applied to orbits

without positional disorder.

To calculate the mixing entropy for positionally disordered

orbits SP, VP and SVP we assume (i) positional disorder does

not contribute to the mixing entropy, (ii) all sites within a

combined site are considered as one site from the viewpoint of

mixing entropy, and (iii) all occupancies related to one type of

atom are summed to represent the total occupancy of the ith

element. Then the same equation (3) can be used for the

combined orbit. Let us use the SVP orbit shown in Fig. 2(d) as

an example to explain the approach. The SVP orbit is formed

by external intersection of orbits A and B. Orbit A is occupied

by the blue element. Orbit B is occupied by two elements, blue

and red. The multiplicity of the combined orbit, which is

defined as the number of combined sites in the combined

orbit, is 4. To calculate the mixing entropy, we sum all occu-

pancies of the blue element, which gives 0.25 � 2 + 0.125 =

0.625; the occupancy for the red element is 0.125 and

the occupancy for the vacancy is 0.25. Thus, the mixing

entropy for this orbit is Smix = � kB/N � 4 � (0.625 ln0.625 +

0.125 ln0.125 + 0.25ln0.25).

We can formalize the explanation in the following way:

Smix ¼ �
kB

N

X

j

mtot
j

X

i

f tot
ij ln f tot

ij ; ð4Þ

where mtot
j is the combined multiplicity of the jth orbit, f tot

ij =
P

tot site;l fijl is the total occupancy for the ith element of the

combined site, f tot
ij < 1, and the summation is over index l

which labels intersecting sites within one combined site.

Note that externally intersecting orbits all have equal

combined multiplicity, otherwise the entropy is not calculated.

Now we can turn to the calculation of the configurational

entropy, Sconf. We assume that the configurational entropy has

a contribution from positional disorder, meaning that

arrangements of atoms corresponding to placing atoms on

different intersecting sites are calculated as separate config-

urations. Therefore, it is expected that the configurational

entropy coincides with the mixing entropy for S, V and SV

orbits, but is larger than the mixing entropy for positionally

disordered orbits SP, VP, P and SVP.

The configurational entropy per individual site is

S0conf ¼ � ðkB=NÞ
P

i;l fijl ln fijl, which is the well known Gibbs

formula. For the orbit as a whole we need to multiply by the

multiplicity of the orbit that the site belongs to. The final

formula is

Sconf ¼ �
kB

N

X

j

mtot
j

X

i;l

fijl ln fijl; ð5Þ

where mtot
j is the combined multiplicity of the jth orbit and fijl

is the occupancy for element i on the combined site of the jth

orbit, which contains l intersecting sites. Vacancies are

considered as additional species.

Using Fig. 2(d) as an example of a combined orbit whose

combined site comprises three crystallographic sites, and

substituting the corresponding occupancies (0.25, 0.25 and

0.125 for the blue element, 0.125 for the red element, and 0.25

for a vacancy) in equation (5), we obtain Sconf = � kB/N � 4 �

(3� 0.25ln0.25 + 2� 0.125ln0.125) for this orbit. Note that in

this case, we have relied on the fact that all three sites forming

the combined site intersect with each other, so only one atom
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can be placed on any of them at a time. In this scenario, the

total occupancy of the combined site should not exceed 1 and

equation (5) can be applied. However, there might be cases

when not all sites intersect but instead they form an extended

network or chain of intersecting sites where more than one

atom can be placed at a time, as in Fig. S6, collection code

202039, Ca0.82F2.36Th0.18.

Below we consider some examples of calculating mixing and

configurational entropy for compounds we considered in the

previous section.

Let us consider entropy in some of our example compounds

from Table 2. In Sr2NiN2 (Fig. S3) there are four orbits: (i) an

ordered Sr orbit with multiplicity m1 = 4, (ii) a positionally

disordered orbit occupied by Ni, which has m2 = 4 half-occu-

pied sites that intersect and form pairs, so its combined

multiplicity mtot
2 ¼ 2, and (iii) and (iv) the last two orbits with

multiplicity 4 which are positionally disordered and half-

occupied by N, so their combined multiplicity mtot
3 = mtot

4 = 2.

The number of atoms in the unit cell is ten. Therefore,

Smix ¼ 0 ð6Þ

and

Sconf ¼ S
PNi

conf þ 2S
PN

conf

¼ �
kB

10
2� 2� 0:5 ln 0:5þ 2� 2� 2� 0:5 ln 0:5ð Þ

¼ 0:416kB per atom ð7Þ

is the configurational entropy per atom, or Sconf = 2.08kB per

formula unit Sr2NiN2.

In K0.3Ta0.125V0.125W0.75O3 (Fig. 3) there are the following

disordered orbits present: (i) a substitutionally disordered

orbit S with multiplicity 6, occupied by Ta, V and W with

respective occupancies 0.125, 0.125 and 0.75, and (ii) a VP

orbit with internal intersection occupied by K with multiplicity

mK = 4 and occupancy fK = 0.45, resulting in a combined site

with multiplicity mtot
K = 2 and total occupancy fjmK=mtot

K = 0.9.

The number of formula units in the unit cell is Z = 6. There-

fore,

Smix ¼ S
STa;V;W

mix þ S
PVin

K

mix

¼ �
kB

6� 4:3
½6� 0:75 ln 0:75þ 2� 0:125 ln 0:125ð Þ

þ 2� 0:9 ln 0:9þ 0:1 ln 0:1ð Þ�

¼ 0:196kB per atom ð8Þ

is the mixing entropy per mole of atoms and

Sconf ¼ S
STa;V;W

conf þ S
PVin

K

conf

¼ �
kB

6� 4:3
½6� ð0:75 ln 0:75þ 2� 0:125 ln 0:125Þ

þ 2� ð2� 0:45 ln 0:45 þ 0:1 ln 0:1Þ�

¼ 0:244kB per atom ð9Þ

is the configuration entropy per mole. This example demon-

strates that orbits without positional disorder make identical

contributions to both mixing and configurational entropies,

while the contribution from orbits with positional disorder to

the configurational entropy is larger than that to the mixing

entropy due to the contribution of positional disorder.

It is useful to introduce another quantitative measure of

disorder such as the fraction of disordered sites or the fraction

of sites with a particular type of disorder. This measure can be

useful for the characterization of ionic conductors, for which

the concentration of vacancies of mobile ions is an important

parameter.

For example, for the fraction of disordered sites,

Fdis ¼

P
j2orbits with disorder mj
P

j2all mj

; ð10Þ

where the numerator is the summation over all orbits with

disorder (of all types) and the denominator is the total number

of sites. Note that if positional disorder is present the total

number of sites used in this formula will be smaller than the

number of sites produced from the crystallographic descrip-

tion in the CIF, because some sites will be combined.

2.4. Classification of compounds and structure types

In the previous sections we introduced a method for clas-

sifying orbits of crystalline materials according to the type of

disorder and a way of quantifying the amount of disorder

contained. This allows one to add a disorder description to the

structure types used to describe crystalline structures in a

more detailed way than specifying the symmetry, i.e. space

group type or type of lattice. In this section, we review how the

structure types are typically defined, give an example of how

disorder information can be used to improve differentiation

between materials within a single ICSD structure type and

analyse the statistics of different orbit disorder types across

the ICSD.

The definition of structure types resides on the notions of

isopointal and isoconfigurational structures (Lima-De-Faria et

al., 1990). Two structures are isopointal if (i) they have the

same space group type or belong to the pair of enantio-

morphic space group types and (ii) the complete sequence of

occupied Wyckoff positions (including the number of times

each Wyckoff position is occupied) is the same for both

structures when the structural data have been standardized to

have the same origin and cell setting choice (because the

Wyckoff letters of atomic positions can change upon a change

in the origin or rotation/permutation axis). Two structures are

isoconfigurational if (i) they are isopointal and (ii) for all

corresponding Wyckoff positions both the crystallographic

orbits and their geometric interrelationships are similar.

Structure types are defined as groups of isoconfigurational

structures. However, as similarity can be defined in different

ways, several approaches to the definition of structure types

have been developed (Mehl, 2019; Allmann & Hinek, 2007;

Mehl et al., 2017; Hicks et al., 2019; Hicks et al., 2021a). For

example, in the ICSD structure types are defined as

compounds having the same space group number, similar

Wyckoff sequences, similar Pearson’s symbols and similar

ANX formulae, and may have additional constraints on lattice
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parameters, lattice angles or the types of elements which must

be present or must not be present in the structure (Allmann &

Hinek, 2007; Steudel et al., 2025).

Since disorder is commonly not taken into account for the

definition of structure types, they do not clearly distinguish

between disordered and ordered structures. Taking into

account that disorder is important in terms of physical prop-

erties and the number of structures containing it (approxi-

mately 50% of both the full ICSD and our reduced data set),

we suggest that a disorder description could be added to

definitions of structure types by modification of the Wyckoff

sequence to include disorder labels. Quantitative character-

istics of disorder such as configurational entropy, mixing

entropy and fractions of all types of disorder can be added as

additional descriptors. For example, the compound

K0.3Ta0.125V0.125W0.75O3 (Fig. 3), collection code 239274, has

space group type 182 and Wyckoff sequence 1i 1h 1g 1e. It has

the structure type ‘Bronze(hex)#HTB#K0.26WO3’ which

contains 18 other compounds. There are no additional para-

meters, such as limits on the ratio of the unit-cell parameters

etc. for this structure type, to consider when characterizing the

structure type according to the ICSD nomenclature. Eighteen

out of 19 compounds in this structure type have two ordered O

orbits (h and i sites), a VP orbit occupied by K (e site) and an

orbit occupied by other metals (site g) which can be either

substitutionally disordered, S, or ordered, O. The outlier in this

set is K0.3W0.9Ta0.1O3, collection code 239259, which has a

larger distance between K sites, so the orbit occupied by K is

classified as V instead of VP. Therefore, the possible Wyckoff

strings with disorder labels are 1iO 1hO 1gS 1eVP, 1iO 1hO

1gO 1eVP and 1iO 1hO 1gS 1eV. The possible fractions of

disordered sites in the form (FO, FS, FVP, FV) (fraction of

ordered sites, fraction of substitutionally disordered sites,

fraction of VP sites and fraction of vacancy sites) are,

respectively, (0.692, 0.2307, 0.077, 0), (0.923, 0, 0.077, 0) and

(0.643, 0.214, 0, 0.143). In addition to using orbit disorder

labels to differentiate between materials within a single ICSD

structure type, we can quantify this difference by calculating

mixing and configurational entropy contributions as described

in this paper (see Section 2.3). For example, the mixing

entropy of compounds in the ‘Bronze(hex)#HTB#K0.26WO3’

structure type varies in the range from 0.025kB per atom to

0.216kB per atom and configurational entropy in the range

from 0.074kB per atom to 0.264kB per atom.
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Figure 4
(a) Proportion of different types of disorder sets in the ICSD (compounds containing H are excluded). (b) Proportion of different types of disorder sets
in the ICSD when duplicates are excluded (two compounds are considered as duplicates if they have the same composition and space group number). (c)
Non-intersecting aggregated classes: O (set {O}), S (sets {S} and {S, O}), V (sets {V} and {V, O}), P (sets {P} and {P, O}) and M (mixed disorder set). The
percentage on the plot shows the percentage of the segment with respect to the parent category. (d) Intersecting aggregated classes: O (all compounds
which have at least one O orbit), S (at least one S, SV, SP or SVP orbit), V (at least one V, SV, VP or SVP orbit) and P (at least one P, VP, SP or SVP orbit).



Structure types are one of the ways of classifying crystal

structures. Focusing exclusively on disorder, we can describe a

compound as a ‘bag of orbits’, where each compound is

represented by the set of disorder labels (hereafter referred to

as the ‘disorder set’) for all orbits. For example,

K0.3Ta0.125V0.125W0.75O3 (Fig. 3) has two O orbits, one S orbit

and one VP orbit, which means that it is characterized by the

disorder set {O, S, VP}. In general, as there are eight types of

orbit, O, S, P, V, SP, SV, VP and SVP, the number of different

disorder sets which can be created out of them is 28 � 1 = 255

(excluding the empty set). However, not all of them are

equally represented in the database of inorganic crystal

structures. Specifically in our data set, only 178 disorder sets

contain at least one compound.

Fig. 4(a) shows the most common types of disorder sets for

compounds in our data set. One can see that 51.0% are fully

ordered materials. The most common types of disorder are

{O, S} 27.4%, {O, V} 5.95%, {O, V, S} 3.75%, {S} 2.07%, {P, O}

1.11% and {V, S} 0.89%. Other disorder sets are represented

by less than 0.8% of entries each. The remaining 163 disorder

sets have on average 67.8 compounds in them, with 87 sets

containing fewer than ten ICSD entries.

The equivalent distribution [Fig. 4(b)] but for the data set

with removed duplicates is {O} 40.7%, {O, S} 32.3%, {O, V}

7.2%, {O, V, S} 4.9%, {S} 2.6%, {P, O} 1.3% and {V, S} 1.1%.

Two entries are considered to be duplicates if they have the

same composition and space group. We then choose to keep

only the duplicate with the highest configurational entropy.

Calculation of configurational entropies is described in

Section 2.3. The removal of duplicates reduces the fraction of

ordered compounds from 51% to 40.7%. Removing duplicates

reduces the bias in the data set that exists with respect to

compounds reported multiple times. For example, there are 33

entries for CaTiO3 with space group 62 in our data set. The

total number of disorder sets in the data set with duplicates

removed remains 170, with 88 sets containing fewer than ten

ICSD entries.

As the number of disorder sets is still large for practical

purposes of machine learning, we continue aggregating

disorder types and introduce the following classes of

compounds: ordered ({O}), compounds with only substitu-

tional disorder S = ({S}, {O, S}), compounds with disorder only

due to vacancies V = ({V}, {O, V}), compounds only with

positional disorder P = ({P}, {O, P}) and compounds with

mixed disorder M = (all other sets). This classification creates

five non-overlapping sets. The distribution over these sets is

shown in Fig. 4(c). Ordered compounds are the most abundant

at 41%, followed by compounds with only substitutional

disorder, 35% (59% of all disordered compounds), only

vacancies, 7.1% (12% of all disordered compounds), only

positional disorder, 1.2% (2% of all disordered compounds),

and mixed disorder, 16% (27% of all disordered compounds).
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Figure 5
(a) Distribution of compounds with respect to the number of elements in a composition formula. (b) Proportion of ordered and disordered compounds
depending on the number of elements in a formula. (c) Distribution of configurational entropies for compounds with different numbers of elements in
their composition. Red dots represent individual compounds. The solid dark-blue line shows ln N scaling and the light-blue line shows the average
configurational entropy dependence on the number of elements in the compound. (d) Distribution of configurational entropies for compounds with
different numbers of orbits in the structure. The inset shows the same plot with a logarithmic y axis. The light-blue lines show the average entropy
dependence on the number of orbits. Red dots show individual compounds.



An alternative approach to aggregation that we considered

is to create overlapping sets by putting into the O class all

compounds which have at least one ordered orbit, into the S

class all compounds containing any sort of substitutional

disorder, into the V class all compounds containing any sort of

vacancies and into the P class all compounds containing any

sort of positional disorder. The results of this type of aggre-

gation are shown in Fig. 4(d). We can see that 95.4% of

compounds have at least one ordered orbit, 49.0% have

substitutional disorder, 20.5% have vacancies and only 8.6%

have any type of positional disorder.

3. Results and discussion

3.1. Distribution of structural disorder in the ICSD

3.1.1. Global order/disorder in materials

Initially, we examine the distribution of order and disorder

across the ICSD, just splitting them into ordered and dis-

ordered.

Fig. 5(a) shows the dependence of the distribution of the

compounds in the ICSD with respect to the number of

elements in the formula (here and below, if not specified

separately, we use the data set with excluded duplicates; see

Section 2 for the definition of duplicates). Compounds

composed of two, three, four or five elements dominate. Fig.

5(b) shows the proportion of ordered and disordered

compounds depending on the number of elements in the

formula. The general trend coincides with the observations of

Toher et al. (2019) in that, as the number of elements in the

formula increases, the proportion of ordered compounds

decreases. Interestingly, already for three-element com-

pounds, the number of ordered and disordered compounds

is approximately the same, and the number of disordered

four-element compounds exceeds the number of ordered four-

element compounds. All compounds with 11 or more elements

in the formula are disordered.

Toher et al. (2019) showed that the enthalpy gain for the

formation of ordered materials decreases very fast with

increasing number of elements N in the compound and is

exceeded by the entropy gain already for N = 3. Here, the

enthalpy gain, �H(N | {1, . . . , N � 1}), of an ordered com-

pound with N elements in its composition formula with respect

to all possible ordered {1, . . . , N � 1} sub-components is

defined as the energetic distance of the N-compound from the

convex hull formed by the {1, . . . , N � 1} sub-components. The
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Figure 6
(a) Dependence of the average number of elements in a composition on the space group number. (b) Dependence of the average number of orbits in a
structure on the space group number. (c) Dependence of the fraction of disordered compounds on the space group number. (d) Dependence of the
average configurational entropy (averaged only over disordered compounds) on the space group number. (e) Fraction of compounds for each element in
which it occupies an ordered orbit.



estimation of the entropy gain is based on the assumption that

every site can be occupied by any of the N elements, so

the entropy per atom is ln N and the entropy gain is

lnðNÞ � lnðN � 1Þ.

Fig. 5(c) shows the dependence of the configurational

entropy per atom on the number of elements in a compound

[equation (5)]. The entropy is measured in units of kB per

atom. At T = 300 K, Sconf = 1kB per atom corresponds to

SconfT = 26 meV per atom. Entropies calculated from ICSD

CIFs as described in Section 2.3 were used. The red dots in Fig.

5(c) correspond to individual compounds, the light-blue line

shows the average value of the entropy for compounds with a

fixed number of elements, and the standard deviations are also

shown. The dark-blue line shows the ln N trend as a reference

for systems like equimolar high-entropy alloys in which every

site can be equally occupied by any of N elements. The range

of configurational entropies per atom does not increase

substantially with N (for N > 2) and the average configura-

tional entropy grows only slightly as N increases. This implies

that, on average, if we increase the number of elements in a

compound, its complexity measured by the number of orbits

increases, instead of mixing elements to a greater extent in one

orbit.

Fig. 5(d) shows the dependence of configurational entropy

on the number of orbits for all compounds in the data set. The

inset shows the same plot with a logarithmic y axis. The

average configurational entropy per atom decreases with

increasing number of orbits. The number of orbits can be used

as a simple measure of structural complexity, so we can state

that more structurally complex compounds tend to have

smaller levels of disorder than more structurally simple ones.

Figs. 6(a) and 6(b) show the average number of elements

and orbits for each space group. The average number of

elements does not depend on the space group number, but the

average number of orbits decreases noticeably with increasing

space group number. Fig. 6(c) shows the dependence of the

fraction of disordered compounds on the space group number.

On average, the fraction of disordered compounds increases

with increasing space group number. The degree of disorder of

disordered compounds measured by the average configura-

tional entropy also increases with increasing space group

number [Fig. 6(d)].

Fig. 6(e) shows for each element the fraction of compounds

in which this element occupies an ordered orbit. On average,

the fraction of disordered compounds decreases with

increasing atomic number and with the period in each group.

Non-metals are in general more ordered than metals.

3.1.2. Distribution of different types of disorder over

elements and structures

Now we turn to the distribution of different types of

disorder over elements. Fig. 7 shows the fraction of

compounds in which an element occupies S, V and P orbits

among all compounds containing this element. The supporting

information contains maps for the other types of orbits, SV, SP,

VP and SVP.

The counts are aggregated in the following way. For each

element the compound is counted once for each type of

disorder. For example, in RbCr(SO4)2 (Fig. S8), collection

code 173671, oxygen occupies both one ordered orbit and one

positionally disordered orbit (in this sense we use the word

‘orbit’ according to our classification). Therefore, for this

compound one count will be added to the number of

compounds with an ordered oxygen orbit, and one count will

be added to the number of compounds with a positionally

disordered orbit. In Ca0.97Co0.199Mg0.831Si2O6 (Fig. S9),

collection code 74470, there are three ordered orbits for

oxygen. Therefore, one count will be added to the list of

ordered compounds for oxygen.
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Figure 7
Fractions of compounds in which an element occupies (a) a substitu-
tionally disordered orbit S, (b) an orbit with a vacancy V and (c) an orbit
with simple positional disorder P among all compounds containing this
element. Similar diagrams for other types of disorder SV, SP, VP and SVP
can be found in the supporting information.
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Some trends can be noticed in Fig. 7. The most common

type of disorder is substitutional [this is also reflected in Figs.

4(b) and 4(c) showing the distribution of compounds over

disorder sets]. The fraction of substitutional disorder for

metals has a tendency to decrease when going down the group,

and from left to right in the period, for transition metals and

lanthanoids. Mg, Fe, Cr and Ti have more than 0.5 probability

of being found in substitutionally disordered orbits. The two

largest metal atoms, Cs and Rb, have the smallest probability,

below 0.07, of being found in substitutionally disordered orbits

among all metals with sufficient statistics.

Vacancies are a much less common type of disorder than

substitution. Alkali metals and Cu, Ag, Hg and Tl are most

inclined to form vacancies among all metals. C, N and O also

have a higher probability for vacancy formation than other

elements on average.

Positional disorder is also most common for alkali metals

and for Ag, Tl, Pb and Bi. Interestingly V, Nb, Mo and Sb have

a slightly higher probability of being found in positionally

disordered orbits than other elements. Among non-metal

elements, F has the highest fraction of positional disorder,

followed by O, Cl and C.

Fig. 8 shows the distribution of different types of disorder

over structures, aggregated into crystal systems, crystal classes

and space group numbers. Here we show aggregated disorder

classes as they are defined in Fig. 4(c): S contains compounds

with disorder sets {S} and {S, O}, V contains compounds with

disorder sets {V} and {V, O}, P contains compounds with

disorder sets {P} and {P, O}, and other compounds are aggre-

gated into the M disorder class. In Fig. 8, each element of the

plot is proportional in size to the number of compounds

representing it, and the shading shows the fraction of the

corresponding type of disorder.

Substitutional disorder is least common in the triclinic

crystal system and most common in the cubic crystal system.

Among the most populated crystal classes, 4=m32=m has the

highest level of substitutional disorder, and the most popu-

lated space group type with the highest fraction of substitu-

tional disorder is 227, Fd3m. Vacancies are slightly more

common in trigonal and hexagonal crystal systems than in

other crystal systems, and about half as common in the triclinic

crystal system. Crystal classes 6 and 6/m have the highest

fractions of vacancies among crystal classes. In contrast to

these trends, positional disorder is most common in the

triclinic crystal system. However, among point groups 6/m and

222 have the highest fraction of positional disorder. Mixed

disorder is slightly more common in the cubic and tetragonal

crystal systems than in the others. Among point groups, 6/m

has the highest fraction of mixed disorder.

3.2. Distribution of structural disorder in different types of

materials

Next we consider the distribution of disorder in several

classes of materials (see Section 2.1 for the definitions of

the classes) such as oxides (35098 compounds), carbides

(1978 compounds), nitrides (1485 compounds), fluorides (2088

compounds), phosphides (1888 compounds), sulfides (5728

compounds), chlorides (1121 compounds), selenides (3793

compounds), bromides (644 compounds), iodides (658 com-

pounds) and intermetallics (17766 compounds). The corre-

sponding distributions over the elements are shown in Figs. 9–

13, and Figs. S21–S26.

These distributions differ significantly from each other.

Iodides and bromides have small fractions of disorder overall,

and substitutional disorder is rare compared with its frequency

in the database overall. In oxides (Fig. 9), metals have high

fractions of substitutional disorder, including S, SV and SP.

Significant fractions of vacancies are observed for alkali

metals and Ag, Hg and Tl. The same elements show large
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Figure 8
Frequency of different classes of disorder, S, V, P and M [as they are defined in Fig. 4(c)], over crystal systems, crystal classes and space groups. Each
element of the plot is proportional in size to the number of compounds representing it, and the shading shows the fraction of the corresponding type of
disorder, paler being a low fraction and darker being a higher fraction.
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Figure 9
Distribution of disorder over elements in oxides.

Figure 10
Distribution of disorder over elements in fluorides.
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Figure 12
Distribution of disorder over elements in iodides.

Figure 11
Distribution of disorder over elements in sulfides.



fractions of positional disorder. In contrast to this picture, in

sulfides (Fig. 11) and selenides (Fig. S25) nearly all metals

demonstrate relatively high fractions of vacancies, including

transition metals where vacancies are relatively uncommon in

oxides. Phosphides, nitrides and carbides have similar distri-

butions among themselves, with average levels of disorder. In

fluorides, vacancies mixed with another type of disorder (VP,

SV and SVP orbits) are nearly absent, in contrast to all other

types of material. The overall fraction of disordered fluorides

is small compared with oxides. Chlorides have a similar

distribution to fluorides but simple substitutional disorder in

chlorides is less common, and instead V and SV orbits appear.

Fig. 13 shows the distribution of disorder in intermetallics

and alloys. In the intermetallics/alloys data set (described in

Section 2.1), the fraction of disorder is on average low and

predominately represented as substitutional disorder, with a

small fraction of vacancies. In oxides and sulfides, alkali metals

and Ag, Tl, Pb and Bi show rich disorder behaviour. In

intermetallics/alloys they do not differ qualitatively from other

metals.

3.3. Substitutional disorder

In this section we consider substitutional disorder and the

probability of two elements occupying the same orbit simul-

taneously (i.e. of substituting for each other). It is interesting

to compare these probabilities with the closeness of elements

with respect to the Pettifor scale (Pettifor, 1984; Glawe et al.,

2016), which is a one-dimensional ordering of elements based

on their ability to substitute each other in ordered compounds

without changing the structure type.

To do this, first we collect statistics of co-occurrence of

elements in all types of substitutionally disordered orbits, S,

SV, SP and SVP. We do so by counting for each element the

number of times these elements appear together in one orbit,

Oij(S, SV, SP, SVP). To quantify the difference in frequency of

occurrence of elements in reported materials, we divide the

count by the number of compounds with element i, Ni, and

element j, Nj:

Fij ¼
OijðS; SV; SP; SVPÞ

Ni Nj

: ð11Þ

Then for each element we sum the adjusted counts [equation

(11)] over all other elements and divide each count by this

number:

pij ¼
Fij

P
j6¼i Fij

: ð12Þ

As a result, for each element i we have the list of probabilities,

pij, for this element to be found together with another element

j in a substitutionally disordered orbit. Examples of such lists

of probabilities are shown in Fig. 14(a) for Al and Fig. 14(b)

for Cs. To facilitate comparison with the Pettifor scale, the
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Figure 13
Distribution of disorder over elements in intermetallics and alloys.

http://doi.org/10.1107/S1600576725003000


elements on the x axes of Figs. 14(a) and 14(b) are ordered

according to the modified Pettifor scale (Glawe et al., 2016).

The highest probability of substituting Cs is for Rb and K,

which are the closest to Cs on the Pettifor scale. Al has the

highest probability of being substituted by Si, Mg, Fe, Cr and

Ti, which are all a long way from Al on the Pettifor scale. Thus,

the Pettifor number difference is a good predictor of substi-

tution for Cs, but not for Al.

Fig. 15 shows an M–M plot for binary compounds AaBb, a >

b, which are ordered or have substitutional disorder only.

M(A) is the Pettifor number for element A and M(B) is the

Pettifor number of element B. Each circle represents a

compound. The colour of the circle reflects the value of the

mixing entropy per atom in the compound. The maximum

entropy corresponds to the ideal mixing of two elements on

one site, ln 2 ’ 0:7 (occupancies of 0.5 for both elements).

Compounds with maximum mixing entropy tend to cluster

along the diagonal, meaning that binary compounds composed

of elements with similar Pettifor numbers tend to form

disordered compounds. In contrast, compounds with a large

difference in Pettifor numbers tend to form ordered

compounds. However, there are some elements (such as Li

and Al) for which this rule does not work, even in binary

compounds.
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Figure 14
(a) Distribution of probabilities of finding Al and another element in one substitutionally disordered orbit. (b) Distribution of probabilities of finding Cs
and another element in one substitutionally disordered orbit.

Figure 15
Pettifor number M–M plot for binary compounds AaBb. The convention
is that a � b. Only ordered compounds and compounds with substitu-
tional disorder are shown. The colour represents the value of the mixing
entropy, dark blue corresponding to the maximum and red to the
minimum.



In conclusion, we can say that the difference in Pettifor

numbers correlates, on average, with the probability of

elements substituting each other in substitutionally disordered

orbits. Elements with close Pettifor numbers tend to have a

high degree of mixing, measured by the mixing entropy, but

this is not true for all elements.

4. Conclusions

In this work we have analysed the distribution of disorder in

the Inorganic Crystal Structure Database. To facilitate our

analysis, we devised a classification system for crystallographic

orbits concerning structural disorder. We identified seven

distinct types of disordered orbits, S, V, P, SV, SP, VP and SVP.

The tools which we have developed can be used to identify the

type of disorder present in experimental CIFs.

Current approaches to the definition of crystallographic

structure types do not take disorder into account. As

approximately 50% of known compounds contain disorder,

we suggest the addition of disorder descriptors to the defini-

tion of structure types and we take a first step in this direction.

A reliable definition of structure types requires developing

robust measures of similarity, taking into account both

geometric, elemental and disorder information, which is

beyond the present work.

We have demonstrated that, focusing solely on disorder,

compounds can be categorized according to the combination

of disordered orbit types present in their structures. In our

data set, there are 170 such disorder sets, with five of them

encompassing over 90% of the structures, {O}, {S, O}, {V, O},

{S, V, O} and {S}. Continuing a coarse-graining of repre-

sentations of compounds, we can divide the compounds into a

smaller number of classes: for example, ordered compounds,

or compounds with substitutional disorder, positional

disorder, vacancies or mixed disorder. The classification can

be adjusted for each particular purpose.

To quantify disorder we calculate the mixing and config-

urational entropy from the CIFs. To do this we build on a

recently implemented method for entropy calculation

(Kaußler & Kieslich, 2021), but in the present paper we

distinguish between vacancies and positional disorder, which

requires new formulae for the calculation of those entropies.

In particular, we recognize the fact that positional disorder

does not contribute to the mixing entropy but contributes to

configurational entropy. We derive new formulae here.

The notions of ‘combined orbit’ and ‘combined site’ which

we have introduced allow the determination of average

coordination environments for positionally disordered sites

when the coordination environment can be determined for the

centre of mass of a ‘combined site’. At the moment, existing

packages for the determination of local coordination envir-

onments (Waroquiers et al., 2020) cannot correctly process

such cases. We do not address this question in the present

paper, but it may be done in the future.

We have analysed the distribution of disorder over elements

and structures. Substitutional disorder is much more common

than any other type of disorder. On average, compounds in

higher-number space groups tend to be more disordered

(Fig. 6). These more symmetric structures, on average, have a

smaller number of orbits but they tend to have higher

configurational entropy. The average configurational entropy

per atom grows very slowly with increasing number of

elements in the composition, in contrast to previous predic-

tions (Toher et al., 2019). At the same time, the configurational

entropy per atom decreases with increasing number of orbits.

The distribution of disorder over the elements has notice-

able trends. The fraction of disorder decreases with increasing

atomic number, down the group for all metals. The fraction of

disorder also decreases with increasing atomic number for

transition metals, lanthanoids, actinoids and lighter p-block

metals. Tl, Pb and Bi show the opposite trend. Alkali metals

and Ag, Tl, Pb and Bi have much larger fractions of positional

disorder, vacancies and complex disorder types than other

metals, on average.

We have also analysed the distribution of disorder in

different classes of compounds and find some clear trends. For

example, fluorides are largely free of vacancies, whereas

sulfides have a relatively high percentage of compounds with

vacancies. Bromides and iodides have low levels of disorder in

general. In intermetallics substitutional disorder is common,

while other types of disorder are not common. Alkali metals

and Ag, Tl, Pb and Bi do not show unusual behaviour in

intermetallics and behave like all other metals.

Finally, we looked more attentively at substitutional

disorder. The question we asked was whether the Pettifor

number is a good predictor of the probability of two elements

being present in one substitutionally disordered orbit. The

Pettifor number was derived as a measure of the probability of

two elements substituting each other in an ordered compound

without changing the structure type. The answer is that the

difference in Pettifor numbers of two elements is a good

measure of the probability that they share the same substi-

tutionally disordered orbit on average, but some elements

deviate strongly from this rule.

We have introduced a classification of disorder in crystals

described by the average structure and developed a program

performing automatic classification. This may have a variety of

benefits, as 50% of experimentally discovered crystal struc-

tures available in the ICSD contain disorder. For example,

disorder could be introduced into the existing classifications of

crystal structures, or the introduction of disorder descriptors

may facilitate high-throughput and machine learning studies

of disordered materials.

5. Code availability

The code for entropy calculation from a CIF and the code used

to generate all images are available at https://github.com/

lrcfmd/Disorder.

6. Related literature

For further literature related to the supporting information,

see Batuk et al. (2017), Brauer & Gradinger (1954), Brown

research papers

676 Dmytro Antypov et al. � Classification and statistical analysis of structural disorder J. Appl. Cryst. (2025). 58, 659–677

https://github.com/lrcfmd/Disorder
https://github.com/lrcfmd/Disorder
http://doi.org/10.1107/S1600576725003000


(2009), Guymont et al. (1992), Hellmann & Mewis (1950), Kim

et al. (2019), Kowach et al. (2000), Laval et al. (1986), Leube et

al. (2022), Malaman et al. (1976), Shannon & Prewitt (1969),

Tabira et al. (1992) and West et al. (2008).
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