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Dark-field X-ray microscopy (DFXM) has recently been introduced for 3D

mapping of dislocations and their strain fields in bulk samples and with high

angular resolution (10� 4�). In this work, we investigate the minimum informa-

tion needed to identify the type of an isolated dislocation, parameterized by its

Burgers vector, line direction and slip plane. Forward projections of DFXM

weak-beam images are generated for a face-centred cubic symmetry using

geometrical optics simulations with realistic noise levels. Cross correlating one

DFXM image with similar images representing all possible combinations of

dislocation types, we find that the cross-correlation values for all non-identical

images are below 0.7, clearly demonstrating the feasibility of this method of

identification. Experimental DFXM images of isolated dislocations are

compared with forward-modelled ones. Complete identification is demon-

strated, with the exception of the sign of the Burgers vector. The performance

improvement obtained by acquiring data from a 3D volume is explored. This

work verifies the use of geometrical optics to simulate DFXM weak-beam

images and supports the interfacing of DFXM data with discrete dislocation

dynamics simulations.

1. Introduction

Dislocations play a crucial role in the plastic deformation of

metals, governing key mechanical properties such as strength,

ductility and toughness. The motion of these line defects in the

crystal structure on close-packed layers (slip planes) facilitates

the layers sliding over each other, enabling metals to undergo

plastic deformation (Hirth & Lothe, 1992). With an increasing

number of dislocations they form patterns, leading to a hier-

archically organized structure which may comprise near-

dislocation-free cells, bands and grains. To model the evolu-

tion of the entire microstructure, multiscale models are

applied, e.g. involving discrete dislocation dynamics (DDD)

(Devincre et al., 2011; Po et al., 2014; Sills et al., 2016; Pachaury

et al., 2022) and continuum dislocation dynamics (CDD)

(Mohamed et al., 2015) simulations. Understanding the orga-

nization of dislocations and their evolution is essential for

predicting material behaviour under stress in metals and

alloys, but it also governs the mechanical properties of other

crystalline materials, e.g. fracture toughness and thermal

stability in ceramics (Porz et al., 2021).

Identifying and characterizing individual dislocations – in

terms of Burgers vector and line directions – thus provides

valuable insight that can inform the design of stronger and

more resilient materials.

Traditionally, advanced electron microscopy techniques are

used to visualize dislocations by revealing defects in the

crystalline structure. Transmission electron microscopy
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(TEM) enables direct observation of the individual dislocation

lines with (near) atomic-scale resolution (Williams & Carter,

2009). Electron backscatter diffraction (EBSD) typically

provides insights into collective dislocation structures and

grain–boundary interactions (Moussa et al., 2017). Recently,

high-resolution EBSD (HR-EBSD) has been able to reveal

individual dislocations (Ernould et al., 2022). However, all

electron-based techniques are limited to visualizing only the

surface or thin slices of samples, making it difficult to acquire

3D maps of the microstructure on all relevant length scales

and to study the dynamics under bulk conditions.

Of particular relevance for low-dislocation-density systems

such as semiconductor devices, the local distortion of the

crystal structure caused by dislocations can also be probed by

X-ray topography (Lang, 1997; Ohler et al., 1997). Three-

dimensional information may be gathered e.g. in Laue

geometry by tomographic reconstruction (Ludwig et al., 2001)

or in Bragg configuration by combining section topography

with focused sheet-shaped X-rays (Yoneyama et al., 2023).

Mapping on a finer length scale is available via synchrotron-

based X-ray diffraction. This has been explored by Bragg

coherent diffraction imaging (BCDI) (Ulvestad et al., 2017;

Cherukara et al., 2018) and differential aperture X-ray

microscopy (Guo et al., 2015; Guo et al., 2020). In BCDI, the

dislocations shift the phase of the scattered X-rays, allowing

for the reconstruction of 3D displacement fields within a

crystal at nanometre-scale resolution. However, BCDI is

limited in volume to mapping out nanoscale crystals or small

regions of larger crystals.

Recently, dark-field X-ray microscopy (DFXM) has

emerged as a novel diffraction-based imaging technique

capable of non-destructively mapping dislocations and their

displacement fields in three dimensions within bulk crystalline

materials (Jakobsen et al., 2019; Simons et al., 2019). DFXM

uses high-energy incoherent X-rays combined with dark-field

conditions to image specific crystallographic planes deep

within the material (Simons et al., 2015; Poulsen et al., 2017;

Poulsen et al., 2021). With sub-micrometre resolution, DFXM

can visualize both structures formed by multiple dislocations

(Zelenika et al., 2024) and individual dislocations in volumes

as large as a cubic millimetre (Yildirim et al., 2023). The

technique exhibits superior angular resolution, allowing for

mapping the mechanical field around the dislocations. DFXM

has also been employed to capture movies of dislocation

motion in real time, e.g. to study phase transitions in ferro-

electrics (Simons et al., 2018) and the influence of dislocations

on melting (Dresselhaus-Marais et al., 2021).

The aim of this paper is to provide a methodology for

identifying the nature of the individual dislocations in DFXM

images. We shall assume that the incident X-ray beam illu-

minates a layer in the sample. The dislocations are fully

characterized by the magnitude and direction of their Burgers

vectors and the direction of their dislocation lines. The slip

plane on which a dislocation moves is spanned by these two

directions.

There are several ways DFXM can visualize and quantify

dislocations. First, as demonstrated in previous studies

(Jakobsen et al., 2019; Simons et al., 2019; Brennan et al., 2022),

dislocations are directly visible in the raw detector images in

the weak-beam condition, where the sample is tilted slightly

with respect to the diffraction condition of the undistorted

lattice.

Second, rocking curve imaging, where images are captured

while varying the Bragg condition, can provide detailed

information about the lattice distortion field surrounding a

dislocation (Caliste et al., 2021). In both cases, mapping may

be done in two or three dimensions (by scanning the sample in

the direction perpendicular to the incident line beam). The 3D

mapping gives information on the glide planes and directions

of the dislocations.

In this paper, we investigate the potential for classifying

dislocations on the basis of a single weak-beam position.

Rocking curve imaging comprises more information and will

naturally lead to more robust and/or detailed classification

schemes, but also takes longer in terms of data acquisition; this

will be explored elsewhere. For simplicity we will consider

only a face-centred cubic (f.c.c.) lattice, and we will specifically

focus on pure aluminium. The study is performed with the use

of numerical simulations (forward projections) of DFXM

images. Subsequently, the tool derived is demonstrated for

identification of dislocations in experimental DFXM data.

2. Methods

In this section we will present the methods used to identify

individual dislocations, describe how comparisons between

simulated images and experimental images have been made,

and explain the quantitative correlation metrics used.

2.1. Experimental

The experimental data were collected on the DFXM station

of beamline ID06 at the European Synchrotron Radiation

Facility (ESRF, Grenoble, France) (Kutsal et al., 2019). The

energy of the incoming beam was 17 keV with a bandwidth of

�E/E = 10� 4. The incoming beam is shaped to a line beam

height of 0.6 mm (FWHM) and a width of 0.5 mm. As illu-

strated in Fig. 1, this line beam illuminates a plane deeply

embedded in the bulk of the sample. Three-dimensional

mapping is obtained by repeating measurements for a set of

planes at equidistant positions in z‘. The sample was a 1 mm

thick well annealed aluminium single crystal deformed just

beyond the yield point in tension. The tensile axis is chosen to

be identical to the scattering vector direction Q ¼ ½111�, where

Q denotes the direction of the scattering vector in reciprocal

lattice units. The magnitude of the scattering vector is given by

|Q| = (4�/�)sin(�), where � is the incident wavelength and 2�

the scattering angle.

The diffracted signal in the vicinity of Q is imaged using a

compound refractive lens (CRL) as an objective, producing a

magnified real-space image of the plane. This image is subject

to an affine transformation caused by the oblique viewing

angle, given by 2�. In the case presented below, the in-plane

spatial resolution is about 200 nm (along y‘) � 615 nm (along
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x‘). The corresponding total field of view (FOV) is 432 �

1574 mm (in practice, the FOV in the x‘ direction is limited by

the 1 mm thickness of the sample).

The sample is mounted on top of a goniometer, enabling

tilting of the diffraction vector by angles � and � and trans-

lations of the sample in xs, ys and z‘ (Fig. 1). This facilitates

multiple scan modes that combine rotations and translations

of the sample. For this experiment, we combined rocking

curves with z‘ axis translations. In the rocking curve scan,

images are acquired while stepping the � rotation (that is,

sample rotation around the ys axis; Fig. 1) with a 10� 4�

sensitivity. Examples of the resulting raw images are provided

as insets in Fig. 2. At � = 0�, the undistorted part of the crystal

diffracts (strong-beam condition). Small changes in � bring the

distorted crystal lattice around the dislocations into diffrac-

tion. By inspection of the image series of the rocking curve

(Fig. 2), we assess that the distortion field gives the best (weak-

beam) contrast to the undistorted crystal structure at � = 8 �

10� 4� (highlighted in red).

2.2. Geometrical optics simulations

The simulated images in this work were all created with a

forward model based on geometrical optics (GO). It assumes

kinematic scattering, and as such is only relevant for weak-

beam conditions. The formalism is described by Poulsen et al.

(2021), where it was implemented as a MATLAB script. The

code was optimized by Borgi et al. (2024) as a Python script.

Briefly, GO derives scattering probabilities as a convolution

in six dimensions (reciprocal and direct spaces) between an

instrumental resolution function and the position and wave-

vector transfer of a diffraction event. The model describes how

the intensity of the scattered X-rays is attenuated as they pass

through the sample and the objective, and how they form an

image on the detector. In reciprocal space a Monte Carlo

approach is exploited in which ray-tracing simulations are

confined by the properties of the incoming beam, the objective

in the diffraction path and the detector. The direct-space

component of the resolution function accounts for the effects

of the sample’s spatial configuration, such as the shape and

size of the scattering objects, the sample’s position relative to

the incoming beam and the geometry of the detector.

The GO formalism paper by Poulsen et al. (2021) also

introduces a description of the different coordinate systems to

define the various parameters of the simulations:

(i) The laboratory coordinate system, subscript ‘, with the

incoming beam parallel to the x axis, as seen in Fig. 1.

(ii) The sample coordinate system, subscript s, in general

defined by axes relevant to the sample geometry or manu-

facturing. In our case this is defined by a rotation by � around

the y‘ axis.

(iii) The grain coordinate system, subscript g, normally

defined by the orientation of a particular grain. Here it is used

to rotate dislocation systems (see below).

(iv) The dislocation coordinate system, subscript d, based on

the Burgers vector, slip plane and line direction of the indi-

vidual dislocation.

Rotation matrices are used to convert between the different

coordinate systems. Below we summarize the most relevant

micromechanical expressions and coordinate transformations

for the current work.

In GO, diffraction events are described in terms of a

micromechanical model, based on the displacement gradient

tensor field F(x, y, z). Specifically, we define the dislocation

coordinate system in terms of one isolated and straight dis-

location, with the dislocation line direction along the z axis.

We have
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Figure 2
Example of experimental data: a rocking curve around the nominal value
for the Q = ½1; 1; 1� reflection (� = 0) of the aluminium single crystal
studied. As the sample is rotated away from � = 0, the mean intensity of
the acquired images (blue line) decreases. Insets of raw images are added
at different points of the rocking curve, illustrating the strong-beam
condition (crystal lattice in diffraction) and the weak-beam condition
(dislocation distortion fields in diffraction), until the sample is completely
rotated out of the diffraction condition. Most of the images used in this
work were acquired at 8 � 10� 4�, highlighted in red. The images in the
insets have a FOV of 260 � 200 mm.

Figure 1
Schematic diagram illustrating the DFXM setup in both the laboratory
(x‘, y‘, z‘) and sample (xs, ys, zs) coordinates. The incoming beam, aligned
with the x‘ axis, is shaped by a 1D condenser to illuminate a specific (x‘,
y‘) layer within the sample. The diffraction signal at the angle 2� is
focused by the CRL, creating a real-space image of the illuminated layer
on the detector. The rotations � and � are shown around the xs and ys

axes, respectively.
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with I being the identity matrix and ud the displacement field.

The angle � between the Burgers vector and the dislocation

line is 0 or 180� for pure screw segments and 90 or 270� for

pure edge parts. Angles in between represent dislocations of

mixed character.

Next, consider an arbitrary slip system defined by a Burgers

vector b, a slip-plane normal n and a line direction t. We define

the grain system to have b, n and t along the xg, yg and zg

directions, respectively. Note that for this work the grain

coordinate system spanned the whole sample, as the sample

was defined as an aluminium single crystal with f.c.c. symmetry

to match the experimental data. Hence,

rg ¼ Udrd; ð2Þ

Ud ¼

b1 n1 t1

b2 n2 t2

b3 n3 t3

0

@

1

A: ð3Þ

The sample system is partly defined by the sample being in

the diffraction condition. The remaining degree of freedom is

given by the ‘mounting’ of the sample. Here we specify that a

certain crystallographic direction is parallel with the y axis of

the laboratory coordinate system, y‘. Hence,

rg ¼ UT
s rs; ð4Þ

Us ¼

s1 s2 s3

y1 y2 y3

Q̂1 Q̂2 Q̂3

0

@

1
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Here, Q̂ is the normalized scattering vector and s is the

resulting crystallographic direction that is parallel with the xs

direction, given by s ¼ y� Q̂.

As already mentioned, the sample system is related to the

laboratory system by a rotation � around y‘:

rs ¼ � r‘; ð6Þ

� ¼

cos � 0 sin �

0 1 0

� sin � 0 cos �

0

@

1

A: ð7Þ

In total, the relation between the laboratory system and the

dislocation system becomes

r‘ ¼ �TUsUdrd: ð8Þ

To illustrate how dislocations look in the simulated DFXM

weak-beam images, we show the forward projection of a

phantom for a setting close to the [111] reflection in Fig. 3. The

phantom comprises walls of edge dislocations which delineate

a domain. Within this domain five edge dislocations of random

Burgers vectors (highlighted with red arrows) are located.

Each of these exhibits its own distortion field.

2.3. Cross-correlation metric

To determine the quality and uniqueness of the dislocation

type identification, we will rely on cross correlation either

between a set of simulated images or between an experimental

image and a simulated image. The cross correlation between

such a set of images is determined using fast Fourier trans-

forms (FFTs). When comparing simulated weak-beam images

with experimental ones, an additional step was introduced as

described below.

Before the cross correlation was calculated, the images were

normalized. Three normalization methods were compared

(see the supporting information). From histograms of the

corresponding cross-correlation values for a test data set

(Fig. S1 in the supporting information), the best normalization

method was found to be Z-score normalization (Wittwer &

Seita, 2022). In this we have for each pixel in each image

I(x, y),

I 0ðx; yÞ ¼
Iðx; yÞ � ðI� þ 2I�Þ

I�
; ð9Þ

with I� being the mean intensity across the whole image and I�
being the standard deviation of the intensity across the image.

To ensure this resulted in a background level of zero, (I� + 2I�)

was subtracted from the images and all negative values were

set to zero, leaving only positive values for the pixels with the

strain field of the dislocations.

The cross-correlation image CC was then computed using

the FFT of the set of weak-beam images:

CCð�x;�yÞ ¼ F � 1 F I 01ðx; yÞ
� �

� F I 02ðx; yÞ
� ��� �

; ð10Þ

C ¼ max CCð�x;�yÞ; ð11Þ

where F I01ðx; yÞ
� �

denotes the Fourier transform of the first

image I01ðx; yÞ and F I 02ðx; yÞ
� ��

is the complex conjugate of the

research papers

816 Sina Borgi et al. � Individual dislocation identification in DFXM J. Appl. Cryst. (2025). 58, 813–821

Figure 3
Simulated DFXM image of a layer in a single crystal of aluminium ([111]
reflection), displaying the contrast of five random edge dislocations with
different Burgers vectors (highlighted with arrows) within a domain.

http://doi.org/10.1107/S1600576725002614
http://doi.org/10.1107/S1600576725002614


Fourier transform of the second image. The maximum value of

CC(�x, �y) defines the cross-correlation value C and the

associated translational shift of (�x, �y).

3. Results

We first study the feasibility of dislocation identification by

means of simulations, based only on a single image and with no

additional information available, and then we compare with

experimental data. In the latter case we will also consider the

case of the slip plane being known (and hence the number of

dislocation types reduced by a factor of 4). This information is

readily available from 3D data, i.e. a stack of images acquired

as a function of z.

3.1. Dislocation simulated image comparison

A series of weak-beam images of individual dislocations

were simulated for diffraction on the [111] reflection. The

images were simulated with 2� = 17.953� and a sample

orientation of

Us ¼

1=
ffiffiffi
2
p

0 � 1=
ffiffiffi
2
p

� 1=
ffiffiffi
6
p

� 2=
ffiffiffi
6
p

� 1=
ffiffiffi
6
p

� 1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

� 1=
ffiffiffi
3
p

0

@

1

A: ð12Þ

The test set included all combinations of the four slip

planes, the six Burgers vectors allowed for each slip plane and

line directions. These last were varied in 10� increments over

the full dislocation loop. This results in a test set of 864 weak-

beam images. These images we correlate with each other to

quantify the likelihood of mistaken identities. Of the 864

configurations, the 24 that are very close to the invisibility

criterion G · b = 0 (within 10�) have been excluded from the

following discussion.

Fig. 4 displays the covariance matrix of the remaining 840

simulated images. Each pixel in the matrix represents the

cross-correlation values between a set of two images, with the

colour intensity indicating the degree of cross correlation. The

matrix is structured in the following order (innermost to

outermost loop):

(i) Line direction (10� increments)

(ii) Burgers vector (six for each slip plane)

(iii) Slip plane

This means that the first neighbour to a pixel differs by 10�

in angle between the Burgers vector and dislocation line. Once

the line direction has rotated 360�, the next group of 36 images

has a different Burgers vector. The slip planes separated by

white lines and their corresponding Burgers vectors are

ordered as labelled in the horizontal direction.

The cross-correlation value intensity ranges from low

(purple) to high (yellow), with the diagonal line showing

perfect correlation between the same images. Note that all

cross-correlation values related to non-identical images are

below 0.69. Within each group of slip planes, it is clear that

images with the same Burgers vector and slip-plane config-

uration exhibit similar correlation values. In some compar-

isons, e.g. between n = ½111� and n = ½111�, certain Burgers

vectors consistently tend to give rise to higher correlation

values (see the first column, second last row, as defined by the

white lines in Fig. 4).

To test the significance of the chosen scattering vector, a

similar covariance matrix was made from simulated weak-

beam images for the [020] reflection. Here we used 2� =

20.760� and a sample orientation of

Us ¼
1=

ffiffiffi
2
p

0 � 1=
ffiffiffi
2
p

� 1=
ffiffiffi
2
p

0 � 1=
ffiffiffi
2
p

0 2=
ffiffiffi
4
p

0

0

@

1

A: ð13Þ

The resulting covariance matrix, based on 846 non-zero

images, is shown in Fig. 5.

We observed that, by changing the scattering vector, the

cross-correlation value distribution changed significantly – in

this case the distribution shifted towards higher correlation

values. However, the highest non-diagonal cross-correlation

values only increased to 0.71. Here the covariance matrix

revealed that specific Burgers vectors (groups of 36 columns

or rows) show very high variation in the cross-correlation

values. We also note that the variance between the different
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Figure 4
Covariance matrix of the cross-correlation values C for 840 simulated
DFXM weak-beam images with [111] as scattering vector. Larger regions
highlighted with white lines represent the four slip planes n. (Inset)
Histogram of the cross-correlation values in the covariance matrix.



slip planes, regions highlighted by white lines in the figure, is

much smaller than in Fig. 4, as all slip planes exhibit cross-

correlation values with a higher mean.

3.2. Experimental identification and verification

The sample used in this study was mounted with the scat-

tering vector for DFXM set to be [111]. During the experi-

ment, a rocking curve was recorded across 11 layers, covering

a total depth of 20 mm. Within this examined volume, several

isolated dislocations were identified in a localized domain

(Frankus et al., 2025). By analysing the reconstructed 3D

volume and considering the crystallographic orientation of the

sample, we determined the slip plane on which the dislocations

resided. Similarly, combining the knowledge of the crystal-

lographic orientation with the information from the 3D

construction, the line direction for each isolated dislocation

was identified.

Next, we compared simulated images with the experimental

images of the individual dislocations. However, when

comparing experimental images with simulated images using

the FFT cross-correlation method from equations (10) and

(11), we found that some configurations exhibited high cross-

correlation values despite being visibly poor matches upon

inspection. To address this issue, a penalty was introduced in

the comparison process by incorporating the mean square

error (MSE) between the two images.

When experimental images were compared with simulated

images, there were cases where neighbouring dislocations

were too close to the dislocation of interest to be properly

centred in the cropped image, and this can be seen in Figs. 6(a)

and 7(a). This was an issue for the MSE penalty, as it did not

do any translation. Therefore, the translational shift from

equation (10) (�x, �y) was incorporated into the MSE

calculations, resulting in

MSE ¼
1

HW

XH

x¼1

XW

y¼1

I01ðx; yÞ � I 02ðxþ�x; yþ�yÞ
� �2

: ð14Þ

This was then used for the normalization of C,

Cnorm ¼
C

MSE
; ð15Þ

which can now be used for any cropped experimental image of

an individual dislocation.

In Fig. 6(a) one individual dislocation, along with a nearby

dislocation exhibiting a similar distortion field, is shown in a

weak-beam image. This dislocation lies on the (111) slip plane,

restricting its possible Burgers vectors to [110], [101] or [011].

In Figs. 6(b)–6(d), images of the three possible Burgers vectors

have been forward modelled with GO, using the following Us:

Us ¼
1=

ffiffiffi
6
p

� 2=
ffiffiffi
6
p

1=
ffiffiffi
6
p

1=
ffiffiffi
2
p

0 � 1=
ffiffiffi
2
p

� 1=
ffiffiffi
3
p

� 1=
ffiffiffi
3
p

� 1=
ffiffiffi
3
p

0

@

1

A: ð16Þ

By visual comparison, as well as cross-correlation values, we

conclude that the Burgers vector which exhibits a distortion
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Figure 6
DFXM weak-beam images acquired at � = 8 � 10� 4�. (a) Experimental
image. (b)–(d) Forward-modelled DFXM images with identical para-
meters to panel (a), representing a single dislocation at the centre (red
dots) with Burgers vector (b) [110], (c) [101] and (d) [011]. The
normalized cross-correlation value, Cnorm, is indicated above each simu-
lated image.

Figure 5
Covariance matrix of the cross-correlation values C for 846 simulated
weak-beam images associated with a [020] scattering vector. Larger
regions highlighted with white lines represent the four slip planes n.
(Inset) Histogram of the cross-correlation values in the covariance
matrix.



field resembling the experimental image is [110], displayed in

Fig. 6(b).

3.3. Example of use: a dislocation exhibiting double cross slip

With the experimental data from the sample described in

Section 3.2, we observed a dislocation exhibiting double cross

slip. The lower segment of the dislocation resided on the (111)

plane, while the cross-slipped portion lay on the (111) plane,

before the upper segment returned to the (111) plane; see

Figs. 7(a) and 7(b) for weak-beam images, and Fig. 7(d) for the

reconstructed dislocation line in three dimensions. Note that

the two diffraction planes shown in Fig. 7(d) are offset in the

direction perpendicular to the slip plane. This configuration

provided crucial information: the Burgers vector had to lie on

both planes, and consequently it was determined to be [101].

Using the crystallographic and geometric data from the

experimental images, we simulated the same dislocation

(matching the line direction, Burgers vector, slip plane and

sample orientation) [Fig. 7(c)] and achieved a near-perfect

agreement between the simulated and experimental distortion

fields through a visual comparison. For the purposes of this

paper, this analysis serves as a way of establishing the ‘ground

truth’.

Next we attempted to identify the dislocation type from a

single weak-beam image without this analysis of the double

cross-slip event. Specifically, the weak-beam image in Fig. 7(b)

was compared with every possible dislocation type, in a similar

manner to the covariance matrices in Figs. 4 and 5.

The weak-beam image from Fig. 7(b) was preprocessed as

described in Section 2.3. The same experimental parameters

that were used for this image were used to generate 840

simulated weak-beam images of all possible individual dis-

locations. The experimental image was cross correlated with

the 840 simulated weak-beam images and the values are

displayed in Fig. S2. The top six candidates from the

normalized cross-correlation values are shown in Fig. 8. The

next candidates had normalized cross-correlation values which

were all more than 40% lower than the top six candidates.

Visual inspection confirms that the six dislocation types all

exhibit a strain field which is similar to the experimental strain

field. They all had the same Burgers vector [101], i.e. they were

in accordance with the ground truth. The candidates displayed

in Figs. 8(a) and 8(d) were of pure screw dislocation type,

whereas the candidates displayed in Figs. 8(b), 8(c), 8(e) and

8( f) were of almost pure edge dislocation type.

When taking into account the information gained from the

z-stacked images, the dislocation direction and slip planes are

known. Here the slip plane for each candidate is correct and

the Burgers vector is also correct. Moreover, we know from

the z-stacked information that experimentally � = 72.72�,

which excludes the candidates in Figs. 8(a) and 8(d) as they

have � = 0�. This leaves us with the dislocations in Figs. 8(b),

8(c), 8(e) and 8( f) which have � = 70� and � = 80�. These four

candidates have the same line direction within �10� and the

same Burgers vector apart from the sign: b ¼ ½101� _ ½101�.
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Figure 8
(a)–( f ) Cropped weak-beam images (� = 8 � 10� 4�) of the six disloca-
tions with the highest Cnorm values out of the 840 simulated ones. All
dislocations lie on the (111) slip plane, and their Burgers vector b and line
direction are displayed above each image. Here � represents the angle
between the dislocation line direction and the Burgers vector b. The
centres of the dislocations are marked with red dots.

Figure 7
Double cross-slipping dislocation. (a) Weak-beam image of the lower
blue segment in panel (d). (b) Weak-beam image of the upper blue
segment in panel (d). (c) Corresponding forward-modelled image with
the same parameters as the two segments of the dislocation. (d) Three-
dimensional reconstruction of the double cross-slipping dislocation in
laboratory coordinates. Diffraction planes are highlighted for images (a)
and (b) with Q = ½111�.

http://doi.org/10.1107/S1600576725002614


4. Discussion
This work first of all validates the geometry and micro-

mechanical model implemented in the geometrical optics code

of Borgi et al. (2024) and demonstrates that, for isolated

dislocations and in the optimal weak-field setting, DFXM

images exhibit fields that are well described by forward

projection of classical analytical expressions. This corrobo-

rates the potential of interfacing DFXM data to discrete

dislocation dynamics simulations (Devincre et al., 2011; Po et

al., 2014; Sills et al., 2016; Pachaury et al., 2022). In this

connection it is relevant to note that the simulation of a single

510� 170 pixel image which is used throughout this work with

the GO code currently takes 0.33 s on a conventional laptop,

while a 2000� 2000 pixel image takes 182 s. Another potential

application is the optimization of DFXM experiments prior to

beamtime.

The work also demonstrates the identification of isolated

dislocations with high fidelity, based on only one � setting.

This is a testimony to the displacement field giving rise to

relatively large ‘blobs’ for the weak-beam setting applied.

Unfortunately, spot overlap between these large blobs sets a

lower limit on the dislocation density. Hence, it is relevant to

consider acquiring data at more extreme � values where only

the core of the dislocation gives rise to diffraction. With

decreasing spot sizes it becomes increasingly relevant to

include all images from a rocking scan in the identification

process. More generally, identification may be informed

additionally by scanning in the � and 2� directions as well, and

by probing more than one diffraction vector. Such procedures

are outside the scope of this paper.

Next, we argue that dislocation identification of the kind

studied here may benefit from the use of machine learning

tools. The current GO code is able to provide training data sets

comprising tens of thousands of images. As an inspiration, we

note that machine learning has been powerful for classification

tasks in orientation mapping methods such as EBSD, enabling

an improvement in resolution and/or a reduction in exposure

times by a factor of 5–10 (Ding et al., 2021). The latter is very

relevant for dislocation dynamics studies.

Comparing Figs. 4 and 5, it is clear that the choice of

reflection plays a role in how easy it is to identify a dislocation

from a single weak-beam image. This is prominent for dis-

locations that lie in the diffraction plane, e.g. the (111) slip

plane with a [111] reflection. Here we see the lowest cross-

correlation values compared with all other slip planes. This is

because the dislocations on the slip plane lie exactly in the

illuminated plane, making them very distinguishable from

each other by just a simple 10� rotation of the line direction.

However, the gauge volumes of each weak-beam image in this

DFXM setup are often very anisotropic, with the width and

length of the illuminated volume of the order of 800–1600

times larger than the height of the illuminated volume. This

results in a significantly smaller chance of finding dislocations

that lie exactly in the diffraction plane of a single weak-beam

image. If one were to acquire a z stack of weak-beam images,

obtaining a full 3D volume, the chance of finding dislocations

within the diffraction plane increases.

For these simulated images, only a single weak-beam image

of each dislocation configuration was simulated. Therefore we

now take a closer look at dislocations that lie on other slip

planes than (111). Here there are still variations between the

other slip planes when comparing the two reflections. As an

example, looking at dislocations that lie on the (111) slip

plane, they have lower cross-correlation values with the [111]

reflection when comparing them not just with dislocations that

lie on the same plane but also with those in other slip planes.

This suggests that careful consideration of the chosen reflec-

tion can be essential during experimental planning.

In relation to the six candidate dislocation types exhibited

in Fig. 8, we note that the peak intensities for the two screw

dislocations, represented by panels (a) and (d), are half those

of the other four dislocations. This discrepancy suggests that

these two configurations can be excluded as possible matches,

narrowing the candidates to four without the use of any

further information.

Straining the experimental sample to reveal in which

direction it moves could potentially reveal the sign of the

Burgers vector, reducing the set to just two candidates,

differing by only �10� in �. For many applications this accu-

racy is sufficient.

Finally, we discuss this work in the context of the recent

study by Pal et al. (2025). Using the same geometrical optics

framework, they extend the ‘invisibility criterion’ formalism

known from TEM to DFXM. Next, they explore how the

asymmetry of rocking tilt scans at different rolling tilts could

be used develop a different method to characterize the

Burgers vector. It would be interesting to compare results

from actual measurements.

5. Conclusions

The comparisons of the forward simulations of DFXM images

and the experimental images in Figs. 6 and 7 demonstrate that

the geometrical optics tool can accurately model DFXM

weak-beam images that closely resemble experimental results.

This establishes the simulation tool as a reliable addition to

DFXM data analysis for dislocation studies.

The cross correlation of weak-beam images across all

possible configurations of an individual dislocation shows that,

within a certain confidence level, no images are too similar to

prevent successful identification of dislocation type using only

a single weak-beam image. Scanning the sample in z

substantially reduces the number of candidate dislocation

types by identifying the slip plane and line direction. We note

that additional information is readily available from scanning

the sample in � and/or � and e.g. relying on centre-of-mass

maps, although this is outside the scope of the present work. In

total, this should enable robust dislocation type identification

with a high confidence.

This work paves the way for utilizing supervised machine

learning with DFXM data by making use of the GO simula-

tions as training sets. Additionally, it offers opportunities to

incorporate dislocation dynamics modelling, such as CDD or

DDD, to track the evolution of dislocation structures during
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straining. This approach could enable direct comparisons with

experimental 3D movies of dislocation evolution within bulk

samples.
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