
research papers

J. Appl. Cryst. (2025). 58 https://doi.org/10.1107/S1600576725002328 1 of 15

ISSN 1600-5767

Received 16 October 2024

Accepted 14 March 2025

Edited by S. Boutet, SLAC National Accelerator

Laboratory, Menlo Park, USA

Keywords: X-ray scattering; data labeling;

machine learning; user interfaces; feature

extraction.

Published under a CC BY 4.0 licence

A machine-learning-driven data labeling pipeline
for scientific analysis in MLExchange

Tanny Chavez,a* Zhuowen Zhao,a Runbo Jiang,a Wiebke Koepp,a Dylan

McReynolds,a Petrus H. Zwart,b,c,d Daniel B. Allan,e Eliot H. Gann,e Nicholas

Schwarz,f Daniela Ushizima,b,g Edward S. Barnard,h Apurva Mehta,i Subramanian

Sankaranarayananj,k and Alexander Hexemera,b*

aAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, bCenter for Advanced

Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,
cMolecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

USA, dBerkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA

94720, USA, eNational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA,
fAdvanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA, gComputational Research Division,

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA, hThe Molecular Foundry, Lawrence Berkeley

National Laboratory, Berkeley, CA 94720, USA, iLinac Coherent Light Source, SLAC National Accelerator Laboratory,

Menlo Park, CA 94025, USA, jCenter for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA,

and kDepartment of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.

*Correspondence e-mail: tanchavez@lbl.gov, ahexemer@lbl.gov

This study introduces a novel labeling pipeline to accelerate the labeling process

of scientific data sets by using artificial intelligence (AI)-guided tagging tech-

niques. This pipeline includes a set of interconnected web-based graphical user

interfaces (GUIs), where Data Clinic and MLCoach enable the preparation of

machine learning (ML) models for data reduction and classification, respec-

tively, while Label Maker is used for label assignment. Throughout this pipeline,

data can be accessed through a direct connection to a file system or through

Tiled for access through Hypertext Transfer Protocol (HTTP). Our experi-

mental results present three use cases where this labeling pipeline has been

instrumental for the study of large X-ray scattering data sets in the area of

pattern recognition, the remote analysis of resonant soft X-ray scattering data

and the fine-tuning process of foundation models. These use cases highlight the

labeling capabilities of this pipeline, including the ability to label large data sets

in a short period of time, to perform remote data analysis while minimizing data

movement and to enhance the fine-tuning process of complex ML models with

human involvement.

1. Introduction

The US Department of Energy (DOE) scientific user facilities

(SUFs) have played an important role in scientific advance-

ments and innovations by providing shared resources to

scientists across a variety of research fields, such as materials

science, physics, biosciences and others. With the mission of

providing state-of-the-art research capabilities, many of these

facilities have planned upgrades, including but not limited to

increased brightness and coherence in synchrotron operations

(Steier et al., 2019; Collins et al., 2017), increased power

capability of accelerator-based neutron source operations

(Champion et al., 2017), and the creation of new computing

capabilities such as the Integrated Research Infrastructure

(IRI) vision (Miller et al., 2023) and a High Performance Data

Facility (HPDF) (Office of Science, 2023). There is an

opportunity to exploit existing machine learning (ML)

capabilities to enhance and accelerate the analysis of the large

quantities of data collected at these facilities through the

https://doi.org/10.1107/S1600576725002328
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20scattering&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20labeling&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=user%20interfaces&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=feature%20extraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=feature%20extraction&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Chavez,%20T.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zhao,%20Z.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Jiang,%20R.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Koepp,%20W.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=McReynolds,%20D.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=McReynolds,%20D.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Zwart,%20P.H.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Allan,%20D.B.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Gann,%20E.H.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Schwarz,%20N.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Schwarz,%20N.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Ushizima,%20D.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Barnard,%20E.S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Mehta,%20A.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Sankaranarayanan,%20S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Sankaranarayanan,%20S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Hexemer,%20A.
mailto:tanchavez@lbl.gov
mailto:ahexemer@lbl.gov
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576725002328&domain=pdf&date_stamp=2025-05-12


implementation and deployment of robust analysis pipelines,

where users can make use of adaptable and scalable ML

approaches through graphical user interfaces (GUIs). With

such ML capabilities, users will have the ability to process

their data while experiments are ongoing, and will potentially

be able to use these results to push their operations further

towards autonomous data collection procedures.

Nowadays, ML-based analysis techniques have obtained

promising results across different applications at SUFs, such as

autonomous experiments in electron and scanning probe

microscopy (Kalinin et al., 2021; Roccapriore et al., 2022), data

segmentation in X-ray tomography (Rippner et al., 2022;

Waldner et al., 2024), phase identification in X-ray diffraction

(Zhao et al., 2023; Szymanski et al., 2023), and pattern classi-

fication in X-ray scattering (Hadi Kiapour et al., 2014).

Previous work has highlighted the importance of employing

labeled experimental data for training purposes to enhance

the performance of ML models for micro-X-ray diffraction

mapping and X-ray scattering pattern recognition with

experimental data sets (Zhao et al., 2023; Hadi Kiapour et al.,

2014). A limiting factor in adopting some of these existing ML

capabilities in SUF operations is the availability of ground-

truth information for training and quantitative evaluation

purposes. This is due to the need for domain knowledge

expertise and the significant amount of time required to

annotate these data sets accurately. Therefore, there is an

increasing need for a labeling pipeline specifically designed to

accelerate the annotation process of intrinsic scientific data

sets.

The literature presents studies that explore the imple-

mentation of GUIs for manual and semi-automated labeling

techniques in image data sets, aiming to expedite this process.

For instance, DetEdit (https://github.com/MarineBioAcousticsRC/

DetEdit) is a MATLAB-based GUI for interactive visualiza-

tion, exploration and annotation of acoustic data through the

definition of labeling thresholds or manually assigned labels

(Solsona-Berga et al., 2020). An alternative annotation

workflow, called ilastik, offers a PyQT GUI with flexible ML-

based classifiers to accelerate the pixel-wise annotation

process for segmentation, object detection and object tracking

within multidimensional images (Berg et al., 2019). Similarly,

Snorkel (https://snorkel.ai) provides a Python software

package compatible with Jupyter notebooks that presents a

collection of labeling functions to be applied through

programmatic labeling, where the estimated labels are parsed

through a generative model as noisy ground truth to be ulti-

mately tagged by a discriminator (Ratner et al., 2020). While

Snorkel offers a web-based ML operations (MLOps) interface

with these capabilities, it is currently not open source and can

only be accessed with a subscription. Musleh et al. (2023)

introduced a systematic comparison of annotation tools for AI

applications in ophthalmology, which identified a total of 131

annotation tools across the web. From that study, we can

highlight two open-source web-based annotation tools:

makesense.ai (Skalski, 2019) and CVAT (CVAT.ai Corpora-

tion, 2023), which have been extensively used in scientific

applications. While both tools enable labeling of data sets both

manually and through pre-trained object-detection ML

models, they present limited capabilities to fine-tune models

within the same pipeline. ML algorithms for object detection

face further limitations in SUF applications, such as classifying

structural patterns in X-ray scattering, where patterns may

coincide or overlap with or without correlation (Huang et al.,

2021). Therefore, scientists at SUFs require an open-source

web-based labeling pipeline that can easily adapt to large-

scale data sets, with the option to train and fine-tune

customizable ML models that can cater for different use cases,

ideally within the same pipeline.

MLExchange is an open-source web-based MLOps plat-

form that aims to close the gap in adopting ML-based solu-

tions for scientific discovery. It is currently being developed in

collaboration with scientists across six DOE-funded SUFs: the

Advanced Light Source (ALS) at Lawrence Berkeley

National Laboratory, the Advanced Photon Source and

Center for Nanoscale Materials at Argonne National

Laboratory, the Linac Coherent Light Source at SLAC

National Accelerator Laboratory, the National Synchrotron

Light Source II (NSLS-II) at Brookhaven National Labora-

tory (BNL), and the Center for Nanophase Materials Sciences

at Oak Ridge National Laboratory (Zhao et al., 2022). Within

its ecosystem, users have access to an assortment of both

traditional analytical algorithms and ML-based solutions for a

diversity of scientific endeavors, such as peak detection in

X-ray diffraction data, the detection of particle orientation in

scanning electron microscopy data and the segmentation of

three-dimensional tomographic data (Hao et al., 2023).

MLExchange empowers users to share assets, such as algo-

rithms and GUIs, across its community so as to remain at the

forefront of data analysis techniques. A previous report

introduced the core services to enable the operation of

MLExchange, while highlighting some of its existing capabil-

ities in the realm of image annotation (Zhao et al., 2022).

Further expanding these efforts, this paper introduces a novel

labeling pipeline that makes use of a variety of ML algorithms

based on unsupervised and supervised learning approaches to

accelerate the arduous task of labeling large scientific data sets

using three web-based applications: Label Maker, Data Clinic

and MLCoach.

Label Maker offers a web user interface where users can

visualize and tag data sets through manual labeling or AI-

guided techniques based on similarity-based querying and pre-

trained discriminators. Label Maker connects with two other

MLExchange applications, Data Clinic and MLCoach, where

the ML models are trained prior to labeling. Ongoing devel-

opment efforts are expanding Label Maker’s capabilities by

adding a third web tool, Latent Space Explorer, for latent

space visualization and data clustering. Users can access their

data sets through a file system or through a data access service

called Tiled (Rakitin et al., 2022). To demonstrate the labeling

capabilities of Label Maker, this study highlights three use

cases where this pipeline has enabled labeling of large

historical X-ray scattering data sets, the remote analysis of

resonant soft X-ray scattering (RSoXS) data and the process

of fine-tuning foundation models with human feedback.

research papers

2 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

https://github.com/MarineBioAcousticsRC/DetEdit
https://github.com/MarineBioAcousticsRC/DetEdit
https://snorkel.ai


This paper is organized as follows. Section 2 introduces the

architecture and software components of the labeling pipeline,

Section 3 describes the ML applications that support the

operation of this pipeline, Section 4 presents the experimental

results, Section 5 discusses the capabilities of this pipeline and

outlines future development plans, and Section 6 summarizes

the conclusions of this study.

2. Labeling data pipeline

The proposed labeling pipeline consists of three front-end

applications and four back-end services, as shown in Fig. 1.

Among the front-end components, the pipeline strategically

connects the image labeling interface (Label Maker) to two

supporting applications for ML analysis (Data Clinic and

MLCoach), such that their trained ML models can be used to

accelerate the labeling process. All the web-based user inter-

faces in this pipeline were developed using Dash (Plotly

Technologies Inc., 2015). Further details of the operation of

these applications are given in the following section.

In the back-end, Label Maker makes use of two existing

core application programming interface (API) components

within the MLExchange platform, MLExContent and

MLExCompute, that catalog ML algorithms within a registry

and orchestrate the execution of ML workflows, respectively

(Zhao et al., 2022). For instance, Data Clinic and MLCoach

make use of these two services to retrieve all the available ML

techniques for their respective analyses and to supervise the

execution of their training and inference routines, respectively.

The two remaining services perform data management tasks,

where Tiled enables fast data access via Hypertext Transfer

Protocol (HTTP) and Splash ML bookkeeps the assigned

labels within a database. A detailed description of these

services is included below.

2.1. Data access

The labeling pipeline utilizes a custom Dash component

called File Manager which enables users to access sets of

images from a file system or from Tiled uniform resource

identifiers (URIs). With this tool, users can load new data sets,

bring back a previously loaded data set or clear the current

data set of interest from a front-end interface. During data

loading operations, users have the ability to select multiple file

directories or tiled URIs to span their data set of interest

across the pipeline. The applications in this labeling pipeline

also offer a set of data transformations for both visualization

and analysis purposes, such as log-transformation and

percentile-based data normalization.

When loading data from a file system, File Manager walks

the directory of interest and lists image files, such as PNG,

JPEG/JPG and TIF/TIFF. This component also allows web

applications to display the image of interest in full resolution

or resize it, which is beneficial for the visualization of image

galleries. Alternatively, File Manager makes use of Tiled,

which is a data access service for data set types, ranging from

data frames to image sets, with enforcement of access control.

Tiled facilitates data search and structured chunkwise access

to those data in a variety of formats that are compatible with

data science packages in Python, regardless of their source

format (Rakitin et al., 2022). On top of providing data access,

Tiled enables access to sections of the data set in original or

reduced resolutions, which is particularly important for the

operation of this labeling pipeline. The integration of Tiled

within Label Maker enables users seamlessly to visualize, label

and analyze remote data without transferring the complete

data set to the pipeline’s location.

The labeling pipeline does not download the Tiled data set

in most use cases, except for ML-based training purposes.

Given that training data are conventionally accessed multiple

times across the training iterations, the labeling pipeline

downloads a copy of the training set from Tiled prior to its

analysis. For inference purposes, Tiled data are not down-

loaded since data points are accessed a single time in this

process. To support this operation, custom PyTorch and

Tensorflow data sets have been created for the ML algorithms

in this labeling pipeline.

The experimental results in this study employed a public

Tiled server that can be accessed without an API key. While it

is possible to connect to an API-key-protected Tiled server by

manually fixing its access key within the labeling pipeline

components, we are currently exploring improved and secure

approaches to parse and dynamically update API keys among

components without requiring users to re-authenticate at

multiple stages of their session.

2.2. Label management

The labeling pipeline makes use of Splash ML as the

bookkeeping service for labels, which consists of an API

service and a database. To operate, this service stores the label

information associated with a data set of interest within a

database, where the data sets are identified according to a

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 3 of 15

Figure 1
Software architecture diagram of the labeling pipeline, which consists of
three front-end applications, Label Maker, Data Clinic and MLCoach,
that are supported by four back-end services, Tiled, MLExContent,
MLExCompute and Splash ML.



URI. The advantage of this service is its fast access to tags,

thanks to its index-based search and the portability of the

labeled information through the API service.

Within Label Maker, users can store a set of labels as a

tagging event in Splash ML, where these events can be

queried according to an assigned tagger ID and a creation

timestamp. Hence, users can easily access previously assigned

labels and modify them accordingly across the web interfaces

within the labeling pipeline for version control purposes.

Bookkeeping of tagging events becomes crucial for the correct

operation of the supervised ML classifiers within this pipeline

since they seamlessly retrieve the label information from

Splash ML.

3. Front-end applications

This section further introduces the detailed operation of the

front-end applications that support the proposed data analysis

pipeline.

3.1. Data clinic

Data Clinic is an application that enables latent space

exploration of image data sets with customizable neural

networks through self-supervised learning, and its front-end

interface is shown in Fig. 2. Through this application, users can

obtain a low-dimensional representation of their data set of

interest, also referred to as latent or embedding space, where

data points with similar characteristics are located in close

proximity within the latent space (Xie et al., 2009). To operate,

this application retrieves compatible latent space extraction

algorithms through MLExContent. When a user selects an

algorithm from the dropdown menu, the parameter widget in

the left-hand panel auto-populates using the information

retrieved from MLExContent to adapt the GUI rapidly to the

ML parameters of the selected algorithm. The graphical

representation in the top right-hand panel dynamically

displays the impact of modifying the resolution of the input

image and the latent space dimension as a bottleneck in the

neural network.

One of the main advantages of this web-based interface is

that training and inference workflows are managed by the

MLExCompute API in the MLExchange ecosystem, where

these routines are executed in decoupled software containers

running in the background. Therefore, new algorithms for

latent space analysis can be easily integrated, making this

application highly scalable. Additionally, users can check on

the status of their running workflows at any point in time

without the need to maintain an active session to the URL.

Overall, Data Clinic offers users a scalable web tool to

analyze the impact of different latent space sizes based on the

data reconstruction performance of the selected ML algo-

rithm. Further details on the data processing steps across this

interface are described as follows.

3.1.1. Tunable autoencoders

Currently, the latent space extraction algorithm in Data

Clinic corresponds to a convolutional autoencoder with

tunable architecture parameters, similar to that reported by

Lippe (2023). An autoencoder is a type of neural network that

encodes a data set of interest into a low-dimensional vector

and uses this representation to reconstruct (decode) the

original input. Autoencoders are commonly used for data

compression purposes and feature extraction (Rumelhart et

al., 1986; Hinton & Salakhutdinov, 2006; Meng et al., 2017). A

convolutional autoencoder uses convolutional and pooling

layers for feature extraction, which provides a more localized

embedding learning approach (Chavez et al., 2022). Among

the customizable network parameters offered in Data Clinic,

we can highlight base channel size, latent dimension size and

network depth. A diagram of a tunable network of depth 3 is

shown in Fig 3, where M � N corresponds to the size of the

input image, B represents the number of base channels and L

is the latent space size. Note that, even though the proposed

autoencoder can adapt to a wide selection of parameters,

there may exist some combinations that span an unfeasible

research papers

4 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

Figure 2
Data Clinic front-end interface. This application presents five main panels
for data set selection and transformation, algorithm and parameter
selection, graphical representation of the neural network, the loss plot
associated with a selected training job, and a list of training and inference
jobs.

Figure 3
Architecture of a convolutional autoencoder of depth 3, where M � N
corresponds to the size of the input image, B represents the number of
base channels and L is the latent space size.



architecture. For instance, the selection of the network depth d

is limited by the size of the input image, since the size of the

layer prior to flattening is ðM=2dÞ � ðN=2dÞ � ð2d� 1BÞ, where

M=2d and N=2d should be greater than 1. Hence, it is crucial

for users to select carefully a suitable combination of para-

meters for their data set of interest.

To reinforce further the estimation of the latent features,

this algorithm offers data augmentation options to be

randomly applied solely to the input images per batch for

augmentation-invariant models, or to both input and output

images per batch for other use cases. These augmentation

tools include random horizontal and vertical flips, and random

changes to brightness, contrast, saturation and hue levels.

Users have the option to set up a random seed to ensure

reproducible augmentation results. In preparation for the

training step, batches of images are retrieved from a directory

or Tiled to be resized later according to a user-defined target

dimension, which can accommodate the analysis of large data

sets.

For training purposes, this algorithm offers a wide selection

of optimizers and criteria with a customizable learning rate

and number of epochs. At the end of every epoch, the loss plot

in the front-end interface is updated with both train and

validation losses in real time until the training routine is

completed. While the loss plot already provides an evaluation

metric of the performance of the trained network, users can

choose to perform inference on a given data set to provide a

visual inspection of the quality of the reconstructed images at

the output of the autoencoder. In addition, the output of the

inference analysis provides the estimated latent vectors for all

the elements of the data set to be used later by Label Maker

for similarity-based queries.

3.2. MLCoach

MLCoach is an application for image classification

purposes, as shown in Fig. 4. Similarly to Data Clinic, this

interface also retrieves compatible algorithms and runs

workflows through the MLExContent and MLExCompute

services in MLExchange. Hence, the user’s interaction with

respect to selecting an algorithm, setting parameters and

visualizing real-time training metrics is very similar to that

described before. However, the key difference between these

applications is the fact that MLCoach makes use of supervised

learning algorithms, which ultimately requires a labeled input

data set for training.

In general, MLCoach retrieves the labels associated with a

data set of interest through a tagging event in Splash ML,

where the label information is collected from a database. Once

the data set is defined, the labeled information is displayed in

the graphical representation panel of this web interface as a

point of reference. Further details about the ML algorithms

available in this application are introduced as follows.

3.2.1. Probabilistic classifiers

MLCoach currently offers a wide variety of deep-learning

architectures for image classification purposes, such as

Xception (Chollet, 2017), Visual Geometry Group (VGG)

(Simonyan & Zisserman, 2014), Residual Network (ResNet)

(He et al., 2016), Inception (Szegedy et al., 2016b), Dense

Convolutional Network (DenseNet) (Huang et al., 2017),

InceptionResNet (Szegedy et al., 2016a) and Neural Archi-

tecture Search Networks (NASNet) (Zoph et al., 2018). Users

are given the option to train these architectures from scratch

or make use of pre-trained weights, e.g. ImageNet, to start the

training process. ImageNet is a large training set that contains

more than 14 million labeled images (Deng et al., 2009), from

which subsets of approximately 1.4 million and 1000 classes

have been used to pre-train these Tensorflow-based networks

(Abadi et al., 2015). Regardless of the selected architecture,

the proposed probabilistic classifier employs a softmax acti-

vation layer to estimate the label probability per image at the

output of the neural network. For reasons of architecture

compatibility, all the input images are transformed to RGB

color space and resized to 224� 224 for VGG, ResNet and

DenseNet, 299� 299 for Xception, Inception and Inception-

ResNet, and 331� 331 for NasNets.

Similarly to Data Clinic, data augmentation options are

available in MLCoach, such as random image rotation and

flips, where a random seed can be pre-defined for data

reproducibility. While setting up the training routine, users can

also select the loss function, optimizer, batch size and number

of epochs to customize their analysis. The training metrics are

also displayed in real time in terms of loss and accuracy per

epoch for both training and validation sets.

During the inference routine in MLCoach, both labeled and

unlabeled data sets are accepted within the interface. A

summary of the resulting probabilities per image is displayed

in the top right-hand panel of the web interface as a bar plot,

where labels are color coded for easy visual inspection. The

overall classification results and the supervised feature vectors

from the second to the last layer are stored in data frames to

be used later by Label Maker.

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 5 of 15

Figure 4
MLCoach front-end interface. This application presents five main panels
for data set selection and transformation, algorithm and parameter
selection, data and label visualization, the loss plot associated with a
selected training job, and a list of training and inference jobs.



3.3. Label Maker

Label Maker is the core application of the labeling pipeline,

where labels are assigned, modified, deleted and stored. To

operate, this interface displays the data set of interest in the

right-hand column for visual inspection, where a customizable

number of images are loaded per page as shown in Fig. 5. In

the left-hand panel, users can add new labels, modify the label

colors or delete the labels if necessary. The top row of this

section indicates the labeling approaches that are available

within this application, which are manual and two AI-guided

labeling approaches through similarity-based queries and

probability-based label assignment.

3.3.1. Manual labeling

Under the manual operation mode, users can assign labels

to a single image or group of images simultaneously by

clicking the elements to be tagged, followed by their corre-

sponding label. Label Maker tracks the label assignment

process by color coding each image within the data set

according to the user’s selection. Users can easily check their

labeling progress through the progress bar in the left-hand

panel of the web browser, which graphically depicts the

number of labeled images per class. To facilitate the labeling

process, the interface allows users to use key bindings to assign

labels, sort tagged images according to their label, hide labeled

images and unlabel images as needed. Current labels can be

stored in a database through Splash ML, where they can be

easily retrieved at a later point in time. Alternatively, users can

choose to download their labeling results as a table or as a ZIP

file where the labeled images are organized into folders, with

each folder corresponding to the label that was assigned in

Label Maker. Such a directory structure is compatible with

existing ML frameworks for easy categorization during their

training process.

3.3.2. Similarity-based labeling

To accelerate the labeling process further, Label Maker can

make use of previously trained Data Clinic and MLCoach

models to enable a similarity-based batch labeling process as

represented in Fig. 5. The similarity metric used in this

approach corresponds to the cosine distance between feature

vectors, which are retrieved during the inference step. For the

tunable autoencoders, the feature vectors correspond to the

latent space representation of the input data at the bottleneck

of the network, while for the probabilistic classifiers these

vectors correspond to the second to last layer in their

networks’ architectures. Thus, given the inference results of a

Data Clinic or MLCoach model and an image of interest, all

the elements within the data set are sorted such that the most

similar image is located at the beginning of the sequence and

the least similar image is at the end of the sequence. Once

arranged, the user can proceed to label batches of similar

images with a single label selection.

Considering that the presented autoencoders do not require

labeled information for their corresponding training routines,

this AI-guided labeling method with Data Clinic models is

suitable for starting the tagging process in a completely

unlabeled data set. Alternatively, users can make use of pre-

trained MLCoach models to perform similarity-based

querying through supervised learning approaches, analogous

to PyCBIR (Araujo et al., 2018).

3.3.3. Probability-based labeling

Alternatively, Label Maker can automatically tag unlabeled

images within the data set of interest through the definition of

a probability threshold. Given the inference results of a

supervised probabilistic classification model trained in

MLCoach and a user-defined probability threshold for a given

label, every unlabeled image that presents a label probability

equal to or higher than this threshold is automatically tagged

under this operation mode (Fig. 6).

The selection of a suitable classification model is funda-

mental for the correct assignment of labels in this approach.

Therefore, this mode of operation is suggested only after a

significant portion of the data set of interest has already been

labeled manually or through similarity-based approaches.

3.4. Latent Space Explorer

Within the Label Maker ecosystem, we are currently inte-

grating an additional application called Latent Space Explorer

for the visualization of latent space exploration. Latent Space

Explorer is a web-based tool designed for exploring high-

dimensional data through dimensionality reduction and clus-

tering techniques, as shown in Fig. 7. Thanks to its intuitive

interface, users can effortlessly navigate through data sets

using File Manager’s data access capabilities. Central to its

functionality is support for dimensionality reduction algo-

rithms, including principal component analysi (PCA) (Abdi &

Williams, 2010) and uniform manifold approximation and

projection (UMAP) (McInnes et al., 2018), empowering users

to tailor the analysis to their specific needs by fine-tuning

algorithm parameters through drop-down menus. The appli-

cation also offers clustering capabilities, seamlessly integrating

algorithms such as KMeans (Arthur & Vassilvitskii, 2007),

research papers

6 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

Figure 5
Label Maker similarity-based labeling approach, where feature vectors
from Data Clinic and MLCoach are used to estimate neighbor ranking
among data points in the data set of interest. Using this approach, it is
possible to label batches of similar images simultaneously.



density-based spatial clustering of applications with noise

(DBSCAN) (Ester et al., 1996) and hierarchical density-based

spatial clustering of applications with noise (HDBSCAN)

(McInnes et al., 2017). This enables users to discern underlying

patterns and structures within the data.

The application also provides interactive visualizations,

including scatter plots of the reduced-dimensional data and

informative heat maps of selected data points, where users can

choose either the mean or standard deviation of the selected

points of interest. In addition, statistical information is

provided about selected data points, including the number of

images selected, represented clusters and represented labels.

Latent Space Explorer can also make use of pre-trained

models from Data Clinic and MLCoach, allowing users to

analyze pre-existing latent vectors for posterior analysis.

4. Experimental results

This section summarizes the experimental results obtained

from the data analysis capabilities offered within this labeling

pipeline. For this purpose, we introduce three real-world use

cases where the labeling pipeline has, respectively, enabled the

assignment of labels to large X-ray scattering data sets,

facilitated the remote analysis of RSoXS data, and enhanced

the fine-tuning process of ML foundation models for the gen-

eration of X-ray scattering data sets. Additional information

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 7 of 15

Figure 6
Label Maker probability-based label assignment, where classification results from previously trained MLCoach classifiers are used to automatically label
a set of images that comply with a threshold condition defined by the user.

Figure 7
Latent Space Explorer front-end interface. This application presents four
main panels for data selection, dimension reduction algorithm and
parameter selection, clustering algorithm and parameter selection, and
data visualization.



on data and code availability, as well as hyperparameter

selections, is provided in Appendices A–C.

4.1. Labeling large X-ray scattering data sets

Access to labeled scientific data sets is imperative for the

development of robust trained ML models that can cater for

the increasing data processing needs within DOE user facil-

ities. For instance, the deployment of Label Maker has intro-

duced a streamlined method to process large X-ray scattering

data sets for pattern-recognition purposes. To showcase this

capability, we have labeled approximately 80000 scattering

images from an assortment of user experiments, including

transmission and grazing-incidence scattering, collected on the

SAXS/WAXS beamline 7.3.3 (Hexemer et al., 2010) at the

ALS over the course of ten years.

As shown in Fig. 8, we have identified ten classes within this

data set, corresponding to different structural properties of

the characterized materials, such as 16888 arcs, 7229 empty,

12840 peaks, 43437 rings, 162 rings and arcs, 11744 rings and

peaks, 20377 streaks, 1001 arcs and peaks, 7747 rings and

streaks, and 115 streaks, rings and peaks. The data set was

labeled using a combination of manual, similarity-based and

probability-based labeling within the Label Maker ecosystem.

For the similarity-based instance, a tunable autoencoder was

trained in Data Clinic with input size 128 � 128, base channel

size 64, latent space dimension 500 and depth 4. The data set

of interest was split for training and validation, where 20%

was allocated to the validation set. The model was trained over

100 epochs with a batch size of 256, utilizing an initial learning

rate of 0.001. The criterion was the minimum squared error

loss, implemented with an ADAM optimizer (Kingma & Ba,

2017), with a learning rate scheduler that reduced the learning

rate by a factor of 0.1 every 30 steps.

After labeling a total of 12257 images using the similarity-

based approach, we determined that we had a significant

amount of labeled data to train a ResNet classifier in

MLCoach for further probability-based labeling. To train a

robust model, the classifier was trained with data augmenta-

tion, including rotation angles up to 100� and random hori-

zontal and vertical flips. We employed a batch size of 64, a

validation split of 20%, a categorical cross-entropy loss func-

tion with an ADAM optimizer and a learning rate of 0.0001 for

a total of 30 epochs. Upon completion of the training process,

the classifier achieved accuracies of 0.99 for both the training

and validation sets. All networks were trained on a single

Nvidia GeForce RTX 4090 GPU with 23 GB capacity and an

AMD Threadripper Pro 5965WX processor.

Fig. 8 displays a screenshot of the labeling interface, where

we can observe the data set of interest with a total of 100000

images. On the left-hand side, a set of controls indicates live

progress in the labeling task, with 80000 images labeled out of

the total of 100000 images. A single user labeled this data set

at a normal pace over multiple sessions, using a combination

of manual and AI-guided labeling techniques for label

assignment and review. As a reference, this user labeled 6588

images in a single labeling session of 42 min. If manually

labeling these images without AI-guided techniques, a user

would need to maintain an approximate manual labeling rate

of 2.6 labels per second, with no pauses, to label the same

number of images in the same time frame.

By comparison, alternative open-source labeling tools, such

as makesense.ai, have notable differences to the labeling

pipeline offered by MLExchange. For instance, makesense.ai

allows users to run AI models locally [YOLOv5 (Jocher,

2020), COCO SSD (Liu et al., 2015, 2014) and PoseNet

(Kendall et al., 2015)] or connect to AI servers through

research papers

8 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

Figure 8
Screenshot of labeling progress, where 80 000 images were labeled by a single user over the course of multiple non-consecutive labeling sessions. Labels
were assigned according to the user’s defined color coding, where unlabeled images are presented in white, arcs in light blue, rings in light pink, streaks in
bright pink, arcs and peaks in yellow, rings and streaks in red, and arcs and peaks in purple.



Roboflow’s (Dwyer et al., 2024) inference servers, which is

particularly powerful for production-ready ML models. While

users can employ notebook interfaces to train their ML

models for use with makesense.ai, there is an initial barrier to

entry, as ML knowledge is required for the effective design

and implementation of these algorithms. This challenge

becomes even more pronounced in the context of SFUs, where

samples, instrumentation, experimental setups and scientific

drivers can vary significantly across experiments. To address

this need, MLExchange provides a user-friendly framework

that enables researchers to train models through intuitive web

applications, such as Data Clinic and MLCoach, ensuring that

their ML solutions align with their specific scientific goals.

In addition, makesense.ai lacks tools for adjusting the

brightness and contrast of images, making it challenging to

determine whether an image represents background or

contains low-intensity features (e.g. rings, peaks etc.). In

contrast, Label Maker integrates percentile normalization and

log transformations directly into its interface, facilitating the

identification of these features. makesense.ai provides an

intuitive interface that supports assigning multiple labels per

image. However, its thumbnails only indicate whether an

image has been labeled, without displaying the specific labels

or the total number of images assigned to each label, as shown

in Fig. 9. makesense.ai offers object detection assistance by

suggesting labels within an image of interest, but it does not

support batch labeling or similarity-based annotations, which

are critical capabilities for classification workflows in ML-

Exchange.

In terms of speed, makesense.ai’s manual labeling tool is

comparable to MLExchange when labeling images one by one

as their labeling features are very similar. Unlike the labeling

pipeline in MLExchange, makesense.ai does not support the

pre-selection of images for batch labeling or a similarity-based

annotation suggestion. Without similarity-based label assign-

ment, users need to label an assortment of images manually in

order to train or fine-tune ML models on their own to be used

in makesense.ai, which will require more time overall as labels

will need to be assigned one by one. MLExchange’s support

for Tiled facilitates data access and enhances its integration

with existing pipelines for real-time analysis during experi-

ments at SFUs.

4.2. Remote data analysis of RSoXS data

An alternative use case for Label Maker is enabling cross-

facility remote data analysis through ML techniques. To

demonstrate this, we used an existing RSoXS data set publicly

available at https://tiled-demo.blueskyproject.io, which is

hosted on the Amazon Web Services (AWS) cloud platform.

This data set was collected on the RSoXS beamline at NSLS-II

at BNL during alignment operations using Bluesky acquisition

plans (Allan et al., 2019). We selected 85 Bluesky runs with a

total of 2697 RSoXS images of 1026 � 1024 pixels to be

labeled using Label Maker.

To avoid transferring the complete data set towards the

pipeline’s computing location, we pre-trained a tunable

autoencoder using 31252 inpainted X-ray scattering images

(Fig. 10). This initial training set was acquired by randomly

selecting a subset of user data from a series of transmission

and grazing-incidence X-ray scattering user experiments on

the ALS SAXS/WAXS beamline 7.3.3 (Hexemer et al., 2010).

The training set was inpainted prior to analysis to reconstruct

the missing information located at the detector inter-module

gaps in order to enhance the model transferability to the

RSoXS data, which do not present these gaps. To achieve this,

we made use of a pre-trained mixed-scale dense network

(MSDNet) which is accessible at https://huggingface.co/

phzwart/dlsia_inpainting_saxs_gisaxs (Chavez et al., 2022;

Roberts et al., 2024).

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 9 of 15

Figure 9
Web interface of makesense.ai (Skalski, 2019) with a subset of 400 images
within the large X-ray scattering data set collected on beamline 7.3.3 at
the ALS (Hexemer et al., 2010). The left-hand sidebar displays a set of
thumbnails from the data set, while the center of the interface provides a
full-screen view of the selected thumbnail image. The right-hand sidebar
includes the label options available for assignment to the selected image.
Its navigation bar offers a set of actions from which we can highlight (i)
Run AI Locally, allowing users to upload a locally trained model for
object detection purposes, with support for models such as YOLOv5
(Jocher, 2020), COCO SSD (Liu et al., 2015; Lin et al., 2014) and PoseNet
(Kendall et al., 2015); and (ii) Connect AI Server, enabling users to run a
remote model by connecting to a specified Roboflow (Dwyer et al., 2024)
inference endpoint.

Figure 10
Sample images taken from the inpainted data set with 31 252 X-ray
scattering images. The top row illustrates the original masked experi-
mental data, exhibiting missing pixel information located at the inter-
module gaps, consistent with a PILATUS3 2M detector. The bottom row
represents the inpainted images using a pre-trained MSDNet.

https://tiled-demo.blueskyproject.io
https://huggingface.co/phzwart/dlsia_inpainting_saxs_gisaxs
https://huggingface.co/phzwart/dlsia_inpainting_saxs_gisaxs


The architecture of the pre-trained tunable autoencoder

was defined using two different sets of parameters. The first

architecture utilized an input size of 64 � 64 pixels, a base

channel size of 32, depth 3 and a latent dimension size of 300.

In contrast, the second architecture employed an input size of

256 � 256, a base channel size of 8, depth 5 and a latent

dimension of 300. The training parameters corresponded to a

learning rate of 0.001, batch size of 64, total number of epochs

of 300 and learning rate decay of 0.1 every 100 epochs. The

ADAM optimizer was used for the training process, which

minimized the mean squared error as the evaluation metric

(Kingma & Ba, 2017).

To enhance further the feature detection step of RSoXS

data, we utilized a fraction of the Tiled data set (166 images)

for fine-tuning purposes. Hence, we fine-tuned the previous

network architecture with the same training parameters for

another 200 epochs with a learning rate decay of 0.1 every 100

epochs. The networks were trained on a single Nvidia GeForce

RTX 4090 GPU with 23 GB capacity and an AMD Thread-

ripper Pro 5965WX processor. With this fine-tuned model, we

inferred the feature vectors of the remaining data points in the

set without further data transfers using custom Tiled data sets

in PyTorch.

A log-transform followed by a percentile-based normal-

ization step was applied to the RSoXS data set prior to fine-

tuning to improve the visibility of the patterns presented

within the image, which were otherwise not discernible

through visual inspection. The log-transform applied was

logðrþ �Þ, where r represents the pixel values of the min–max

scaled image and � = 10� 12. We then proceeded to run a

percentile-based normalization, using the first and 99th

percentiles as boundaries, where the pixel intensities of the

image of interest were set in the range [0, 1] with sharp streak

features, similar to the inpainted images that were used to pre-

train the tunable autoencoder in Data Clinic.

To evaluate further the impact of using pre-trained models

for similarity-based labeling with small training data sets, such

as the one with 166 data points, we compared the query results

of models trained from scratch versus fined-tuned models

from the inpainted data set. For this purpose, we analyzed the

similarity between the queried images returned by both

models using the Pearson correlation coefficient as our

quantitative metric. Fig. 11 summarizes the results of this

analysis through the mean and standard deviation of the

average correlation coefficient of the 2697 RSoXS images in

full resolution (1026 � 1024 pixels) with respect to their

closest 100 neighbors. To do this, we identified the 100 closest

neighbors for each image in our data set of interest based on

the cosine distance between feature vectors, which was

inferred from both the fine-tuned model with inpainted X-ray

scattering images and a model trained from scratch without

the inpainted images. To estimate the similarity between

neighbors, we calculated the Pearson correlation coefficient

between each image in the data set and its corresponding nth

neighbor for later computation of the average correlation

coefficient across neighbor ranks. Fig. 11 displays the mean

and standard deviation of this average correlation coefficient

per rank to summarize the similarity-based query perfor-

mance across the used algorithms. These results clearly

demonstrate that exploiting pre-trained networks can enhance

the quality of a similarity-based labeling process without the

need to move the complete remote data set towards the

computing location, presenting both a higher mean and a

lower standard deviation in the plots. The distribution of the

average correlation coefficient is similar for the fine-tuned

models and the brute-force algorithm queries, whereas the

models that were trained once present a different distribution.

We labeled the RSoXS data set in Label Maker using the

fine-tuned feature vectors through similarity-based batch

labeling in addition to some manual labeling. The labels of

interest within this data set were identified as Good, OK,

Streaks and Low intensity, as shown in Fig. 12, with the

patterns labeled OK presenting minor artifacts in the vicinity

of the beam. At the end of the labeling process, 322 images

were identified as Low intensity and 364 as OK, 1735

research papers

10 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

Figure 11
Variation of the average correlation coefficient (CC) per neighbor rank of
the RSoXS images (first 100 neighbors for each image) using two fine-
tuned models with inpainted X-ray scattering images of sizes 64 � 64 and
256� 256, and a model trained from scratch without the inpainted images
of sizes 64 � 64 and 256 � 256. As reference, a brute-force similarity
search was used as ground-truth information, where the neighbor rank
was assigned according to the values of the CC.

Figure 12
Sample images taken from the set of labeled RSoXS images with four
categories, Streaks, OK, Good and Low intensity.



presented Streaks, and the remaining 157 were tagged as

Good. The final results were stored in a database and down-

loaded to a filesystem. The labeling process time may vary

according to the location and the internet speed between the

Tiled server and the client browser, due to a potential waiting

time increase in the data retrieval process.

4.3. Enabling fine-tuning of foundation models with human

feedback

Providing high-quality labeled training data is crucial to

enhancing the ability of foundational models to learn complex

tasks, such as generating realistic X-ray scattering images.

Thanks to its visualization capability, human interaction

interface and integration with ML algorithms, the image

labeling pipeline presented here can greatly facilitate the

training of foundational models that require a large number of

well labeled scientific data sets.

Using a fine-tuned stable diffusion model (von Platen et al.,

2022), we set up a text-to-image framework to generate X-ray

scattering images from text prompts (Zhao et al., 2024).

However, due to the model’s generative nature, a portion of

the generated images are not realistic. This is commonly

known as ‘hallucinations’ in generative models (Aithal et al.,

2024). To address this issue, we used human-labeled images to

train deep neural networks to identify highly realistic gener-

ated images automatically. This process needs a huge amount

of labeled data. With the help of Label Maker, we were able to

label accurately approximately 2700 (out of 20000) generated

images and use these annotations to train a variety of classi-

fiers [e.g. ResNet (He et al., 2016)] in MLCoach to make the

generative pipeline more robust against the identification of

non-realistic data sets, which were validated by domain

experts. Ultimately, this process brings human feedback into

training of the classifier and it can be done in an iterative

fashion until the classification performance reaches the

desired accuracy.

Further implementation details and results of this study

have been presented by Zhao et al. (2024), demonstrating that

the labeling pipeline is instrumental in the generation of labels

to train a set of classifiers iteratively to detect realistic versus

non-realistic data points. As reported in this study, the model

presented high-quality generated images as proven by their

Fréchet inception distances (Heusel et al., 2018) of 0.96, 0.62

and � 8 � 10� 8 for peaks, rings and background, respectively

(Zhao et al., 2024).

5. Discussion

The Label Maker pipeline provides an intuitive web-based

tool to accelerate the labeling process of large complex

scientific data sets using AI-guided labeling techniques. With

the integration of Data Clinic and MLCoach, Label Maker

makes use of both supervised and self-supervised learning

techniques to power probability-based label assignment and

similarity-based queries, respectively. As shown in Section 4,

Label Maker has obtained promising results for three different

use cases.

While this labeling pipeline has been thoroughly tested with

X-ray scattering data sets, it is also well suited to other two-

dimensional imaging data sets. Its versatility relies in the

training process of its unsupervised and supervised algorithms

through web interfaces, enabling the pipeline to effectively

ingest and process various image-based data sets such as

microscopy data. To enhance its labeling capabilities further,

current short-term development plans for Label Maker aim to

expand its capabilities towards the ingestion of one- and three-

dimensional data sets, support for multiple assigned labels per

data point, and the upgrade of MLExCompute. On the other

hand, long-term development aspects focus on simplifying

hyperparameter tuning and the availability of pre-trained

weights, mitigating labeling errors, and supporting near real-

time analysis, as discussed below.

5.1. Hyperparameter tuning and pre-trained weights

To use the AI-guided labeling techniques within Label

Maker successfully, the selection of suitable neural network

architectures and training parameters represents a crucial step

to enhance the model performance and its generalization

capacity to unseen data points. Considering this, the model

configuration panel within Data Clinic and MLCoach provides

a set of initial default parameters that can be used as a starting

point for the training process of the ML models.

We can further simplify the hyperparameter tuning process

by using robust pre-trained weights, ideally trained from large

data sets with similar characteristics to the data set of interest.

Currently, the probabilistic classifiers in MLCoach provide

pre-trained weights based on the ImageNet data set (Deng et

al., 2009), which serve as a starting point for the training of a

given classifier while also reducing the number of labeled

images required to obtain a satisfactory performance. Alter-

natively, users can employ large data sets to pre-train a model

for fine-tuning purposes, similarly to Section 4.2.

Hence, we aim to extend the library of pre-trained models

for both unsupervised and supervised learning using large

high-quality scientific data sets, such as the one collected on

beamline 7.3.3 (Hexemer et al., 2010).

5.2. Preventing labeling errors

While Label Maker offers an assortment of AI-guided

labeling techniques to accelerate the labeling process of

complex data sets, errors can still occur during the label

assignment process. For instance, Fig. 13 presents an example

of a potential labeling error when using similarity-based

labeling in Label Maker. Although these errors could be

minimized through more robust trained models or training

strategies, it is critical for Label Maker to offer alternative

techniques for easy checking of the accuracy of assigned labels

when data sets are large.

While alternative techniques like multiple instance learning

(Maron & Lozano-Pérez, 1997) were initially excluded due to

the complex nature of structural patterns in X-ray scattering

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 11 of 15



that can overlap with or without direct correlation (Huang et

al., 2021), there is potential to incorporate them in the future

for applications involving more heterogeneous data sets. The

labeling pipeline can be further enhanced by incorporating

advanced explainable AI methods, enabling scientists to build

trust in the ML models and gain a deeper understanding of

how the models arrived at the conclusions presented in the

interface. Examples of such methods include occlusion maps

(Zeiler & Fergus, 2014), class activation maps (Zhou et al.,

2016; Selvaraju et al., 2017) and self-attention-based maps for

vision transformers (Chefer et al., 2021). Additional efforts in

visualization and software architecture design are essential to

integrate these tools seamlessly, ensuring they are accessible

and user friendly.

Further development plans for Label Maker include the

integration of both an active learning analysis pipeline and

random validation checkpoints to mitigate labeling errors.

With these proposed features, users will be able to receive

validation checkpoints at different stages during their labeling

session. At these checkpoints, users will be challenged with re-

labeling a set of previously labeled images selected randomly

or by a learning agent. According to the results of this

checkpoint, users will verify that the same labeling criteria are

applied throughout the entire data set and fix potential errors

if needed.

5.3. Near real-time data analysis

Several capabilities that are offered by the Label Maker

pipeline can have a positive impact for the analysis of complex

data in near real time during experiments. In particular,

autonomous frameworks with human involvement such as that

presented by Biswas et al. (2024) could benefit from on-the-fly

labeling capabilities, where users upvote or downvote spectral

data to steer experiments. Therefore, there is potential interest

in the expansion of this labeling pipeline to ingest and analyze

experimental data in near real time.

The integration of Latent Space Explorer to this labeling

pipeline will enable users to better visualize the latent space

obtained from the tunable autoencoders, which undergoes a

dimension reduction step prior to visualization. Hence, users

will be able to make informed decisions based on visual

inspection of the latent space and tune parameters accordingly

in near real time.

6. Conclusions

This paper has introduced an ML-based labeling pipeline for

scientific data sets that offers both manual and AI-guided

labeling approaches through unsupervised and supervised ML

models. This labeling pipeline combines three web-based

applications, Label Maker, Data Clinic and MLCoach, to tailor

the selected ML models for their particular use case prior to

labeling. The experimental results have presented three use

cases emphasizing the labeling capabilities of Label Maker to

tag large scientific data sets, to fine-tune foundation models

with human feedback and to analyze RSoXs data sets remo-

tely.

Through these use cases, we have gained valuable insights

into Label Maker’s potential impact in various scientific fields,

such as materials discovery. For instance, Label Maker has

enabled the creation of ground-truth tags for historical X-ray

scattering data sets collected at the ALS over the past decade

for the detection of structural properties, as shown in Section

4.1. The integration of Tiled within this labeling pipeline has

enabled the remote analysis of RSoXS data with fine-tuned

autoencoders by using inpainted X-ray scattering images as

presented in Section 4.2. Label Maker and MLCoach were

instrumental for the preparation of image discriminators to

enhance the robustness of generative models, such as the one

presented in Section 4.3.

These results demonstrate the promising capabilities that

Label Maker enables for the ML-based analysis of scientific

data sets. This labeling pipeline lowers the introduction barrier

to ML techniques, since software development experience is

not required to deploy training and inference processes within

its web user interfaces. With the further integration of Latent

Space Explorer and an extensive library of pre-trained

weights, we aim to reduce further the complexity of tuning

hyperparameters to boost the performance of ML approaches.

APPENDIX A

Data availability

The X-ray scattering data set used in this study, collected

on the SAXS/WAXS beamline 7.3.3 (Hexemer et al., 2010),

is available through Globus at https://app.globus.org/

file-man ager/col lect ions /e393df21-17aa -4c2d-8739-

7bf80cb4f26b/overview.

research papers

12 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

Figure 13
Example of potential labeling error with similarity-based batch labeling,
where all the displayed images present a strong similarity with the
exception of the area highlighted by the red arrow that presents a missing
streak.

https://app.globus.org/file-manager/collections/e393df21-17aa-4c2d-8739-7bf80cb4f26b/overview
https://app.globus.org/file-manager/collections/e393df21-17aa-4c2d-8739-7bf80cb4f26b/overview
https://app.globus.org/file-manager/collections/e393df21-17aa-4c2d-8739-7bf80cb4f26b/overview


The resonant soft X-ray scattering (RSoXS) data set used

in this article is publicly available at https://tiled-demo.

blueskyproject.io/ui/browse/rsoxs/raw. The selected Bluesky

runs that were used for this study are presented in Table 1.

APPENDIX B

Code availability

Label Maker is an open source project. The source code for

the various components can be found at:

(i) Label Maker: https://github.com/mlexchange/mlex_

labelmaker.

(ii) Data Clinic: https://github.com/mlexchange/mlex_data_

clinic.

(iii) MLCoach: https://github.com/mlexchange/mlex_mlcoach.

(iv) File Manager: https://github.com/mlexchange/mlex_

file_manager.

(v) Tunable autoencoders: https://github.com/mlexchange/

mlex_pytorch_autoencoders.

(vi) Image classifiers: https://github.com/mlexchange/mlex_

image_classification.

(vii) Splash ML: https://github.com/als-computing/splash-ml.

(viii) MLExchange: https://github.com/mlexchange/mlex.

APPENDIX C

Hyperparameter selection

Most of the hyperparameters used for this study were chosen

from the default suggested parameters in the web applications

with very minimal changes. In particular, the training para-

meter selection for the analysis of RSoXS data was the result

of a hyperparameter sweep, where we analyzed the impact of

changing the input image size as 64, 128, 256 and 512, and

selecting a latent vector dimension of 300 and 900. The

network architecture for each combination was adjusted

accordingly. The results of this sweep demonstrated that

changes in the image size were minor for the tuned model with

inpainted scattering data, whereas the model that was trained

once presented a slightly higher distribution in its standard

deviation as shown in Fig. 11. Note that the changes in latent

vector dimension had minimal impact in both models. Hence,

this study summarizes the corresponding findings for the

smaller size, corresponding to 300.

Acknowledgements

The authors would like to thank Dr Baskar Ganapathy-

subramanian and Dr Adarsh Krishnamurthy for providing

early feedback and suggestions for the development of this

pipeline. We thank Dr Harinarayan Krishnan, Dr Elizabeth

Holman and Dr Adam Green for their efforts in the co-

development of the early versions of some of the web appli-

cations in the labeling pipeline. The X-ray scattering user data

were provided by Professor Ting Xu (UC Berkeley), Professor

Nitash P. Balsara (UC Berkeley), Dr Adam Weber (Lawrence

Berkeley National Lab), Dr Ahmet Kusoglu (Lawrence

Berkeley National Laboratory), Professor Thomas Russell

(University of Massachusetts, Amherst) and Professor

Enrique Gomez (Penn State University). The collection of

data was supported by the Hydrogen and Fuel Cell Technol-

ogies Office of DOE. ChatGPT 4.0 from OpenAI was used for

text editing purposes in this manuscript. Microsoft GitHub

Copilot was used as a programming assistant.

Funding information

This work was performed and partially supported by the US

Department of Energy, Office of Science, Office of Basic

Energy Sciences Data, Artificial Intelligence and Machine

Learning, at the DOE Scientific User Facilities program under

the MLExchange Project (award No. 107514). This research

was supported in part by the Advanced Scientific Computing

Research program and the Basic Energy Sciences program,

which are supported by the Office of Science of the DOE

under contract No. DE-AC02-05CH11231. This research used

resources of the Advanced Light Source and The Molecular

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 13 of 15

Table 1
Uniform resource identifiers of labeled RSoXS Bluesky runs, where the
cells highlighted in bold represent the small subset that was used to train
and fine-tune the autoencoders that were used for similarity-based
labeling.

0612cb98-29c6-49e2-9a1a-780f7b9f2365 06e1511a-2470-4176-a484-59aadecdf09b

077c21aa-66ec-4ec3-84bc-1dcfaa590751 08add695-5558-4276-95bd-3cd278e8a63c

0f75fa7f-9cc0-4b21-9eb3-93b661144186 117b9502-b82a-4a6d-880c-7b69c746aecd

196d936b-9bdc-4d5e-a27b-43c4022ddef1 24f6eca4-d5c5-44e6-b7d5-188941dfd271

2bf14fec-5789-4edd-bb92-0aa48ea2bb62 3044480e-57d3-466b-b25f-d4df88c2bb68

3e8f80e3-e78b-4df3-945f-646e6fe9ae5f 3f5851a5-3e0f-4453-8b65-d4bdd899fcc4

402602f8-8d7e-4772-b1c6-0fd03c2d2870 41baefa5-71a4-4171-b420-475c1e16f1e8

4232bdd2-485f-4880-baaf-700710e67863 42390e5e-1ebd-4671-9610-83cf8e6ccc4c

43733bfe-a2c2-4c94-abde-5574ff75f2f8 468810ed-2ff9-4e92-8ca9-dcb376d01a56

49f11cbe-77bb-431e-bdfc-126351ee533e 4a6090de-2bec-4cce-b9b7-77c962336da3

4a8e6d20-09f8-4d4b-9eee-1b8a705ff9dc 4b619f82-8109-494c-aa80-2016fdae9162

4d22a49c-6a6e-4300-9723-242a7624c411 4d73c2f0-0853-44f3-a457-a815f7c671a2

4e1e2ad6-0bfe-4b86-aa90-a8506a9821c1 4e4b11a0-f9e6-4d87-be09-c2e67eb31373

4fa0282a-f3e9-42eb-bcca-353c9b97bf2f 521a0d85-3dbb-49d7-b790-273dffa01adf

575e38bc-b436-4574-8998-271abbe8789b 5be6565a-22c2-4fe3-92f0-29e6da75be17

5c15445c-cfd2-43f9-a7b1-e22588a62218 5e57263b-395f-4c26-86ae-938a59cf76bd

5eb289fe-1405-489d-b60d-254bfe80fdfa 62a39bd1-6fd0-40f9-98d4-35578c643929

64d2d687-efd3-4b78-87f8-b105a5941356 66194d57-3394-48a6-af81-c6a571e9253d

6d65e6a5-6f68-4fda-b0e2-c355da3a2298 70c3fc88-b1e7-4dc4-a1bd-6694805e187e

7259fba5-efdc-48fd-b6cc-0315f5737187 77b7cc7b-9011-4caa-a9d5-d23f1d207ea6

78c4becf-b0c6-4385-8d65-ba5a7d801a40 7ed73976-a074-40d6-9a31-c443e6f8af22

7ef20e0a-8fe3-4091-8bfd-bf28ce4b1c4c 80ec2d8d-9936-4438-8b5d-c59bed520832

89acb459-0630-4bce-bf58-c2ddd54fbdfb 8a25ab24-6a77-43bc-99ab-e75cc3437b14

8a5a6cb4-ed73-42d5-86b6-082327 dd649a 91597d7e-cbe8-4920-92f4-12fc105363ec

92816b30-abe0-400d-8fca-71ac53e8fe0d 92ed98a5-ba7e-45cb-9ac2-ca4613618f2d

9549a5ff-8c18-458e-b51b-32df89dc1a89 9e1ef5a7-80d8-4c99-9b26-189af6cafa5a

a6a21ac2-e5d1-4fdf-9ce5-70fd04c57359 a70c2e3e-a015-48b6-89bb-01787bd429d7

acc7408b-daab-4516-9c2c-56f7ea179512 b37dd4e6-c5ea-45bc-8a04-2ad3da6a1167

b423ff0a-260c-4251-adfb-ddec78c5ee15 b483328f-1011-4a67-9e60-9d292b49a470

b7b4740f-17a4-4827-ad23-d5f70fa4a8e4 b8550b08-233d-4f18-9b36-bae8f991e7de

ba83ab2d-7722-4dff-abb4-80e13b30b0c6 be40580f-651e-4f41-ae0b-cbb61be8aeec

c44368f9-ebb2-4b49-935e-cd5e1c01ad7b c5c44bb2-1737-469f-813e-0b5cebf21911

c65de975-2ca7-4036-a3fd-58dd593f4b9f c9db2c01-83aa-4aa6-a1c2-e04722deef22

ccb66c36-6ee2-4107-8e17-ce6f54cca115 d2abb596-a76d-4b59-99a4-c9ae08279114

d491b68e-f829-4d8b-975d-648dd51cbc97 dae99200-fb38-40c5-b1a0-b74f1ceaea71

dd1ec7e6-e53c-4d1f-8205-7f0396571836 de9e6427-7c20-43e3-bcd6-840baf7ee51c

e0d82ec1-96dd-4cce-a91b-cdead0e92f1f e11fad16-1b59-426f-ba07-1de6fe04c3b2

e36689d2-db97-45e5-a39b-9137ae1faadf eb6c0565-d671-4e05-959e-e045af9ff062

ef6d575f-677a-4450-ac62-a320422991fa f00acbef-9c7a-430b-92f7-bc1abdd576d0

f3bfe133-9613-49ab-a3e1-4a4f91944b3f f78c94aa-eba5-4c30-a8ba-2dfc6dcda1e0

fa51969c-c7d6-4aa3-9c49-5ce82b2e99fb fac2923d-1519-4491-a3fb-66885e10ee97

fb09ee25-f95f-4712-8b3b-0833dd21c268 fcd40ef0-1bc6-4e46-8b65-2222c3d89296

fe0b6a01-3f49-4fdc-847f-dca4c91cd36b

https://tiled-demo.blueskyproject.io/ui/browse/rsoxs/raw
https://tiled-demo.blueskyproject.io/ui/browse/rsoxs/raw
https://github.com/mlexchange/mlex_labelmaker
https://github.com/mlexchange/mlex_labelmaker
https://github.com/mlexchange/mlex_data_clinic
https://github.com/mlexchange/mlex_data_clinic
https://github.com/mlexchange/mlex_mlcoach
https://github.com/mlexchange/mlex_file_manager
https://github.com/mlexchange/mlex_file_manager
https://github.com/mlexchange/mlex_pytorch_autoencoders
https://github.com/mlexchange/mlex_pytorch_autoencoders
https://github.com/mlexchange/mlex_image_classification
https://github.com/mlexchange/mlex_image_classification
https://github.com/als-computing/splash-ml
https://github.com/mlexchange/mlex


Foundry, which are DOE Office of Science User facilities

under contract No. DE-AC02-05CH11231. Work performed at

the Center for Nanoscale Materials, a US Department of

Energy Office of Science User Facility, was supported by the

US DOE, Office of Basic Energy Sciences, under contract No.

DE-AC02-06CH11357.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu,
Y. & Zheng, X. (2015). TensorFlow: large-scale machine learning on
heterogeneous systems, https://www.tensorflow.org/.

Abdi, H. & Williams, L. J. (2010). WIREs Comput. Stat. 2, 433–459.
Aithal, S. K., Maini, P., Lipton, Z. C. & Kolter, J. Z. (2024). arXiv,

2406.09358.
Allan, D., Caswell, T., Campbell, S. & Rakitin, M. (2019). Synchrotron

Rad. News, 32(3), 19–22.
Araujo, F. H., Silva, R. R., Medeiros, F. N., Parkinson, D. D.,

Hexemer, A., Carneiro, C. M. & Ushizima, D. M. (2018). Expert
Syst. Appl. 109, 35–48.

Arthur, D. & Vassilvitskii, S. (2007). Proceedings of the eighteenth
annual ACM-SIAM symposium on discrete algorithms, pp. 1027–
1035. Society for Industrial and Applied Mathematics.

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X.,
Haubold, C., Schiegg, M., Ales, J., Beier, T., Rudy, M., Eren, K.,
Cervantes, J. I., Xu, B., Beuttenmueller, F., Wolny, A., Zhang, C.,
Koethe, U., Hamprecht, F. A. & Kreshuk, A. (2019). Nat. Methods,
16, 1226–1232.

Biswas, A., Liu, Y., Creange, N., Liu, Y.-C., Jesse, S., Yang, J.-C.,
Kalinin, S. V., Ziatdinov, M. A. & Vasudevan, R. K. (2024). npj
Comput. Mater. 10, 29.

Champion, M. S., Dean, R. A., Galambos, J. D., Howell, M. P., Plum,
M. A. & Riemer, B. (2017). 8th international particle accelerator
conference (IPAC’17), Copenhagen, Denmark, 14–19 May, 2017,
pp. 2445–2448. JACOW.

Chavez, T., Roberts, E. J., Zwart, P. H. & Hexemer, A. (2022). J. Appl.
Cryst. 55, 1277–1288.

Chefer, H., Gur, S. & Wolf, L. (2021). Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR), pp.
782–791. IEEE.

Chollet, F. (2017). Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pp. 1251–1258. IEEE.

Collins, J., Liu, Z., Nudell, J., Izzo, S., Preissner, C. & Cease, H. (2017).
Proceedings of the 9th edition of the mechanical engineering design
of synchrotron radiation equipment and instrumentation conference,
MEDSI2016, pp. 87–89.

CVAT.ai Corporation (2023). Computer Vision Annotation Tool
(CVAT), https://cvat.ai/.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009).
2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. IEEE.

Dwyer, B., Nelson, J., Hansen, T. et al. (2024). Roboflow. Version 1.0.
https://roboflow.com.

Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. (1996). KDD’96:
proceedings of the second international conference on knowledge
discovery and data mining, pp. 226–231. AAAI Press.

Hadi Kiapour, M., Yager, K., Berg, A. C. & Berg, T. L. (2014). IEEE
winter conference on applications of computer vision, pp. 933–940.
IEEE.

Hao, G., Roberts, E. J., Chavez, T., Zhao, Z., Holman, E. A., Yanxon,
H., Green, A., Krishnan, H., Ushizima, D., McReynolds, D.,
SchwarzN., Zwart, P. H., Hexemer, A. & Parkinson, D. (2023).
IS&T international symposium on electronic imaging, Vol. 35, 290-1.
https://doi.org/10.2352/EI.2023.35.9.IPAS-290.

He, K., Zhang, X., Ren, S. & Sun, J. (2016). 2016 IEEE conference on
computer vision and pattern recognition (CVPR), pp. 770–778.
IEEE. https://doi.org/10.5555/1283383.1283494.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B. & Hochreiter,
S. (2018). arXiv, 1706.08500.

Hexemer, A., Bras, W., Glossinger, J., Schaible, E., Gann, E., Kirian,
R., MacDowell, A., Church, M., Rude, B. & Padmore, H. (2010). J.
Phys. Conf. Ser. 247, 012007.

Hinton, G. E. & Salakhutdinov, R. R. (2006). Science, 313, 504–507.

Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. (2017).
2017 IEEE conference on computer vision and pattern recognition
(CVPR), pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243.

Huang, X., Jamonnak, S., Zhao, Y., Wang, B., Hoai, M., Yager, K. &
Xu, W. (2021). IEEE Trans. Vis. Comput. Graph. 27, 1312–1321.

Jocher, G. (2020). YOLOv5 by ultralytics, https://github.com/
ultralytics/yolov5.

Kalinin, S. V., Ziatdinov, M., Hinkle, J., Jesse, S., Ghosh, A., Kelley,
K. P., Lupini, A. R., Sumpter, B. G. & Vasudevan, R. K. (2021). ACS
Nano, 15, 12604–12627.

Kendall, A., Grimes, M. & Cipolla, R. (2015). 2015 IEEE interna-
tional conference on computer vision (ICCV), pp. 2938–2946. IEEE.
https://doi.org/10.1109/ICCV.2015.336.

Kingma, D. P. & Ba, J. (2017). arXiv, 1412.6980.

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B.,
Hays, J., Perona, P., Ramanan, D., Zitnick, C. L. & Dollár, P. (2014).
arXiv, 1405.0312.

Lippe, P. (2023). Tutorial 8: deep autoencoders, https://
pytorch-lightning.readthedocs.io/en/stable/notebooks/course_
UvA-DL/08-deep-autoencoders.html#Tutorial-8:-Deep-
Autoencoders.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C. &
Berg, A. C. (2015). arXiv, 1512.02325.

Maron, O. & Lozano-Pérez, T. (1997). Adv. Neural Inf. Process. Syst.
10, 570–576.

McInnes, L., Healy, J. & Astels, S. (2017). J. Open Source Softw. 2,
205.

McInnes, L., Healy, J., Saul, N. & Großberger, L. (2018). J. Open
Source Softw. 3, 861.

Meng, Q., Catchpoole, D., Skillicom, D. & Kennedy, P. J. (2017). 2017
international joint conference on neural networks (IJCNN), pp. 364–
371. IEEE.

Miller, W. L., Bard, D., Boehnlein, A., Fagnan, K., Guok, C., Lançon,
E., Ramprakash, S., Shankar, M., Schwarz, N. & Brown, B. L.
(2023). Integrated research infrastructure architecture blueprint
activity. Final Report 2023. Technical report. US Department of
Energy, Washington, DC, USA. https://www.osti.gov/biblio/
1984466.

Musleh, A., AlRyalat, S. A. & Qasem, A. (2023). High Yield Med.
Rev. 1(2), https://doi.org/10.59707/hymrXHMX8234.

Office of Science (2023). US Department of Energy selects the High
Performance Data Facility lead, https://www.energy.gov/science/
articles/us-department-energy-selects-high-performance-data-
facility-lead.

Platen, P. von, Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul,
K., Davaadorj, M., Nair, D., Paul, S., Berman, W., Xu, Y., Liu, S. &
Wolf, T. (2022). Diffusers: state-of-the-art diffusion models, https://
github.com/huggingface/diffusers.

Plotly Technologies Inc. (2015). Dash, https://plot.ly.

Rakitin, M., Campbell, S., Allan, D., Caswell, T., Gavrilov, D.,
Hanwell, M. & Wilkins, S. (2022). J. Phys. Conf. Ser. 2380, 012100.

Ratner, A., Bach, S. H., Ehrenberg, H., Fries, J., Wu, S. & Ré, C.
(2020). VLDB J. 29, 709–730.

research papers

14 of 15 Tanny Chavez et al. � ML-driven data labeling pipeline J. Appl. Cryst. (2025). 58

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB16
https://roboflow.com
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB19
https://library.imaging.org/ei/articles/35/9/IPAS-290
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB26
https://github.com/ultralytics/yolov5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB28
https://doi.org/10.1109/ICCV.2015.336
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB31
https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/08-deep-autoencoders.html#Tutorial-8:-Deep-Autoencoders
https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/08-deep-autoencoders.html#Tutorial-8:-Deep-Autoencoders
https://pytorch-lightning.readthedocs.io/en/stable/notebooks/course_UvA-DL/08-deep-autoencoders.html#Tutorial-8:-Deep-Autoencoders
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB37
https://www.osti.gov/biblio/1984466
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB39
https://www.energy.gov/science/articles/us-department-energy-selects-high-performance-data-facility-lead
https://www.energy.gov/science/articles/us-department-energy-selects-high-performance-data-facility-lead
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB40
https://github.com/huggingface/diffusers
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB43


Rippner, D. A., Raja, P. V., Earles, J. M., Momayyezi, M., Buchko, A.,
Duong, F. V., Forrestel, E. J., Parkinson, D. Y., Shackel, K. A.,
Neyhart, J. L. & McElrone, A. J. (2022). Front. Plant Sci. 13, 893140.

Roberts, E. J., Chavez, T., Hexemer, A. & Zwart, P. H. (2024). J. Appl.
Cryst. 57, 392–402.

Roccapriore, K. M., Kalinin, S. V. & Ziatdinov, M. (2022). Adv. Sci. 9,
2203422.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Nature, 323,
533–536.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. &
Batra, D. (2017). 2017 IEEE international conference on computer
vision (ICCV), pp. 618–626. IEEE. https://doi.org/10.1109/ICCV.
2017.74.

Simonyan, K. & Zisserman, A. (2014). arXiv, 1409.1556.
Skalski, P. (2019). MakeSense, https://github.com/SkalskiP/

make-sense/.
Solsona-Berga, A., Frasier, K. E., Baumann-Pickering, S., Wiggins,

S. M. & Hildebrand, J. A. (2020). PLoS Comput. Biol. 16, e1007598.
Steier, C., Amstutz, P., Baptiste, K., Bong, P., Buice, E., Casey, P.,

Chow, K., De Santis, S., Donahue, R., Ehrlichman, M., Harkins, J.,
Hellert, T., Johnson, M., Jung, J.-Y., Leemann, S., Leftwich-Vann,
R., Leitner, D., Luo, T., Omolayo, S., Osborn, J., Penn, G., Port-
mann, G., Robin, D., Sannibale, F., Sun, C., Swenson, C., Venturini,
M., Virostek, S., Waldron, W. & Wallén, E. (2019). Proceedings of
the 10th international particle accelerator conference (IPAC2019),
TUPGW097.

Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. (2016a). arXiv,
1602.07261.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016b).
Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp. 2818–2826. IEEE.

Szymanski, N. J., Bartel, C. J., Zeng, Y., Diallo, M., Kim, H. & Ceder,
G. (2023). npj Comput. Mater. 9, 31.

Waldner, S., Huwyler, J. & Puchkov, M. (2024). SoftwareX, 27, 101796.
Xie, S., Fan, W., Peng, J., Verscheure, O. & Ren, J. (2009). Proceedings

of the 18th international conference on World Wide Web (WWW
’09), pp. 91–100. Association for Computing Machinery.

Zeiler, M. D. & Fergus, R. (2014). Computer vision – ECCV 2014, pp.
818–833. Springer International Publishing.

Zhao, X., Luo, Y., Liu, J., Liu, W., Rosso, K. M., Guo, X., Geng, T., Li,
A. & Zhang, X. (2023). J. Phys. Chem. C, 127, 14830–14838.

Zhao, Z., Chavez, T., Holman, E. A., Hao, G., Green, A., Krishnan,
H., McReynolds, D., Pandolfi, R. J., Roberts, E. J., Zwart, P. H.,
Yanxon, H., Schwarz, N., Sankaranarayanan, S., Kalinin, S. V.,
Mehta, A., Campbell, S. I. & Hexemer, A. (2022). 2022 4th annual
workshop on extreme-scale experiment-in-the-loop computing
(XLOOP), pp. 10–15. IEEE.

Zhao, Z., Chong, X., Chavez, T. & Hexemer, A. (2024). arXiv,
2408.12720.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. (2016).
2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 2921–2929. IEEE. https://doi.org/10.1109/CVPR.
2016.319.

Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. (2018). 2018 IEEE/
CVF conference on computer vision and pattern recognition, pp.
8697–8710. IEEE. https://doi.org/10.1109/CVPR.2018.00907.

research papers

J. Appl. Cryst. (2025). 58 Tanny Chavez et al. � ML-driven data labeling pipeline 15 of 15

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB47
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB48
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB48
https://doi.org/10.1109/ICCV.2017.74
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB49
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB50
https://github.com/SkalskiP/make-sense/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB52
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB53
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB54
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB54
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB55
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB56
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB57
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB58
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB58
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB58
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB59
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB59
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB60
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB60
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB61
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB62
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB62
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB63
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB63
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB63
https://doi.org/10.1109/CVPR.2016.319
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB64
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB64
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5149&bbid=BB64

	Abstract
	1. Introduction
	2. Labeling data pipeline
	2.1. Data access
	2.2. Label management

	3. Front-end applications
	3.1. Data clinic
	3.1.1. Tunable autoencoders

	3.2. MLCoach
	3.2.1. Probabilistic classifiers

	3.3. Label Maker
	3.3.1. Manual labeling
	3.3.2. Similarity-based labeling
	3.3.3. Probability-based labeling

	3.4. Latent Space Explorer

	4. Experimental results
	4.1. Labeling large X-ray scattering data sets
	4.2. Remote data analysis of RSoXS data
	4.3. Enabling fine-tuning of foundation models with human feedback

	5. Discussion
	5.1. Hyperparameter tuning and pre-trained weights
	5.2. Preventing labeling errors
	5.3. Near real-time data analysis

	6. Conclusions
	APPENDIX A: Data availability
	APPENDIX B: Code availability
	APPENDIX C: Hyperparameter selection
	Acknowledgements
	Funding information
	References

