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This study describes a deep learning approach to predict the space group and

unit-cell volume of inorganic crystals from their powder X-ray diffraction

profiles. Using an inorganic crystallographic database, convolutional neural

network (CNN) models were successfully constructed with the �-function-like

‘ideal’ X-ray diffraction profiles derived solely from the intrinsic properties of

the crystal structure, which are dependent on neither the incident X-ray

wavelength nor the line shape of the profiles. We examined how the statistical

metrics (e.g. the prediction accuracy, precision and recall) are influenced by the

ensemble averaging technique and the multi-task learning approach; six CNN

models were created from an identical data set for the former, and the space

group classification was coupled with the unit-cell volume prediction in a CNN

architecture for the latter. The CNN models trained in the ‘ideal’ world were

tested with ‘real’ X-ray profiles for eleven materials such as TiO2, LiNiO2 and

LiMnO2. While the models mostly fared well in the ‘real’ world, the cases at

odds were scrutinized to elucidate the causes of the mismatch. Specifically for

Li2MnO3, detailed crystallographic considerations revealed that the mismatch

can stem from the state of the specific material and/or from the quality of the

experimental data, and not from the CNN models. The present study demon-

strates that we can obviate the need for emulating experimental diffraction

profiles in training CNN models to elicit structural information, thereby focusing

efforts on further improvements.

1. Introduction

For experimentalists who are dealing firsthand with newly

synthesized materials, powder X-ray diffraction (XRD) is a

convenient and indispensable technique for their character-

ization. Reconstruction of the atomic and molecular

arrangement in three-dimensional space from the XRD

profile, which is a one-dimensional vector caused by a scat-

tering phenomenon, is a typical ill-posed inverse problem, that

is, a unique solution is not readily attainable from the XRD

profile, where the three-dimensional information is contracted

merely into the intensity as a function of the diffraction angle.

Formidable experience and expertise are required just for the

initial setup of the crystal structure model, which in turn would

be subject to further refinements such as Rietveld analysis.

The advent of deep learning technology, a type of machine

learning that requires no explicit descriptor, is now shaping

modern society more rapidly than ever imagined, including

efforts such as AlphaGo (Silver et al., 2016), GPT-3 (Floridi &

Chiriatti, 2020) and Stable Diffusion (Rombach et al., 2022).

Materials science is no exception to this trend, though some-

what belatedly (Park et al., 2017; Vecsei et al., 2019; Liang et
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al., 2020; Oviedo et al., 2019; Ziletti et al., 2018; Xie &

Grossman, 2018; Liu et al., 2019; Lolla et al., 2022). Unlike the

conventional Hanawalt method or others based on pattern

matching, an advantage of applying deep learning technology

to crystallography is that it can deal with any materials that

have hitherto unknown structures. Previous studies have

demonstrated that deep neural networks can assign the space

group to which an inorganic compound belongs and predict its

unit-cell parameters from one-dimensional XRD profiles

(Park et al., 2017; Vecsei et al., 2019; Oviedo et al., 2019) or

two-dimensional diffraction images (Ziletti et al., 2018). In

these studies, the deep neural networks were trained by

simulated profiles derived from the crystal structures in in-

organic materials databases. For the networks to be applicable

to experimental data, training and validation profiles were

calculated by emulating real diffraction profiles as closely as

possible, for example, simulating the line shape using a Voigt

function onto which noise and fluctuations were overlaid.

The present study has two purposes. The first is to

demonstrate the possibility of dividing the problem of eliciting

structural information from an XRD profile into two schemes:

Scheme 1: Training convolutional neural network (CNN)

models through a supervised learning process with only an

intrinsic property of the material itself – the crystal structure

factor Fhkl [see equation (6)].

Scheme 2: Extracting adequate signals from the experi-

mental XRD profiles and feeding them into the CNN models

after a proper conversion.

We have noticed that these schemes can be tackled inde-

pendently and hence can be developed in separate computa-

tional systems. The present study mainly focuses on Scheme 1.

The strategies based on these schemes are contrary to

previous studies, wherein the models were trained with XRD

profiles that simulate the experimental data. As the structure

factor is independent of the experimental conditions (e.g. the

incident X-ray wavelength, line shape and noise), the models

in this study are trained, as it were, in an ‘ideal world’ (Section

3.3). The CNN models trained in the ideal world were then

tested in the ‘real world’ using the experimental XRD profiles

of eleven inorganic materials (Section 4.2). Since Scheme 2 is

not covered in this study, the peaks were manually extracted

from experimental profiles. The implications of these two

separate schemes are addressed in the Conclusions.

The second purpose of this study is to examine the effect of

the ensemble averaging technique (Hansen & Salamon, 1990;

Breiman, 1996; Lakshminarayanan et al., 2017) and the multi-

task learning (MTL) approach (Sener & Koltun, 2018) in

improving the generalization performance. Concerning

ensemble averaging, six CNN models were prepared from a

single training data set by changing the randomizing process.

In addition to the space group classification, the CNN models

were trained through an approach that simultaneously

predicts the unit-cell volumes. The reproducibility was

confirmed with five training data sets.

As the crystallographic database, we opted for PowCod

(Altomare et al., 2015), which has ca 80000 entries of

experimentally observed inorganic structures. Although

several crystallographic databases have more entries than

PowCod, one has to be careful in choosing a database because

many forbid using their data for machine learning.

When tested in the real world with the eleven inorganic

materials, the CNN models trained in the ideal world (Scheme

1) fared well, despite the primitive method of extracting

signals from the experimental profiles (Scheme 2). The cases

where a mismatch occurred were scrutinized material by

material to identify the cause of the problem.

2. Data preparation

The data sets that were used in this study are sets of simulated

diffraction profiles of inorganic crystals, each of which is

labelled with the space group and primitive cell volume. The

profiles and labels were calculated and analysed from struc-

tural data in the crystallographic database. Our CNN models

were trained and validated with the profiles as the input and

the labels, space groups and primitive cell volumes as the

supervised data (i.e. the correct answer).

2.1. Crystallographic information files for data sets

PowCod is a freely available crystallographic database of

inorganic crystals provided by the Institute of Crystallography

based in Bari, Italy, derived from the Crystallography Open

Database (COD) (Gražulis et al., 2009), which encompasses

organic, inorganic and metal–organic compounds. As

mentioned in the Introduction, we used PowCod despite its

smaller number of entries than other commercially available

databases because their contracts forbid their use for machine

learning. Among the 81120 entries of inorganic crystals in

PowCod, we successfully obtained 74882 crystallographic

information files (CIFs) that can be read by the library

pymatgen (Ong et al., 2013), which allows for a virtual atom

consisting of two or more elements or vacancies according to

their fractional occupancies on a site. Because nearly half of

the CIFs in the database involve virtual atoms, additional care

was taken when using libraries that did not support virtual

atoms, such as Atomic Simulation Environment (ASE) (Larsen

et al., 2017).

2.2. Analysing space groups

The CIFs may contain information about the space group to

which the crystal structure belongs, as the Hermann–Mauguin

notation in _space_group_name_H-M_alt and the

space group number in _space_group_IT_number or

_symmetry_Int_Tables_number. However, as we

found that some of the structures are mistakenly classified into

a lower symmetry group (i.e. a subgroup), we analysed all the

space groups in the CIFs using the library Spglib (Togo et al.,

2018). As a result, 2225 structures (ca 3% of the total) were

relabelled.

To secure a sufficient number of items in each space group,

we limited the classifying space groups to the 57 frequently

occurring groups listed in Table 1, totalling 62830 items,

referred to as data set D(1).
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2.3. Distribution of the primitive cell volume and the atomic

number density

We examined the effect of excluding ‘outliers’ from the data

sets with respect to the unit-cell volume and the atomic

number density, both of which obey a log-normal distribution,

as described below (the former is also used as supervised data

for the CNN with the MTL approach).

While the diffraction profile and the space group are

independent of the choice of unit cell, the cell volume is not.

We opted for the primitive cell over the conventional cell to

guarantee the uniqueness of the supervised data for the MTL

approach. We first constructed the conventional cell from the

CIFs using Spglib, from which the primitive cell with the

minimum cell volume was in turn extracted using the algo-

rithm proposed by Setyawan & Curtarolo (2010). Our

implementation was validated by the agreement between the

simulated diffraction profiles generated from the conventional

and primitive cells.

Fig. 1 shows the distribution of the logarithmic primitive cell

volume U and the logarithmic atomic number density � of the

62830 structures belonging to the 57 space groups in Table 1:

U � log V ðin Å
3
Þ

h i
; ð1Þ

� � log
na

V ðin Å
3
Þ

" #

; ð2Þ

where V and na are the primitive cell volume and the number

of atoms in it, respectively. As the figure suggests that both U

and � independently obey a normal distribution, one can

examine the effect of excluding from the training data sets the

outliers lying outside of �� and �2�, where � is the standard

deviation. Table 2 lists the number of entries for seven data

sets after excluding outliers, where D(1) is the data set

without excluding the outliers, D(�U) excludes from D(1) the

outliers outside of �� with respect to U, D(�U+�) excludes

those outside of�� with respect to both U and �, and so forth.
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Table 1
The 57 frequent space groups in the PowCod database and their number
of entries.

Space group (No.) No. of entries

P21/c (14) 7982
P1 (2) 5897

Pnma (62) 4707
C2/c (15) 4203
Fm3m (225) 3955
Fd3m (227) 3463
C2/m (12) 2541
P63/mmc (194) 2010

I4/mmm (139) 1807
Pm3m (221) 1714
R3m (166) 1287
Cmcm (63) 1248
P6/mmm (191) 999
P21/m (11) 992
Pbca (61) 924

R3 (148) 921
R3c (167) 880
P63/m (176) 876
P4/mmm (123) 794
P212121 (19) 693
P4/nmm (129) 654

Pna21 (33) 632
P3m1 (164) 626
P21 (4) 615
F43m (216) 591
P1 (1) 574
Cc (9) 507
I41/amd (141) 491

I4/mcm (140) 479
Ia3d (230) 469
P42/mnm (136) 467
Pbcn (60) 464
P2/c (13) 429
Pbam (55) 428

P63mc (186) 398
I41/a (88) 395
Pnnm (58) 395
Cmc21 (36) 394
P63 (173) 388
Pm3n (223) 383

C2 (5) 381
Immm (71) 378
Cmca (64) 377
I4/m (87) 363
Pa3 (205) 355
Pmmm (47) 328
Imma (74) 322

I43d (220) 317
P62m (189) 316
P213 (198) 287
Pmmn (59) 270
R3m (160) 260
P4/mbm (127) 255

P63/mcm (193) 238
Cmmm (65) 237
R3 (146) 237
R3c (161) 237
Total 62830

Figure 1
Distribution of the logarithmic primitive cell volumes, U in equation (1),
and the logarithmic atomic number density, � in equation (2).



Standardization of the normal distribution, referred to as

Z-score normalization, is often effective in improving the

prediction accuracy, not only in the deep learning approach

but also in the machine learning approach and other appli-

cations. We hence used the following quantity as the super-

vised data for the primitive cell volume prediction,

~U �
U � �U

�U

; ð3Þ

where �U and �U are the mean and standard deviation of U,

respectively. By definition, the distribution of ~U centres at ~U =

0 with a standard deviation of 1.0.

2.4. Training and validation data sets

We created five mutually disjointed validation data sets,

Dvld
i (1 � i � 5), under the following considerations. Our

preliminary investigation suggested that the CNN models

trained by the outlier-excluded data set predicted very poorly

the space groups and cell volumes of the outliers, i.e. the CNN

models are not good at extrapolating their knowledge. Hence,

to extract purely the effect of outlier exclusion during training,

we selected the validation data set from the narrowest range in

Table 2, namely from D(�U+�). From each of the 57 space

groups in Table 1 in D(�U+�), we selected 80 items and divided

them into five sets, each of which has 16 items. In general, the

parent data set is divided into training and validation data sets

by maintaining similar distributions to evaluate the general-

ization performance; thus in the present study, the imbalanced

distribution of the space groups in PowCod (the distribution of

real materials) is reflected in both the training and validation

data sets. In this study, however, an equal number of items

were selected from each space group to focus on the statistical

variation among the space groups. Each of the validation data

sets, Dvld
i ð�Uþ�Þ (1 � i � 5), hence has 57 � 16 = 912 items. As

the validation data sets are extracted only from D(�U+�), we

abbreviate Dvld
i ð�Uþ�Þ as Dvld

i . Note that the intersection of

any two validation data sets is the empty set, i.e.

Dvld
i \Dvld

j ¼ ; (i 6¼ j). When selecting 80 items from each

space group, we forestalled ‘training-data leakage’ by

excluding from the validation data set any structures which

belong to the identical space group and of which all the

diffraction peaks fall within the five bins of the first convolu-

tion layer of the CNN (see Section 3.2) of another structure in

the training data set, lest almost identical structures be

included in both the training and validation data sets. The

issue of duplicated entries (i.e. compounds having the same

chemical formula being registered multiple times) is also

prevented in this way if duplicated structures match the above

criterion. If, on the other hand, the profiles of duplicated

formulae differ and lie outside the criterion, we consider they

should be treated as different materials because their unit-cell

volumes do not coincide. (Note that the chemical formulae are

irrelevant in our CNN models as they are used in neither the

training nor the validation.)

From the seven data sets listed in Table 2, five training data

sets Dtrn
i were created by subtracting five validation data sets

Dvld
i (1 � i � 5) as Dtrn

i ð1Þ = Dð1Þ � Dvld
i , Dtrn

i ð2�UÞ =

Dð2�UÞ � Dvld
i , . . . , Dtrn

i ð�Uþ�Þ= Dð�Uþ�Þ � Dvld
i . By changing

the randomizing seeds, six CNN models, I–VI, were created

from each training data set Dtrn
i to assess the effect of the

ensemble averaging technique (see Section 4.1.1). The training

data sets Dtrn
i ð1Þ were also used to train the CNN models that

simultaneously predict the space group and primitive cell

volume. A total of 240 CNN models were created in this study:

five training data sets (Dtrn
i ) � (seven data set ranges + 1 for

the MTL) � six models (I–VI).

2.5. Simulated diffraction profiles

Each of the simulated diffraction profiles consists of the

diffraction intensity Ihkl as a function of the magnitude of the

reciprocal-lattice vector, 1/d � d�hkl

�
�

�
�, where hkl are the

reflection indices of the crystal lattice:

1

d
¼ d�hkl

�
�

�
� ¼ ha� þ kb� þ lc�j j; ð4Þ

and a�, b� and c� are the reciprocal basis vectors. The

diffraction intensity Ihkl is the square of the crystal structure

factor Fhkl:

Ihkl ¼ Fhkl

�
�

�
�2: ð5Þ

The structure factor is given by

Fhkl ¼
Xna

j¼1

fjTjgj exp 2�iðhuj þ kvj þ lwjÞ
� �

; ð6Þ

where uj, vj and wj are the fractional coordinates for each atom

j, fj is the atomic scattering factor, Tj is the Debye–Waller

factor, and gj is the partial occupancy. We adopted the

following approximate expressions for fj and Tj :

fj

1

2d

� �

¼
X4

i¼1

ai exp � bi

1

2d

� �2
" #

þ c;

Tj

1

2d

� �

¼ exp � Bj

1

2d

� �2
" #

;

ð7Þ

where the nine parameters ai, bi and c were taken from Ibers &

Hamilton (1974) and Bj = 2.0.

Neither 1/d nor Ihkl depends on the incident beam (e.g. its

wavelength or Lorentz–polarization factor), nor is the inten-

sity Ihkl influenced by the experimental conditions [e.g. the

signal-to-noise ratio or the crystal size of the specimen]. The
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Table 2
The number of entries in the data sets after excluding outliers from the
parent data set D(1), which consists of crystallographic structures
belonging to any of the 57 space groups listed in Table 1.

Data set No. of entries

D(1) 62 830
D(2��) 60 550

D(2�U) 59 701
D(2�U+�) 57 576
D(��) 44 248
D(�U) 43 896
D(�U+�) 31 041



CNN models are hence trained and validated, as it were, in an

‘ideal’ world, such that the discrete �-function-like profiles are

derived from the inherent properties of the structure, free

from factors such as line shape and noise.

The range 0.1131 < d� 1 (Å� 1) < 1.0625 was divided into

10001 bins. For each structure, Ihkl and 1/d were calculated

for all the combinations of (� b1:0625 aj jc, � b1:0625 bj jc,

� b1:0625 cj jc) � (h, k, l) � (b1:0625 aj jc, b1:0625 bj jc,

b1:0625 cj jc) and each calculated Ihkl was accumulated on the

corresponding 1/d bin. In this way, the extinction rule, multi-

plicity and accidental overlapping of the signals are auto-

matically taken into account. An example of binning and

accumulating Ihkl where two diffraction intensities from two

distinct planes accidentally overlap is shown in Fig. S13 in the

supporting information. Finally, the intensity was normalized

in such a manner that the maximum signal intensity was 1.0 for

each structure. If the incident X-ray beam is Cu K� excitation,

these 1/d bins correspond to a diffraction angle 10� < 2� < 110�

with an interval of 0.01�. On the basis of the availability of the

parameters in International tables for X-ray crystallography

(Ibers & Hamilton, 1974), we limited the atomic number to

less than 98 (Cf).

2.6. Preprocessing of experimental data

This section describes Scheme 2 mentioned in the Intro-

duction, i.e. extraction of the peak positions and intensities

from experimental XRD profiles and their conversion to feed

the CNN models trained using Scheme 1. The peak intensities

I(2�) extracted from an experimental XRD profile involve the

Lorentz–polarization factor fLP as a function of half of the

diffraction angle �, which depends on the wavelength � of the

incident X-rays. We hence have to transform I(2�) into the

intensity without the Lorentz–polarization factor, Ihkl in

equation (5), as a function of the reciprocal interplanar

spacing, 1/d in equation (4), to feed the CNN models

constructed in this study. The diffraction angle 2� is converted

to 1/d through the Bragg condition,

� ¼ 2d sin �: ð8Þ

The experimentally observed diffraction intensity is propor-

tional to I(2�) given by

Ið2�Þ ¼ fLPð�Þ Ihkl;

fLPð�Þ ¼
1þ cos2 2�

2 sin2 � cos �
;

ð9Þ

where Ihkl is given in equation (5).

The peak intensities and their positions were extracted from

the experimental diffraction profiles using the find_ peak_

cwt() function in the Python library SciPy (https://scipy.org/),

which detects peaks on the basis of the wavelet transform (Du

et al., 2006). Because the detection is inevitably subject to

errors, such as spike noise or a signal buried in the back-

ground, certain manual adjustments were occasionally

required. The extracted peak intensities were corrected when

the signals from multiple wavelengths (e.g. K�1 and K�2) were

overlaid in the experimental diffraction profile. Our CNN

models trained in the ‘ideal’ world in Section 2.5 were fed with

the input data, after the extracted peak intensity had been re-

scaled to Ihkl by dividing I(2�) by fLP [see equation (9)] and

normalized so that the maximum signal intensity was 1.0. The

influence of the noise, impurities and undetected signals is

discussed on a case by case basis in Section 4.2.

3. Neural networks

3.1. Convolutional neural networks

This section describes the general aspects of the CNN. The

architecture of the CNN is fundamentally a type of feed-

forward neural network consisting of an input layer, inter-

mediate layers and an output layer. Each layer is represented

as a vector of perceptrons modelling neurons, and the layers

are connected by weights. The output yi of a layer i is

expressed in terms of the input xi to the layer i, the weight Wi

between the layers i and i � 1, and the bias bi through a

nonlinear function f called the activation function as follows:

yi ¼ f ðWixi þ biÞ: ð10Þ

A layer in which all perceptrons are connected is called fully

connected, while a locally connected layer is called a convo-

lutional layer. Along with the convolutional layer, a pooling

layer is commonly used that outputs the maximum or average

of the inputs. A dropout layer is occasionally used to suppress

overfitting, in which an excessive adaptation to the training

data set reduces the prediction accuracy for unknown data, i.e.

generalization performance.

The model instantiating the CNN architecture, referred to

as the CNN model, is iteratively trained by changing its

weights and biases to minimize the error between the super-

vised data and the output. The supervised data are essential

for training the model and must be prepared in advance. The

error is evaluated by a loss function, the choice of which

depends on the problem under consideration. For example,

the cross-entropy error, which measures the difference

between two probability distributions, is often used as the loss

function for classification problems. The mean squared error,

which measures the average squared difference between

numerical values, is widely used for regression problems. In

training a CNN model, gradient methods, also known as

optimization functions, are used to compute the weights and

biases to minimize the error because they are computed by

differentiating the loss function. Among the various optimi-

zation functions, stochastic gradient descent (SGD) and

adaptive moment estimation (ADAM) are widely used.

The training data set is divided into non-recoverable sets,

referred to as mini-batches, with which CNN models are

iteratively trained. Typically, the mini-batch size is a constant

that must be set prior to training. These preset parameters are

called hyperparameters to distinguish them from the para-

meters of the neural networks. An appropriate mini-batch size

leads to a higher training speed and prediction accuracy. One

‘epoch’ elapses when all the mini-batches have been input to

research papers

J. Appl. Cryst. (2025). 58 Hiroyuki Ozaki et al. � Prediction of space group and cell volume by a CNN 5 of 13

http://doi.org/10.1107/S1600576725002419
https://scipy.org/


the training session. The entire training session is completed

after several thousand epochs.

3.2. CNNs for space group classification

In this study, two CNNs were developed (Fig. 2) following

the architecture proposed by Park et al. (2017). We did not

attempt to optimize the architecture because we focused our

attention on the feasibility of training CNN models with

�-function-like profiles, as well as on the effect of ensemble

averaging and an MTL approach. There is room for optimi-

zation and improvement by means of, for example, neural

architecture search (Zoph & Le, 2017). Fig. 2(a) depicts the

CNN architecture to classify only the space group (the single-

task learning approach), referred to as SpgNet. The archi-

tecture depicted in Fig. 2(b) simultaneously predicts the space

group and the primitive cell volume using an MTL approach,

referred to as SpgVolNet.

In Fig. 2(a), i.e. SpgNet, the input layer (in grey) receives

the diffraction intensities Ihkl as a function of 1/d, divided into

10001 discrete bins, as described in Section 2.5. The inter-

mediate layers consist of three convolutional blocks and two

fully connected blocks. The last convolutional block and first

fully connected layer are connected by a flattening layer

represented in white. This flattening layer transforms the

feature maps into a one-dimensional vector suitable for input

to the fully connected layers. Each convolutional block

consists of a convolutional layer (shown in blue), an activation

function (in orange) and a pooling layer (in red). Each fully

connected block has a fully connected layer (in yellow) and an

activation function (in orange). Both types of block have a

dropout layer (shown in green) to control overfitting. The

number of perceptrons in the fully connected layers is deter-

mined by that in the output layer. We adopted the rectified

linear unit (ReLU; Nair & Hinton, 2010) as the activation

function in the intermediate layers. The output layer has 57

perceptrons to register the probability of the input, and these

are classified into the 57 space groups considered in this study

(see Section 2.2). The architecture is very faithful to the

general CNN architecture.

MTL is a technique aimed at improving the learning effi-

ciency and generalization performance of each task by

learning multiple related tasks simultaneously (Sener &

Koltun, 2018). In this context, a task refers to a problem that

specifies desired outputs or objectives for a given input and

aims to solve it by minimizing the error between those outputs

and the predicted results. The fundamental idea behind this

approach is that, by incorporating common layers to share

information and features across tasks, the model can acquire

more knowledge than when learning each task independently.

When learning individual tasks separately, there may be

insufficient training data or a risk of overfitting to specific
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Figure 2
CNNs for (a) classifying only the space group (SpgNet) and (b) predicting the space group and cell volume using a multi-task learning approach
(SpgVolNet) from XRD profiles. The diffraction intensity Ihkl as a function of the reciprocal interplanar distance 1/d divided into 10 001 bins is loaded to
the input layer, depicted in grey. The convolutional layers are shown in blue, with f channels of kernel size k and stride s. The activation functions are
shown in orange. The dropout layers (in green) are inserted to control overfitting in (a). The average pooling layers are shown in red with kernel size k
and stride s. The layer in white converts its input to one dimension without changing the values. The layers in yellow are fully connected. In the output
layers in both (a) and (b), the identity function is adopted as the activation function.



tasks. However, in MTL, knowledge is shared across different

tasks to enhance generalization performance and help prevent

overfitting. Specifically, it is common to adopt a structure in

which certain layers of the neural network are shared among

tasks, while each task has its own dedicated output layer. The

features learned in this shared part can capture important

patterns that are common across multiple tasks, comple-

menting the task-specific parts. For example, when performing

image classification (object recognition) and object detection

(object localization) simultaneously, using shared information

about the shape and edges of objects can improve the

prediction accuracy of both tasks. In this context, the syner-

gistic effects between tasks can lead to better performance

than learning each task individually.

In this study, we developed a CNN with a task to classify

space groups and a task to predict the cell volume of primitive

cells, as shown in Fig. 2(b), referred to as SpgVolNet. The

counterpart CNN shown in Fig. 2(a) that predicts only the

space groups is referred to as SpgNet. From the input layer to

the flattening layer of SpgVolNet is the shared part, having the

same structure as SpgNet, and this is followed by fully

connected blocks specific to each task. The task specific to

space group classification has the same hierarchical structure

as SpgNet, but only the space group classification task retains

this identical architecture. In contrast, the task specific to cell

volume prediction consists of two fully connected blocks,

without a dropout layer, and an output layer. The output layer

has one perceptron to register a numerical value of the

predicted cell volume. The identity function was adopted as

the activation function in both output layers, to adapt to the

loss functions described in the next section.

3.3. Training

For classification tasks, the cross-entropy error is widely

used to measure the difference between two probability

distributions. There are two main variants frequently

employed in neural networks: binary cross-entropy (BCE) and

softmax cross-entropy (SCE). The former is generally suitable

for multi-label classification, where each label can be treated

as an independent Bernoulli random variable, while the latter

is suitable for single-label multi-class classification, where

exactly one class out of C possible classes is correct. Because

our problem requires assigning a unique space group to each

input (see Section 2.2), we adopted SCE rather than BCE. For

space group classification in both SpgNet and SpgVolNet, we

used the SCE error as the loss function.

The softmax function converts the logits {z(i, j)} into

predicted probabilities,

pði; jÞ ¼
expfzði; jÞg

PC

k¼1 expfzði; kÞg
; ð11Þ

and the SCE error LSCE is defined as

LSCE ¼ �
1

n

Xn

i¼1

log p i; lið Þ; ð12Þ

where C (= 57 in this study) is the number of classes, p(i, j) is

the predicted probability that sample i belongs to class j, and li
is the true class label (i.e. the correct space group). In practice,

nn.CrossEntropyLoss in PyTorch implements this by

the log–sum–exp trick using the logits {z(i, j)} internally, but

the result is equivalent to the above probability-based defi-

nition.

For the cell volume prediction in SpgVolNet, the mean

absolute error (MAE) was adopted as the loss function, as the

MAE predicts slightly more accurately than the mean squared

error in our preliminary experiments. This loss function is

defined as

LMAE ¼
1

n

Xn

i

~U0i � ~Ui

�
�

�
�; ð13Þ

where ~U0i is the predicted primitive cell volume of structure i

and ~Ui is its supervised value.

MTL has distinctive features in terms of loss functions.

Typically, an individual loss function L̂tð�sh; �tÞ is defined for

each task t and the overall loss L is computed as a weighted

combination of these losses using weights ct:

L ¼
XT

t¼1

ctL̂
t
�sh; �t
� �

; ð14Þ

where �sh represents the shared parameters and �t represents

the task-specific parameters. By balancing multiple tasks in

this way, the training of CNN models can effectively proceed

using optimization functions. Note that, while the above

formulation distinguishes between shared parameters �sh and

task-specific parameters �t, our implementation does not

explicitly separate �sh. Instead, each task (i.e. space group

classification and cell volume prediction) has its own dedi-

cated set of parameters and loss functions, namely the SCE

error LSCE for classification and the mean absolute error

LMAE for regression. The overall MTL objective is then given

by the weighted sum of LSCE and LMAE.

One can adopt any appropriate optimization function for

the MTL approach. This allows training to proceed in the

same manner as other deep learning models, taking advantage

of existing optimization algorithms while benefiting from the

effects of the MTL approach. The MTL approach thus offers

high flexibility in terms of loss functions and optimization,

making it applicable to a wide range of problems. In this study,

owing to its faster training and convergence time compared

with SGD, the ADAM function was used to optimize the space

group classification and cell volume prediction with the MTL

approach. The ADAM function has three preset hyper-

parameters: learning rate � and learning coefficients �1 and �2.

The default values were set as � = 0.001, �1 = 0.9 and �2 = 0.999

for both trainings. As in the previous study by Park et al.

(2017), the CNN model was trained through 5000 epochs.

Training CNN models with a random order in the data set

usually improves the prediction accuracy more than training

with a fixed order. Hence in our study, the training order of the

data set was shuffled, which resulted in a variation in the

prediction accuracy of every trained CNN model, depending
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on the randomizing process, even with the training data set

Dtrn
i ð�Þ for a given pair of i and � described in Section 2.4. By

varying randomizations, we trained six independent CNN

models, labelled I–VI, from each validation data set Dtrn
i ð�Þ.

Each of the six models returns the probability 0 � pm(g) � 1

(m = I–VI) that the crystal structure would belong to a space

group g 2 G, where G is a set of the space groups listed in

Table 1. All training experiments were carried out on our

GPU server, which consists of 16 cores of CPU (Intel Xeon

Processor Gold 6326), 512 GB memory and three GPUs

(Nvidia A100 80 GB PCIe), although we have confirmed that

a PC consisting of 24 cores of CPU (Intel Core i9-13900K),

128 GB memory and one GPU (Nvidia GeForce RTX 4090) is

also viable for the experiments. Each training session for an

SpgVolNet model took ca 6.5 h for the largest data set, D(1),

and ca 3 h for the smallest one, D(�U+�), using an Nvidia A100

GPU. About 10 ms were required for an SpgVolNet model to

return the inference after the input of XRD peak positions

and intensities.

The prediction results are presented as a table of the space

groups (as in Tables SI–SIX) in descending order of pm(g) and

the ensemble mean probability given by

pðgÞ �
1

6

XVI

m¼I

pmðgÞ: ð15Þ

3.4. Statistical metrics

Space group classification is a multi-class classification

problem, which determines to which of the multiple classes

(space groups) an input belongs. The performance of multi-

class classification is generally evaluated using statistical

metrics such as prediction accuracy, precision, recall and F-

score (Corriero et al., 2023; Venkatraman & Carvalho, 2022;

Liu et al., 2019). Prediction accuracy is the proportion of

correctly classified samples among all predictions, precision

measures the proportion of correct predictions for a specific

class, recall indicates the proportion of actual samples of that

class correctly identified, and the F-score is the harmonic

mean of precision and recall, representing a balance between

the two. These metrics can be derived by examining the counts

of true positives, false positives and false negatives recorded in

a confusion matrix (Stehman, 1997), which is a table that

aggregates the combinations of true and predicted classes. The

confusion matrix enables gaining a detailed understanding of

where the classifier performs well and where it makes

mistakes.

Let M be a C � C confusion matrix, where C is the number

of classes; C = 57 in this study. The element Mij totals the

number of items whose true label is i but which were classified

as j, i.e. the diagonal element Mii corresponds to correctly

classified items. In the multi-class classification, the precision

Pi and the recall Ri associated with the label i are defined

using M by

P i �
Mii

PC

j¼1 Mji

; ð16Þ

Ri �
Mii

PC

j¼1 Mij

: ð17Þ

The precision Pi is the rate of items correctly classified to be i,

Mii, among the total items classified to be i,
PC

j¼1 Mji, i.e. the

higher the precision Pi, the less likely that items belonging to

j (6¼ i) are wrongly classified to be i, or the lower the likelihood

of false positive cases for i. The recallRi is the rate of correctly

classified items among the total items whose true label is i,
PC

j¼1 Mij, which is the total number of items in the validation

data labelled i and is 16 for all is in the five validation data sets

Dvld
i ð1 � i � 5Þ described in Section 2.4, i.e. the higher the

recall Ri, the less likely it is that items belonging to i are

wrongly classified to be j (6¼ i) or the lower the likelihood of

false negative cases for i. The macro means of these metrics

are

P �
1

C

XC

i¼1

P i; ð18Þ

R �
1

C

XC

i¼1

Ri: ð19Þ

Precision and recall are often in a trade-off relationship, so

their harmonic mean, termed the F-score, is occasionally

invoked in evaluating classification models:

F �;i � ð1þ �
2Þ
P iRi

�2P i þRi

; ð20Þ

where � is an arbitrary multiplier that weights the precision

over the recall. The (overall) prediction accuracy is defined by

A ¼

PC

i¼1 Mii
PC

i¼1

PC

j¼1 Mij

: ð21Þ

Because
PC

j¼1 Mij = 16 regardless of i in this study, A =R. An

example of a confusion matrix is provided in the supporting

information.

One confusion matrix, M, is derived from the probability

pm(g) output by each of the six CNN models, m = I–VI, and

their ensemble mean, pðgÞ in equation (15). The element Mij

counts the structure belonging to space group j for which the

highest probability was given to pm(i), yielding the confusion

matrix Mm, or pðiÞ yielding M. Hence, we can examine the

effect of the ensemble averaging by comparing the following

two means of a metric X [e.g. X ¼ P in equation (18)]. One is

XðMÞ derived from M and the other is

XðMÞ �
1

6

XVI

m¼I

XðMmÞ; ð22Þ

where XðMmÞ is the metric derived from confusion matrix Mm.

We refer to XðMÞ as the ‘ensemble mean’ and XðMÞ as the

‘specific mean’.
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4. Results and discussion

4.1. Evaluation of the trained CNN models

4.1.1. Space group classification

As described in Section 2.3, the primitive cell volume V and

the number density of atoms na/V obey a log-normal distri-

bution. Table SXI in the supporting information summarizes

the effect of excluding from the training data set the outliers

lying outside of �2� or �� (where � is the standard devia-

tion) of the log-normal distribution with respect to U � log V

and/or � � logðna=VÞ. The SpgNet models trained by the

widest range, D(1), fare best in classifying the space group of

items in Dvld
i (1� i� 5), despite the fact that the items in these

validation data sets were selected from the narrowest data set

D(�U+�). Learning the outliers reinforces the SpgNet models.

Conversely, the SpgNet models trained by narrow data sets

perform poorly in classifying the space group of items lying

outside the data sets by which they were trained (Hendrycks &

Gimpel, 2017; Ovadia et al., 2019).

The metric XðMÞ where X = P, R, F 1 is the specific mean

defined in equation (22) and XðMÞ is the ensemble mean

derived from the confusion matrix M based on the ensemble

mean probability pi defined in equation (15). Mean results

based on the five validation data sets Dvld
i (1 � i � 5) are

discussed. In the present study, the accuracy A coincides with

R because of the fixed number of entries (16) in the validation

data sets for each space group.

Table 3 examines the effect of the ensemble averaging

technique and the MTL approach. Evidently, XðMÞ>XðMÞ in

terms of both the precision X ¼ P and the recall X ¼ R

(which coincides with the accuracy A in this study), and

consequently X ¼ F 1. In particular, the improvement by

ensemble averaging is significant for the precision P, where

the 95%-confidence zones do not overlap between PðMÞ and

PðMÞ, i.e. the ensemble averaging suppresses false positive

cases. The results confirm that ensemble averaging, which is

considered effective in multi-class classification problems

(Hansen & Salamon, 1990; Breiman, 1996; Lakshminarayanan

et al., 2017), is also effective in space group classification. In

contrast, for MTL, while its effect is not significant for the

precision P, it improves the recall R, suggesting that MTL is

effective in reducing false negative cases. The present study

demonstrates that combining ensemble averaging and MTL

complementarily improves the precision and recall.

4.1.2. Cell volume prediction

Fig. 3 shows the distribution in the error ~U0i �
~Ui, where ~U0i

and ~Ui are, respectively, the predicted and supervised stan-

dardized logarithmic cell volumes of the structure i on Dvld
1

[see equation (3)]. The histogram obeys the Cauchy distribu-

tion, characterized by its wide tails, and not the normal

distribution represented by the Gaussian function.

Stochastic phenomena obeying the Cauchy distribution are

evaluated in terms of the median and quartiles, not of the

mean and variance, which are indefinable for the Cauchy

distribution. The statistical analysis of the prediction results

suggests that 50% of the predicted cell volumes V0 lying

between the 75% and 25% quartiles are in the range

� 0:034 �
V 0

V
� 1 � 0:018; ð23Þ

where V is the supervised (correct) cell volume. That is, the

predicted primitive cell volume of 50% of the structures in the

validation data sets deviates between 1.8% and � 3.4% of the

correct value.

4.2. Application to real experimental diffraction profiles

4.2.1. Outline of the test results of the eleven inorganic

materials

The SpgVolNet models to classify the space groups and

predict the primitive cell volumes, trained in the ideal world

(i.e. by the �-function-like diffraction intensities Ihkl), were

tested with real experimental diffraction profiles (i.e. by a set

of peak intensities extracted from them). The results are

summarized in the supporting information. Among the eleven

inorganic materials whose conceivable correct space group is

included in Table 1, eight of them were unequivocally classi-

fied to the correct space group, for which all the SpgVolNet

models, I–VI, assigned exactly 100% or close probability; they

are TiO2 anatase (P21/c, 14), TiO2 rutile (P42/mnm, 136), SnO2

(P42/mnm, 136), CeO2 (Fm3m, 225), Al2O3 (R3c, 167),
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Table 3
Precision P, recallR and F-score F 1 of SpgNet (single-task learning) and
SpgVolNet (multi-task learning).

Metric SpgNet (%) SpgVolNet (%)

PðMÞ 80.18 � 0.41 80.42 � 0.42
PðMÞ 82.22 � 0.45 82.22 � 0.87

RðMÞ 70.99 � 0.52 72.14 � 0.52
RðMÞ 72.1 � 1.2 73.6 � 1.3
F 1ðMÞ 72.30 � 0.55 73.23 � 0.57
F 1ðMÞ 73.7 � 1.3 74.9 � 1.4

Figure 3
Distribution of the error in the standardized log-normal primitive cell
volume, ~U

0
� ~U [equation (3)].
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LiMnO2 (Pmmn, 59), LiNiO2 (R3m, 166) and NaFeO2 (R3m,

166), where the space group in parentheses is the one that

gives the best-fit result of the Rietveld analysis. The six

SpgVolNet models did not unanimously assign the correct

space group to Na2/3(Mn2/3Ni1/3)O2. The ensemble averaging

technique nonetheless led to successful assignment of its

correct space group as P63/mmc (194), on which we elaborate

in Section 4.2.2. These results demonstrate that the SpgVolNet

models trained in the ideal world fared quite well in the real

world. On the other hand, the SpgVolNet models assigned a

space group of higher symmetry than the correct one to the

remaining two materials, Fe2O3 (R3c, 167) and Li2MnO3 (C2/

m, 12). For the former, the XRD profile has a very high

background that blurs the micro-signals, which may be

contributing to the error in the SpgVolNet model. The latter,

Li2MnO3, epitomizes the intricate relationship between

distinct space groups that are closely connected from a crys-

tallographic viewpoint, as discussed in Section 4.2.3.

4.2.2. Na2/3(Mn2/3Ni1/3)O2

Fig. 4 shows the experimental XRD profile of the hexagonal

compound Na2/3(Mn2/3Ni1/3)O2 and the extracted peak posi-

tions and intensities. Table 4 lists the space groups g to which

the top three probabilities were assigned by the six SpgVolNet

models, pm(g) (m = I–VI), and the ensemble mean prob-

abilities, pðgÞ defined in equation (15), for this material.

Unlike for the other ten materials tested in this study, the

votes of each SpgVolNet model were significantly split for this

material; the probability pm of only one model (V) exceeded

90%. This material is reported to belong to P63/mmc, a

hexagonal crystal system, and our Rietveld analysis was also

successful for this space group (see Fig. S14). However, as the

votes were split among other space groups, we carried out a Le

Bail refinement, which requires as input parameters only the

space group and unit-cell constants (for the latter, the unit-cell

volume predicted by SpgVolNet is helpful). The refinement

under P63/mmc successfully matched all the experimental

diffraction peaks (see Fig. S15) and the reliability factors

converged to levels comparable to those of the Rietveld

analysis. On the other hand, the reliability factor Rwp never fell

below 17 under Fm3m and R3m, to which several SpgVolNet

models assigned a certain level of probability. Model V

confidently assigned the correct space group, P63/mmc (194),

with pV(P63/mmc) = 0.94, followed by model IV with

pIV(P63/mmc) = 0.54. Models II and VI gave the second

highest probabilities to P63/mmc: pII(P63/mmc) = 0.27 and

pVI(P63/mmc) = 0.27. What differentiates models I–VI is

merely the randomizing seed to shuffle the common training

data set. The overall prediction accuracies of all six models

thus trained are comparable and reproducible (see Table SXI

in the supporting information). Even if we obtain a CNN

model with acceptable statistical metrics, the randomizing

process of the data set could infuse a certain individuality into

the model. The ensemble averaging technique managed to

rank the correct answer, P63/mmc, at the top of the prediction

list, albeit with a relatively low probability, pðP63=mmcÞ= 0.36,

indicating the efficacy of this technique. This result also points

to the possibility of using the space group and unit-cell volume

predicted by the SpgVolNet models as a starting point for Le

Bail refinement.

Unlike the other ten experimental XRD profiles which were

measured using Cu K� radiation, the profile in Fig. 4 was

measured using Mo K� radiation. Our strategy mentioned in

the Introduction was rewarded, i.e. because the present CNN

models were trained in the ideal world where the input data

are independent of the experimental setup, we can obviate the

need for re-training the models even if the experimental

conditions vary.

4.2.3. Li2MnO3

Table 5 summarizes the results of the space group classifi-

cation for Li2MnO3 based on the peaks extracted from the
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Figure 4
Experimental diffraction profile of Na2/3(Mn2/3Ni1/3)O2 and the extracted
peaks. The diffraction profile was measured with an X-ray diffractometer
(X’pert Pro, Malvern Panalytical) using Mo K� radiation (60 kV, 50 mA).
The diffraction profile was recorded at a scanning rate of 1.5� min� 1 in
the 2� range of 5–50�.

Table 4
Space group (and its probability in parentheses) predicted by the six SpgVolNet models (I–VI) and their ensemble mean (EM) based on the peaks
extracted from the experimental diffraction profile of Na2/3(Mn2/3Ni1/3)O2 shown in Fig. 4.

Rietveld refinement gives the best fit with P63/mmc (194).

I II III IV V VI EM

1 225 (30%) 166 (52%) 166 (27%) 194 (54%) 194 (94%) 141 (60%) 194 (36%)
2 166 (20%) 194 (27%) 225 (23%) 225 (21%) 225 (5%) 194 (27%) 166 (18%)
3 221 (15%) 225 (13%) 160 (22%) 191 (9%) 221 (1%) 186 (12%) 225 (15%)
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experimental diffraction profile shown in Fig. 5. The

compound expressed by the formula Li2MnO3 is generally

considered to belong to C2/m (Strobel & Lambert-Andron,

1988; Thackeray et al., 2007). For the present specific material,

the SpgVolNet models unanimously suggested R3m.

What lies behind this discrepancy? Crystallographic scru-

tiny is required to answer this question. One has first to notice

a group–subgroup relationship amongst the following space

groups in terms of their symmetric operations:

C2=m � R3m � Fm3m: ð24Þ

If all Li and Mn atoms in Li2MnO3 are completely disordered

(i.e. indistinguishable), the structure has the highest symmetry,

Fm3m, the rock salt structure or NaCl-type. From this rock

salt structure, if three-quarters of the Li atoms and the

remainder (one-quarter of Li + all Mn atoms) form alternating

layers, the symmetry is broken into R3m, into which the

SpgVolNet models confidently classified the present material.

This structure is often referred to as the ordered (or

layered) rock salt structure, of which a representative material

is LiNiO2, one of the eleven inorganic materials considered in

this study (see Section S1.8 in the supporting information). In

this case, the formula can be written as Li(Li1/3Mn2/3)O2,

where the Li and Mn atoms in the layer of (Li1/3Mn2/3) are still

completely disordered. When the Li and Mn atoms in this

(Li1/3Mn2/3) layer are periodically ordered in a 1:2 ratio, the

symmetry further drops to C2/m. Therefore, a substance

expressed by the formula Li2MnO3 can belong to either of

these distinct space groups, depending on the extent of the

order–disorder in the Li and Mn arrangement. In fact, Riet-

veld analysis of the present experimental diffraction profile

was equally well achieved by constraining the structure to be

either R3m (Fig. S11) or C2/m (Fig. S10).

When the SpgVolNet models were tested with the peak

intensities and their positions extracted from these two Riet-

veld-simulated profiles, instead of the peaks extracted from

the experimental profile, they exclusively assigned the exact

space group, namely R3m for the former and C2/m for the

latter (see Table SX), suggesting that the prediction would

have been correct if the diffraction profile were perfect. In that

sense, training the SpgVolNet models in the ideal world

(Scheme 1 mentioned in the Introduction) was successful.

Although the cause of the discrepancy is not identifiable at

present, three possibilities are conceivable: (i) the present

material is in the most ordered state (C2/m) but the

SpgVolNet models were misled by the low signal-to-noise

ratio of the experimental data, which resulted in overlooking

the small signals at high 1/d, the problem pertinent to Scheme

2 mentioned in the Introduction; and/or (ii) the SpgVolNet

models erred on the side of a supergroup because consider-

able stacking faults in the material broadened some related

diffraction peaks and lowered their intensities (Boulineau et

al., 2010); and/or (iii) the present material partially remains in

a less ordered state in the (Li1/3Mn2/3) layer, i.e. in a higher-

symmetry group, presumably because of kinetic effects during

the material preparation.

Another example that potentially leads SpgVolNet to assign

supergroups would be perovskite, CaTiO3. The perovskite-

type compounds represented by CaTiO3 undergo a series of

structural phase transitions, passing through the closely

related space groups as (Ali & Yashima, 2005)

Pnma � I4=mcm � Pm3m; ð25Þ

yet their diffraction profiles strongly resemble each other.

Hence, if the SpgVolNet models are tested with an experi-

mental diffraction profile of this compound, they might assign

a supergroup of the correct space group, depending on the

state of the material and/or the quality of the experimental

data. From the viewpoint of experimentalists, the fact that the

SpgVolNet models assigned a supergroup (or a higher

symmetry group) is rather suggestive in understanding the
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Table 5
Space group (and its probability in parentheses) predicted by the six SpgVolNet models (I–VI) and their ensemble mean (EM) based on the peaks
extracted from the experimental diffraction profile of Li2MnO3 shown in Fig. 5.

A probability of 0% means it is below 0.5%. Rietveld analysis suggests that this specimen belongs to C2/m (12), of which a minimal supergroup is R3m (166).

I II III IV V VI EM

1 166 (100%) 166 (100%) 166 (100%) 166 (100%) 166 (100%) 166 (100%) 166 (100%)
2 160 (0%) 160 (0%) 160 (0%) 148 (0%) 160 (0%) 160 (0%) 160 (0%)
3 148 (0%) 148 (0%) 148 (0%) 160 (0%) 227 (0%) 146 (0%) 148 (0%)

Figure 5
Experimental diffraction profile of Li2MnO3 and the extracted peaks. The
diffraction profile was measured with an X-ray diffractometer (RINT-
TTRIII, Rigaku) using Cu K� radiation (15 kV, 300 mA). The diffraction
profile was recorded at a scanning rate of 2.0� min� 1 in the 2� range of
10–125�.

http://doi.org/10.1107/S1600576725002419
http://doi.org/10.1107/S1600576725002419
http://doi.org/10.1107/S1600576725002419
http://doi.org/10.1107/S1600576725002419


state of the specific material that they synthesized, possibly in

contrast to the general material found in the literature.

As a future task, we may be able to derive the correct space

group from peak intensity anomalies, even in the presence of

stacking faults or partial disorder, by taking into account the

group–subgroup relationship. Such an approach is beyond the

reach of conventional schemes, e.g. the Hanawalt method, for

which anomalies in peak intensities are fatal.

4.2.4. Cell volume prediction

The overall mean results of the six SpgVolNet models, I–VI,

trained by five training data sets, Dtrn
i ð1Þ (i = 1–5), are

presented (6� 5 = 30 prediction results in total). As discussed

in Section 4.2.3, the compound Li2MnO3 prepared in this

study likely belongs to either C2/m or R3m; hence, the correct

cell volume can be either V(C2/m) or VðR3mÞ ¼ VðC2=mÞ=3.

Table 6 summarizes the results of cell volume prediction.

Among the eleven materials tested, six of them (TiO2 anatase,

Fe2O3, CeO2, Al2O3, LiMnO2 and LiNiO2) were predicted in

the range indicated in equation (23), consistent with the fact

that 50% of the structures in the validation data sets are in this

range.

Although higher-symmetry space groups were assigned to

Fe2O3, its cell volume was correctly predicted. Conversely,

while the space group was correctly assigned to TiO2 rutile

(P42/mnm), its unit-cell volume was overestimated by more

than 40%. At present, we cannot decisively pinpoint the cause,

yet impurities in the present material may have affected the

volume prediction. As discussed in Section 4.2.3, the

SpgVolNet models judged the Li2MnO3 sample to have space

group R3m. The SpgVolNet models overestimated the

‘correct’ cell volume by only 9% on the basis of this judge-

ment.

5. Conclusions

In extracting the structural information of inorganic materials

from their diffraction profiles using the deep learning

approach, this study aimed to achieve the following two

objectives: (i) to construct CNN models in the ideal world and

to test them in the real world, and (ii) to examine the effect of

the ensemble averaging technique and the multi-task learning

approach. We summarize the findings below in reverse order.

5.1. Ensemble averaging and multi-task learning

From each of the five training data sets, Dtrn
i (1 � i � 5), we

created six CNN models, I–VI, by shuffling the data set. The

analysis of the confusion matrix in Section 4.1.1 revealed that

the ensemble averaging technique improves the statistical

metrics, especially the precision, as suggested by

PðMÞ>PðMÞ, i.e. the technique suppresses false positive

cases. In contrast, the MTL approach, in which the space

group classification is coupled with cell volume prediction,

improves the recall R by reducing false negative cases. These

two methods can hence complimentarily improve the gener-

alization performance of multi-class classification problems.

The effectiveness of ensemble averaging was demonstrated

when the SpgVolNet models were tested using the experi-

mental XRD profile of Na2/3(Mn2/3Ni1/3)O2 in Section 4.2.2.

While not all six SpgVolNet models correctly classified this

hexagonal compound, the ensemble-averaged outputs led to

the correct answer, P63/mmc. The SpgVolNet models

predicted the cell volumes of eleven real samples from their

experimental XRD profiles with a precision accuracy consis-

tent with the validation results in equation (23).

5.2. Train the models in the ideal world and test them in the

real world

In assigning the space group and estimating the primitive

cell volume of an inorganic crystal from its XRD profile

through the deep learning approach, we split the process into

two schemes (see the Introduction): Scheme 1 trains the CNN

models with a theoretical �-function profile that reflects the

intrinsic properties of a crystal structure of infinite crystal size,

and Scheme 2 extracts relevant signals from the experimental

XRD profile to feed the CNN models after conversion. The

present study demonstrated that the SpgVolNet models

trained by the ideal profiles derived only from the intrinsic

properties of the crystal structure can successfully forecast the

space group and predict the cell volume from the real

experimental profiles. Hence the extrinsic experimental

conditions, such as the wavelength of the incident X-ray beam,

line broadening caused by the finite size or other specific

conditions of the specimen, including the signal-to-noise ratio

of the apparatus, have a limited effect.

The advantage of our strategy of separating Schemes 1 and

2 was demonstrated by testing the SpgVolNet models with

experimental profiles measured using not only Cu K� radia-

tion but also Mo K� radiation (Section 4.2.2.) As discussed in

Section 4.2.3, where the SpgVolNet models were tested with

the experimental data of Li2MnO3, the models did not classify

the space group into C2/m, to which this compound is gener-

ally considered to belong. Instead, they assigned its minimal

supergroup R3m, leaving the possibility that the specific

specimen synthesized in this study is not in a perfectly ordered

state, C2/m. However, the SpgVolNet models assigned C2/m

to the hypothetical profile that was fitted to the experimental
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Table 6
Predicted (V0) and correct (V) primitive cell volume.

V0 (Å3) V (Å3) (V0/V) � 1 (%)

TiO2 anatase 69.2 68.2 1.5

TiO2 rutile 88.9 62.5 42.3
Fe2O3 98.3 100.7 � 2.4
SnO2 69.2 71.8 � 3.7
CeO2 39.8 39.6 0.4
Al2O3 83.2 85.1 � 2.2
Li2MnO3 (C2/m)† 36.3 100.0 � 63.7
Li2MnO3 (R3m)† 36.3 33.3 9.0

LiMnO2 72.8 73.7 � 1.3
LiNiO2 33.8 33.9 � 0.4
NaFeO2 46.8 42.6 9.8
Na2/3(Mn2/3Ni1/3)O2 69.0 79.1 � 12.7

† For these materials, the correct answer could be either V(C2/m) or VðR3mÞ = V(C2/m)/3

(see text).



XRD profile of Li2MnO3 by constraining the symmetry to be

C2/m. This observation exemplifies the situation where the

mismatch does not stem from Scheme 1 (the CNN models

trained in the ideal world) but rather from Scheme 2 (the

difficulty of extracting adequate signals) and/or from the

properties of the specific material (it is in a less ordered

phase).

The CNN models trained on diffraction profiles with an

infinite signal-to-noise ratio, free from noise and the effects of

line shape, guide us in the direction of further improving the

deep learning technique. For example, by systematically

observing how the signal-to-noise ratio and line shape influ-

ence the CNN models trained without considering these

factors, we may be able to let the models correct their tenta-

tive answers. Improving Scheme 2 is also a crucial step in

accurately reconstructing the structural information from the

diffraction profile, e.g. reducing noise, detecting impurities or

identifying multiple phases, wherein another deep learning

approach will play a significant role.
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