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The equations of the direct derivation method (DDM) and the unit-cell scat-

tering power method are reviewed in this report. Their relationships and

connections to the conventional Rietveld quantitative phase analysis (QPA) are

revealed, leading to the development of the Ck-corrected DDM and the

molecular scattering power (MSP) method. Both methods can be seamlessly

integrated into the conventional Rietveld QPA routine as hybrid QPA, i.e. they

enable fitting phases of partially or no known crystal structure simultaneously

with conventional crystal structure modelling of other known crystalline phases.

The accuracies of these hybrid QPA methods are evaluated using a calculated

X-ray diffraction pattern for a mixture, the IUCr round robin CPD-1 dataset and

synthetic mixtures of disordered source clay minerals (kaolinite KGa-2, chlorite

CCa-2) with corundum, using both Launch Mode and Graphical User Interface

(GUI) Mode of the TOPAS software. Although the accuracies of these hybrid

QPA methods are slightly lower than that of conventional Rietveld QPA, their

absolute deviations from weighed percentages are scarcely larger than 3 wt%.

Compared with the original DDM, the Ck correction enhances QPA accuracy,

particularly for mixtures containing phases of large differences in average

atomic number. An advantage over the original unit-cell scattering power

method is that the proposed MSP method eliminates the need to know the

lattice parameters, unit-cell volume or number of molecules in the unit cell.

1. Introduction

Conventional Rietveld quantitative phase analysis (QPA)

requires that the crystal structures of analytes are known (Hill

& Howard, 1987; Bish & Howard, 1988). For QPA involving

phases of partially or no known crystal structure, the

PONKCS method (Scarlett & Madsen, 2006) can be

employed. This method requires a preliminary experimental

step to calibrate the ZMV factor—the product of unit-cell

mass and unit-cell volume—of the PONKCS phase (Wang et

al., 2011). Alternatively, calibration can be achieved by

refining the atomic occupancies of an uncertain structural

model, such as the interlayer exchangeable cations or water

content in swelling clay minerals (Wang et al., 2012). These

calibration procedures typically involve (1) enriching the

unknown phase from the sample to be quantified, (2)

preparing a standard mixture—usually in 1:1 weight ratio—of

the enriched unknown phase and a well-characterized crys-

talline standard, and (3) scanning the standard mixture under

the same instrument conditions used for all samples

containing the unknown phase. Therefore, the application of

the PONKCS method is limited to scenarios in which these

experimental calibration steps can be performed.
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The direct derivation method (DDM) (Toraya, 2016) is a

relatively new QPA technique primarily developed for phases

with unknown crystal structure, offering the distinct advantage

of ease of use. DDM calculates the unknown phase’s scat-

tering power per unit mass, denoted as a� 1
k , from its chemical

composition (Toraya, 2017), thereby avoiding the laborious

calibration steps required by methods such as PONKCS. As

long as the chemical compositions for all the analytes are

known, QPA can be performed using DDM via the whole-

powder-pattern fitting procedure (Toraya, 2018).

However, the theoretical foundation of DDM assumes that

(a) the sum of squared structure factors for all reflections

within an appropriately wide 2� range can be approximated by

(b) the product of unit-cell volume and the sum of squared

electron numbers for all atoms in the unit cell—a fixed number

for a particular phase (Toraya, 2016). Naturally, the validity of

this assumption depends on the appropriateness of the chosen

2� range. Although the ratios C between (a) and (b) have been

plotted against the upper limit of the 2� range (2�UL) for 13

phases and deemed to be ‘close’ to each other [Fig. 1 of Toraya

(2016)], counter-examples have been raised by He & Li

(2022), in which the C ratios differ significantly among

component phases over any 2� range, leading to wrong QPA

results from DDM that deviate more than 20% from those

obtained using the conventional Rietveld QPA method.

Instead, Li et al. (2022) proposed a unit-cell scattering

power method to estimate the sum of squared structure factors

of an analyte by using the sum of squared structure factors of a

series of imaginary crystals. Each of these imaginary crystals

contains a single constituent atom in the analyte’s unit cell

positioned at the origin of the same unit cell. An example for

corundum is illustrated in Fig. 1.

This approach is based on the principle that the structure

factor of a unit cell is the Fourier transform of its electron

density. According to Parseval’s theorem (Pollard, 1926;

Hughes, 1965; Zwillinger, 2014), the sum of squared structure

factors equals the integral of squared electron density over the

unit cell. If this integral can be approximated by the sum of the

squared electron densities of individual atoms in the unit cell,

i.e. ignoring electrons on interatomic bonds, then the sum of

squared structure factors can also be approximated in this

manner. This offers an alternative way to evaluate the total

scattering power of phases with partially known structures,

facilitating phase quantification without requiring knowledge

of atomic positions. Unfortunately, the authors did not find

suitable software to implement their method and hence

devised equations for calculating relative intensity ratios

(RIR), a non-refinement-based QPA method (Li & He, 2023).

The present report reviews the equations used in Rietveld

QPA alongside those of DDM and the unit-cell scatting power

method, leading to the development of a Ck-corrected DDM

and a molecular scattering power (MSP) method, respectively.

Both methods are shown to be compatible with the conven-

tional Rietveld QPA routine. Incorporating individual Ck

values for different phases improves the QPA accuracy of

DDM. The MSP method simplifies analysis by eliminating the

need to know the lattice parameters or unit-cell volume of the

unknown crystalline phase. Examples are provided using the

TOPAS v7 software (Coelho, 2018), including INP templates

to calculate the Ck ratio for any measured 2� range, demon-

strating Pawley fitting to fit only the unknown phase together

with Rietveld refinements for known phases. Equations for

Ck-corrected DDM calculations and the MSP method are

implemented in the Rietveld QPA routine of both Launch

Mode and Graphical User Interface (GUI) Mode in the

TOPAS v7 software. An INP template is also provided to

calculate the MSP value for any chemical formula. Both

methods are demonstrated to be equivalent to conventional

Rietveld QPA, as theorized by the final equation in Section 2.

2. Theory

2.1. Rietveld QPA

The diffraction intensity of the jth reflection of the kth

phase in a multi-phase mixture measured using Bragg–

Brentano geometry can be written as (Madsen & Scarlett,

2008)

Ijk¼
I0�

3

32�r

e4

m2
ec4

� �
mjk

2V2
k

Fjk

�
�

�
�2

1þ cos2 2�jk cos2 2�m

sin2 �jk cos �jk

 !" #
Wk

�k�

� �

;

ð1Þ

where I0 is the incident beam intensity, � is the X-ray wave-

length, e is the electron charge, me is the electron mass, r is the

goniometer diameter, c is the speed of light, m and F are the

multiplicity and structure factor, respectively, V is the unit-cell

volume, and �j and �m are the Bragg angles for the jth sample

reflection and for the monochromator, respectively. Wk and �k

are the weight fraction and density of phase k, while � is the

mass absorption coefficient of the mixture sample.

We use Q to represent the physical and geometrical

constants ½�3=ð32�rÞ�½e4=ð2m2
ec4Þ� and LPjk to represent

ð1þ cos2 2�jk cos2 2�mÞ=ðsin2 �jk cos �jkÞ, the Lorentz and
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Figure 1
The application of the unit-cell scattering power method (Li et al., 2022)
on corundum (�-Al2O3). The sum of squared structure factors of a
corundum cell can be estimated through the sum of squared structure
factors of 12 imaginary Al crystals and 18 imaginary O crystals in the
corundum unit cell. ‘cell_Z’ denotes the number of Al2O3 molecules in
the corundum unit cell.



polarization factor. Then substituting �k ¼ ZkMk=Vk into

equation (1) and summing over all Nk reflections gives

Sk ¼
XNk

j¼1

Ijk

LPjk

¼
I0Q

�

Wk

ZkMkVk

XNk

j¼1

mjk Fjk

�
�

�
�2; ð2Þ

where Mk is the molecular weight and Zk is the number of

molecules in unit cell. For simplicity, the LP-factor-corrected

diffraction intensity in equation (2) is denoted as Sk. Re-

arranging equation (2) provides the weight fraction of phase k:

Wk ¼
�

I0Q
ZkMkVk

Sk
PNk

j¼1 mjk Fjk

�
�

�
�2
: ð3Þ

In Rietveld QPA, the last term of equation (3)—the ratio

between the sum of LP-factor-corrected intensities Sk and the

sum of structure factors—is refined as the Rietveld scale

factor:

Scalek ¼
Sk

PNk

j¼1 mjk Fjk

�
�

�
�2
: ð4Þ

Among all K component crystalline phases in the mixture,

the relative weight fraction of phase k can be derived as

Wk ¼
ZkMkVk Scalek

PK

k0¼1 Zk0Mk0Vk0 Scalek0

: ð5Þ

Equation (5) is widely used in many Rietveld software

platforms that are currently publicly available for QPA and is

hereafter referred to as ‘Rietveld QPA’.

2.2. Ck-corrected direct derivation method

Toraya (2016) pointed out [equation (8) therein] that the

scattering power of phase k, calculated from its crystal struc-

ture in Rietveld QPA as the sum of squared structure factors

[i.e. the denominator of equation (4)], can be approximated

using a formula involving the sum of squared electron

numbers of each atom, which can be calculated directly from

the chemical formula of phase k:

XNk

j¼1

mjk Fjk

�
�

�
�2 ¼ CkVkZk

XAk

i¼1

n2
i : ð6Þ

In the right-hand term of equation (6), ni is the electron

number for the ith atom out of a total of Ak atoms in the

chemical formula (hereafter ‘molecule’), while Ck is the ratio

between these two forms of X-ray scattering power for phase

k. With the above replacement, equation (3) can be written as

Wk ¼
�

I0Q
Mk

Sk

Ck

PAk

i¼1 n2
i

: ð7Þ

Toraya (2017) further grouped the parameters originating

from the nature of the phase k as ak,

ak ¼
Mk

PAk

i¼1 n2
i

; ð8Þ

where the physical meaning of a� 1
k is the scattering intensity

per unit mass of phase k. Therefore, the equivalent relative

weight fraction of phase k in DDM follows equation (9),

Wk ¼
akSk=Ck

PK

k0¼1 ak0Sk0=Ck0

; ð9Þ

except that Ck was assumed to be the same for all phases and

hence got cancelled in the original DDM (Toraya, 2016).

Comparing equation (9) and equation (5), it is easy to find the

relationship between DDM and the conventional Rietveld

QPA:

ZkMkVk Scalek ¼
akSk

Ck

: ð10Þ

Equation (10) allows incorporation of a Ck-corrected DDM

calculation for phase k into the conventional Rietveld QPA

routine, avoiding any experimental calibration step for the

ZMV factor in the PONKCS method if the value of Ck is

known.

For poorly crystalline phases—such as those exhibiting

severe structural disorder—conventional Rietveld refinement

may not adequately fit the area under the diffraction peaks,

from which QPA results are derived. In general, Pawley or Le

Bail fitting (TOPAS hkl_Is model) and the peaks phase

fitting (TOPAS xo_Is model) provide better fits to the peak

areas and shapes of the whole powder pattern than the

Rietveld method (TOPAS str model), because of their

individual control of peak intensities, profiles and positions.

With a Ck value calculated from a sufficiently similar, disorder-

free crystal structure of the same or similar phase (available

from crystal structure databases), equation (9) enables quan-

tification of disordered or poorly crystalline phases using

hkl_Is models (Pawley or Le Bail fitting) or xo_Is models

(whole-powder-pattern fitting), without the need to explicitly

model disorder-induced peak profile changes.

2.3. Molecular scattering power method

Li et al. (2022) revisited equation (3) and proposed the unit-

cell scattering power method. It approximates the sum of

squared structure factors for the unit cell of phase k [the

denominator of equation (4)] using the sum of squared

structure factors from a series of imaginary crystals of the

same unit cell, each with only a single constituent atom of

phase k placed at their origins (as has been illustrated in

Fig. 1):

XNk

j¼1

mjk Fjk

�
�

�
�2 ¼

XN

i¼1

X

h0

f 2
ih0 : ð11Þ

In the right-hand term of equation (11), f 2
ih0 stands for the

squared structure factor of the h0 reflection from imaginary

crystals consisting of only the ith atom—out of a total of N =

ZkAk constituent atoms in the phase k unit cell—sitting at the

origin of the unit cell of phase k. Although this unit-cell

scattering power approach does not require atomic position

information, it still relies on the known lattice parameters and

the molecular motif of the target phase k.

However, if one studies the equations provided by Li et al.

(2022), the requirement of ‘known lattice parameters’ is not

necessary. Following the idea of Li et al. (2022), since the
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structure factor Fhkl is the Fourier transform of the electron

density distribution �(r) in the unit cell, according to Parse-

val’s theorem (Pollard, 1926; Hughes, 1965; Zwillinger, 2014),

the sum of squared structure factors
P

|Fhkl|
2 equals the

integral of the squared electron density distribution �(r) over

the unit cell:1

X

hkl

Fhkl

�
�

�
�2 ¼

XNk

j¼1

mjk Fjk

�
�

�
�2 ¼ Vk

Z

Vk

�2 rð Þ dv ð12Þ

If the electron density distribution of the unit cell can be

approximated by the sum of the electron density distributions

of isolated atoms, i.e. ignoring the electron density charges on

interatomic bonds, then the squared electron density distri-

bution of the unit cell �2(r) can be approximated by the sum of

squared electron density �2
i ðriÞ of each atom for all ZkAk

atoms in the unit cell, or in a mathematical expression

Z

Vk

�2 rð Þ dv ¼ Zk

XAk

i¼1

Z

Vk

�2
i rið Þ dv: ð13Þ

Considering the last integral in equation (13), the integra-

tion volume Vk (unit-cell volume of phase k) is commonly

much larger than the atomic volumes, outside of which �i(ri)

reaches zero. The integration result, therefore, does not

depend on Vk the region of integration, i.e. the following

relation holds for the same atom:

Z

Vk

�2
i rið Þ dv ¼

Z

Vd

�2
i rið Þ dv; ð14Þ

where Vd is any arbitrary dummy volume providing it is much

larger than the atomic volumes. If we create Ak imaginary

crystals in arbitrary dummy unit cells (e.g. cubic cells of lattice

parameter a = 10 Å) and place each constituent atom of the

phase k molecule on their origins (space group P1, x = y = z =

0), the following relation holds for these imaginary crystals [cf.

equations (12) and (13)]:

1

Vd

XNd

j¼1

mjd fjd

�
�
�
�2 ¼ Zd

XAd

i¼1

Z

Vd

�2
i rið Þ dv ¼

Z

Vd

�2
i rið Þ dv; ð15Þ

where mjd and fjd are the multiplicity and structure factor,

respectively, of the jth reflections ( j = 1 to Nd) from the

imaginary dummy crystals. Since there is only one atom in

these dummy cells, Zd = Ad = 1. Bringing equations (12)–(15)

together we have

mol f2k ¼

PNk

j¼1 mjk Fjk

�
�

�
�2

VkZk

¼
XAk

i¼1

PNd

j¼1 mjd fjd

�
�
�
�2

Vd

 !

: ð16Þ

This means that the molecular scattering power of phase k

[the middle part of equation (16), hereafter denoted as

‘mol_f2k’], which is the unit-cell scattering power divided by

the cell volume Vk and the number of molecules in the unit cell

Zk, can be approximated by the sum of squared structure

factors of the Ak arbitrary dummy cells divided by the dummy

cell volume Vd, as schematized in Fig. 2. Since the dummy cells

contain only a single constituent atom each at their origins, the

part in brackets of equation (16) is, in fact, the atomic scat-

tering power of each constituent atom (sum of the squared

product of the atomic form factor and its atomic displacement

parameter).

Substituting equation (16) back into equation (3), we have

Wk ¼
�

I0Q
Mk

Sk

mol f2k

: ð17Þ

The weight percentage of phase k in a K-crystalline-phase

mixture can, therefore, be expressed as

Wk ¼
MkSk=mol f2k

PK

k0¼1 Mk0Sk0=mol f2k0

: ð18Þ

With Zk and Vk cancelled out, the expression of equation

(18) is much simpler than the form proposed by Li et al. (2022)

[equation (18) therein], meaning that it is not necessary to

know the number of molecules in the unit cell Zk, the lattice

parameters or the unit-cell volume Vk when applying the MSP

method to perform QPA for an unknown crystalline phase.

Comparing this MSP method [equation (18)] with the

conventional Rietveld QPA [equation (5)] reveals their rela-

tionship:

ZkMkVk Scalek ¼
MkSk

mol f2k

: ð19Þ

Equation (19) in fact conveys a similar concept to the

intensity–composition equation of DDM (Toraya, 2021): the

weight of a phase equals its diffraction intensity divided by its

scattering power per unit mass. By comparing equation (19)

with equation (10), we can derive the relationship between the

conventional Rietveld QPA, the Ck-corrected DDM and the

MSP method:
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Figure 2
Example of the MSP method applied on corundum (�-Al2O3). The sum
of squared structure factors of an Al2O3 molecule (unit-cell scattering
power divided by the cell volume ‘cell_V’ and the number of molecules in
the unit cell ‘cell_Z’) can be estimated by the sum of squared structure
factors of two imaginary Al crystals and three imaginary O crystals in any
arbitrary dummy cell, divided by the dummy cell volume (atomic scat-
tering power).

1 Equivalent forms of equation (12) have also been reported elsewhere
(Hettich, 1935; Sayre, 1951; Kartha, 1953).



ZkMkVk Scalek ¼
akSk

Ck

¼
MkSk

Ck

PAk

i¼1 n2
i

¼
MkSk

mol f2k

: ð20Þ

It is easy to see from equation (20) that the molecular

scattering power mol_f2k is equivalent to the ‘Ck-corrected

sum of squared electron numbers’ in the Ck-corrected DDM

approach. As pointed out in the explanation of equation (16),

mol_f2k is essentially a sum of atomic scattering powers (sum

of the squared product of atomic form factor and atomic

displacement parameter), which change with radiation wave-

length for a fixed 2� range, while the sum of n2
i value used in

DDM is merely a constant. Therefore, it is necessary to apply

the proposed Ck correction for DDM in order to reduce the

discrepancies between the sum of squared electron numbers

and mol_f2k. Equation (19) allows the incorporation of the

MSP method for phase k of unknown crystal structure into the

conventional Rietveld QPA routine.

2.4. Calculation of molecular scattering power mol_f2

The molecular scattering power mol_f2 of any chemical

formula can be conveniently calculated through the right-hand

term of equation (16) in the TOPAS software. Using the INP

template provided in Section S1 of the supporting informa-

tion, it took a laptop (Intel i7-1185 G7 @ 3 GHz 1.8 GHz,

16 GB RAM) less than 1 s to calculate the scattering power of

the Al2O3 molecule and save it into a mol_f2_corundum.

inc file for the subsequent QPA INP to call. The MSP mol_f2

values for several crystalline phases are plotted against the

used dummy cell volumes Vd in Fig. 3.

It is easy to see from Fig. 3 that, except for the smallest

dummy cell of 1 Å3 (not larger than the Al or O atomic

volumes), the MSP mol_f2 values are almost constant no

matter what sizes of dummy cell were used to calculate them.

This validates equation (14). Some fluctuations of zincite,

corundum and fluorite are believed to be due to the ‘termi-

nation effect’ in calculating the sum of structure factors

(Toraya, 2022). The MSP mol_f2 values are stabilized when a

large dummy cell (e.g. a cubic cell of lattice parameter a =

10 Å) is used to generate many hkl reflections.

3. Implementations in the TOPAS software

It has been proposed that the TOPAS keyword

numerical_area could be used to implement DDM.

However, numerical_area was not designed to remove

the LP factor (see Appendix A). Therefore, it is not equivalent

to the Sk parameter in DDM calculation (Toraya, 2017). The

following analysis steps are proposed to implement the Ck-

corrected DDM calculation and the MSP method in TOPAS

v7 using the I parameters in Pawley phase hkl_Is and peaks

phase xo_Is fitting.

3.1. Analysis steps for Ck-corrected DDM

(a) A TOPAS template cal_C.inp exporting the Ck

value for a crystalline phase is described in Section S2 of the

supporting information. Using this template, readers can

calculate the Ck value of any analyte for the scanned wave-

length and 2� range. The result is saved into a .inc file for the

subsequent QPA INP to call.

(b) Apply Pawley or Le Bail fitting using the hkl_Is

model to extract the peak area of the crystalline phase of

partially known structure, together with Rietveld fitting for

other phases of known crystal structure. The sum of all the

extracted and fixed I values in the hkl_Is phase is assigned

to a parameter Sk. The Scale keyword is not used in

hkl_Is phases and hence equals 1.

(c) Calculate the molecular weight Mk and the total squared

electron numbers for each atom in the molecule
PAk

i¼1 n2
i . With

the Ck value determined in step (a), a DDM_aS_on_C value

for this phase is calculated as ðMkSk=
PAk

i¼1 n2
i Þ=Ck, which is

equivalent to the ZkMkVk Scalek factor in Rietveld QPA. Use

the value of DDM_aS_on_C / cell_volume as the

cell_mass (ZkMk) in the hkl_Is model.

(d) Execute the same .inp file again; the Rietveld QPA

routine in TOPAS will report the weight percentages of all the

component phases, including the DDM-modelled unknown

phase, according to equation (5).

3.2. Analysis steps for molecular scattering power method

(a) As shown in Section 2.4, use the TOPAS INP template

described in Section S1 of the supporting information to

calculate the MSP mol_f2 value for the chemical formula

(molecule) of any phase of partially or no known crystal

structure, providing its chemical formula is known.

(b) Same as Step (b) in Section 3.1, if the lattice parameters

are known for the target phase. Otherwise use the xo_Is

model to fit the peak area of the phase of no known structure,

together with Rietveld fits for other phases of known crystal

structure. The sum of all the extracted and fixed I values in the

xo_Is model is assigned to a parameter Sk. The Scale

keyword is not used in the xo_Is phase and hence equals 1.
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Figure 3
The molecular scattering powers of several crystalline phases under
Cu K� radiation plotted against the volumes of dummy cubic cells used to
calculate them.
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(c) Calculate the molecular weight Mk. With the MSP

mol_f2 value determined in step (a), the value of

MkSk=mol f2k can be used as the cell_mass of the xo_Is

model, in which its cell volume is set to 1, according to

equation (19). In the case of using the hkl_Is model, Vk is

calculated from the known lattice parameters. Therefore, use

the value of (MkSk/mol_f2k)/cell_volume as the cell_mass

of the hkl_Is model.

(d) Same as Step (d) in Section 3.1.

4. Examples

4.1. Test on the calculated XRD pattern for a 1:1 weight

mixture of Ag2Te and Li2CO3

This extreme counter-example was used in He & Li’s (2022)

comment on DDM, which highlighted the fact that C values

are phase dependent. Ignoring their differences may lead to

wrong QPA results. The current analysis steps propose to

include Ck into the DDM calculation to make it compatible

with the conventional Rietveld QPA routine.

The TOPAS file Ag2Te_Li2CO3_mixture.inp and

the calculated XRD pattern for a 1:1 weight mixture of Ag2Te

and Li2CO3 are available in the supporting information. The

calculated Ck value for hessite, Ag2Te, is 1.91, while the Ck

value for zabuyelite, Li2CO3, is 0.79. The INP file contains

str models and hkl_Is models for both phases. In total,

four combinations of model choices are considered, and the

QPA results reported in the corresponding OUT file are

summarized in the first four columns of Table 1. Since the

weight percentage sum of Ag2Te and Li2CO3 phases is 100%,

only Ag2Te wt% results are shown in Table 1. The full-pattern

fits using the Ck-corrected DDM for both phases are shown in

Fig. 4.

Table 1 indicates that, by bringing back the Ck correction

into equation (9), accurate or reasonable QPA results are

achieved even for this extreme counter-example, in contrast to

the wrong QPA results (more than 20 wt% discrepancy)

obtained through the original DDM as pointed out by He & Li

(2022). This example serves the purpose of validating the

effectiveness of equation (9), i.e. the rectification effect of Ck

on top of the original DDM.

Analogously, the MSP method proposed in this paper is

tested on this example, and the QPA results are reported in

the last three columns of Table 1. The MPS method is also able

to deliver QPA results of reasonable accuracy for this

example, validating the effectiveness of equation (18). The

full-pattern fitting modelled by the same hkl_Is phases is

identical to that in Fig. 4 and is hence omitted. The imple-

mented MSP QPA equations are also stored in the same

TOPAS INP file in the supporting information. A global level

selection is devised to allow user toggling between the Ck-

corrected DDM and the MSP mol_f2 method.

research papers

6 of 15 Wang and Spratt � New quantitative phase analysis methods in TOPAS J. Appl. Cryst. (2025). 58

Table 1
QPA results of the XRD pattern calculated from a 1:1 weight ratio of Ag2Te and Li2CO3 using different combinations of QPA methods: R – Rietveld
QPA; D – Ck-corrected DDM; f – MSP method.

Choices of QPA methods used for Ag2Te (hessite) and Li2CO3 (zabuyelite), respectively

R R D R R D D D R f f R f f

Ag2Te wt% 49.986 (7) 49.867 (5) 49.320 (1) 49.187 (1) 52.144 (1) 49.420 (5) 51.556 (1)

Figure 4
Full pattern refinement of the calculated XRD pattern of 1:1 weight ratio of hessite (Ag2Te) and zabuyelite (Li2CO3), using the Ck-corrected DDM for
both phases (D D in Table 1). The calculated data are shown as black dots. The contribution of hessite is shown as the blue curve, while that of zabuyelite
is highlighted as the red curve.

http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
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Table 2
The discrepancies of QPA results from the weighed weight percentages of the three-phase mixtures of the CPD-1 series samples using the various
proposed QPA methods.

R – Rietveld QPA; D – Ck-corrected DDM; f – MSP method using Pawley fitting (hkl_Is); x – MSP method using peaks phases (xo_Is). Their orders represent
the corresponding model used for corundum, fluorite and zincite, respectively. The column ‘D D D no Ck’ stands for the original DDM calculation without Ck

correction. The numbers in brackets are the refinement errors aligned for the last decimal place.

Rietveld Ck-corrected DDM Original DDM

Sample ID Weighed wt% R R R R R D R D R R D D D R R D R D D D R D D D D D D no Ck

CPD-1a Corundum 1.15 0.09 (7) 0.11 (7) 0.10 (7) 0.12 (7) 0.57 (18) 0.57 (18) 0.59 (18) 0.59 (18) 0.70 (19)
Fluorite 94.81 0.14 (8) 0.18 (10) 0.08 (8) 0.12 (10) � 0.34 (18) � 0.27 (18) � 0.41 (18) � 0.33 (19) � 0.7 (2)
Zincite 4.04 � 0.23 (4) � 0.29 (7) � 0.18 (4) � 0.24 (7) � 0.23 (4) � 0.30 (7) � 0.18 (4) � 0.26 (7) � 0.01 (8)

CPD-1b Corundum 94.31 0.12 (4) � 0.11 (6) 0.32 (6) 0.11 (8) 0.14 (4) 0.05 (6) 0.35 (6) 0.18 (8) 0.41 (7)
Fluorite 4.33 � 0.14 (4) � 0.12 (4) � 0.35 (6) � 0.33 (6) � 0.16 (4) � 0.16 (4) � 0.38 (6) � 0.39 (6) � 0.62 (5)
Zincite 1.36 0.02 (2) 0.23 (6) 0.03 (2) 0.23 (6) 0.02 (2) 0.20 (5) 0.03 (2) 0.21 (5) 0.22 (6)

CPD-1c Corundum 5.04 0.75 (11) 0.67 (11) 0.80 (11) 0.64 (11) 2.5 (4) 2.5 (4) 2.4 (4) 2.4 (4) 2.4 (4)
Fluorite 1.36 0.02 (4) 0.02 (4) 0.42 (10) 0.42 (10) 0.02 (4) 0.03 (4) 0.39 (10) 0.4 (1) 0.28 (9)
Zincite 93.59 � 0.76 (11) � 0.68 (11) � 1.21 (14) � 1.06 (14) � 2.5 (4) � 2.5 (4) � 2.8 (4) � 2.8 (4) � 2.7 (4)

CPD-1d Corundum 13.53 1.03 (11) 1.09 (11) 1.17 (11) 1.23 (11) 0.9 (2) 1.0 (2) 1.1 (2) 1.1 (2) 1.6 (2)
Fluorite 53.58 � 0.59 (11) � 0.47 (11) � 1.02 (12) � 0.90 (12) � 0.54 (15) � 0.39 (15) � 0.98 (15) � 0.84 (16) � 2.51 (16)
Zincite 32.89 � 0.44 (9) � 0.62 (10) � 0.15 (9) � 0.32 (11) � 0.40 (11) � 0.59 (12) � 0.10 (11) � 0.28 (12) 0.92 (13)

CPD-1e Corundum 55.12 1.38 (9) 1.41 (10) 1.66 (10) 1.66 (11) 1.52 (11) 1.55 (12) 1.76 (12) 1.79 (13) 2.88 (12)
Fluorite 29.62 � 0.73 (8) � 0.74 (8) � 1.05 (10) � 1.04 (10) � 0.84 (9) � 0.82 (9) � 1.14 (10) � 1.13 (11) � 2.49 (10)
Zincite 15.25 � 0.64 (5) � 0.66 (7) � 0.60 (5) � 0.61 (7) � 0.67 (6) � 0.72 (8) � 0.61 (6) � 0.66 (8) � 0.38 (7)

CPD-1f Corundum 27.06 1.24 (12) 1.34 (12) 1.41 (12) 1.51 (12) 1.21 (19) 1.32 (19) 1.37 (19) 1.48 (19) 1.74 (19)
Fluorite 17.72 � 0.14 (7) � 0.05 (7) � 0.58 (10) � 0.51 (10) � 0.13 (8) � 0.04 (8) � 0.57 (10) � 0.50 (10) � 1.43 (10)
Zincite 55.22 � 1.10 (10) � 1.29 (11) � 0.83 (11) � 1.00 (12) � 1.08 (15) � 1.28 (16) � 0.80 (16) � 0.98 (16) � 0.30 (16)

CPD-1g Corundum 31.37 1.26 (11) 1.29 (11) 1.43 (12) 1.46 (12) 1.75 (17) 1.81 (17) 1.92 (17) 1.98 (17) 2.64 (18)
Fluorite 34.42 � 0.60 (9) � 0.51 (9) � 0.91 (11) � 0.84 (11) � 0.83 (17) � 0.76 (11) � 1.16 (12) � 1.10 (13) � 2.55 (12)
Zincite 34.21 � 0.67 (8) � 0.78 (9) � 0.52 (9) � 0.62 (10) � 0.62 (11) � 1.05 (11) � 0.76 (11) � 0.88 (12) � 0.09 (12)

CPD-1h Corundum 35.12 1.01 (11) 1.09 (11) 1.27 (12) 1.36 (12) 1.08 (16) 1.18 (16) 1.33 (16) 1.45 (16) 2.20 (17)
Fluorite 34.69 � 0.33 (9) � 0.19 (9) � 0.79 (11) � 0.67 (11) � 0.36 (11) � 0.24 (11) � 0.83 (12) � 0.72 (12) � 2.19 (12)
Zincite 30.19 � 0.69 (8) � 0.89 (9) � 0.48 (8) � 0.69 (9) � 0.71 (9) � 0.94 (10) � 0.50 (10) � 0.73 (11) � 0.01 (11)

MSP using hkl_Is MSP using xo_Is

Sample ID Weighed wt% R R f R f R R f f f R R f R f f f R f f f R R x R x R x R R

CPD-1a Corundum 1.15 0.11 (7) 0.18 (7) 0.21 (8) 0.49 (17) 0.49 (17) 0.61 (18) 0.62 (18) 0.07 (8) 0.15 (8) 0.81 (19)
Fluorite 94.81 0.36 (9) � 0.25 (8) � 0.01 (10) � 0.26 (17) � 0.00 (17) � 0.68 (18) � 0.41 (19) 0.39 (10) � 0.26 (9) � 0.61 (18)
Zincite 4.04 � 0.47 (7) 0.07 (4) � 0.20 (7) � 0.23 (4) � 0.49 (7) 0.07 (4) � 0.21 (7) � 0.46 (7) 0.11 (5) � 0.21 (4)

CPD-1b Corundum 94.31 � 0.03 (6) 0.56 (6) 0.42 (7) � 0.13 (4) � 0.25 (6) 0.33 (6) 0.24 (8) � 0.02 (6) 0.56 (6) � 0.19 (5)
Fluorite 4.33 � 0.12 (4) � 0.59 (5) � 0.58 (5) 0.04 (4) 0.05 (4) � 0.44 (5) � 0.44 (6) � 0.12 (4) � 0.59 (5) 0.09 (4)
Zincite 1.36 0.15 (5) 0.03 (2) 0.15 (5) 0.09 (2) 0.20 (5) 0.10 (2) 0.21 (5) 0.14 (5) 0.03 (2) 0.09 (2)

CPD-1c Corundum 5.04 0.95 (11) 0.80 (11) 0.93 (11) 2.1 (4) 2.5 (4) 2.1 (4) 2.5 (4) 1.03 (11) 0.81 (11) 1.7 (4)
Fluorite 1.36 0.09 (4) 0.31 (10) 0.40 (10) 0.02 (4) 0.10 (4) 0.29 (9) 0.37 (10) 0.10 (4) 0.31 (10) 0.03 (4)
Zincite 93.59 � 1.03 (12) � 1.10 (14) � 1.32 (14) � 2.1 (4) � 2.6 (4) � 2.4 (4) � 2.8 (4) � 1.12 (12) � 1.11 (14) � 1.7 (3)

CPD-1d Corundum 13.53 1.33 (11) 1.68 (12) 2.00 (12) 0.32 (19) 0.6 (2) 0.9 (2) 1.2 (2) 1.33 (11) 1.70 (12) 0.2 (2)
Fluorite 53.58 0.43 (11) � 2.67 (12) � 1.65 (12) � 0.16 (14) 0.90 (15) � 2.24 (15) � 1.18 (16) 0.44 (11) � 2.72 (12) � 0.10 (15)
Zincite 32.89 � 1.76 (10) 0.99 (9) � 0.35 (11) � 0.16 (10) � 1.50 (11) 1.30 (11) � 0.06 (12) � 1.77 (10) 1.02 (9) � 0.14 (11)

CPD-1e Corundum 55.12 1.84 (10) 2.71 (10) 3.16 (11) 0.26 (11) 0.72 (12) 1.56 (12) 2.04 (13) 1.85 (10) 2.78 (10) 0.49 (13)
Fluorite 29.62 � 0.52 (8) � 2.38 (9) � 2.15 (10) � 0.01 (9) 0.25 (9) � 1.66 (10) � 1.42 (11) � 0.49 (8) � 2.46 (9) � 0.11 (10)

Zincite 15.25 � 1.31 (7) � 0.32 (5) � 1.00 (7) � 0.25 (6) � 0.96 (7) 0.11 (6) � 0.62 (8) � 1.35 (7) � 0.31 (5) � 0.36 (6)

CPD-1f Corundum 27.06 2.15 (12) 1.72 (12) 2.66 (12) 0.19 (18) 1.09 (19) 0.65 (19) 1.58 (19) 2.15 (12) 1.72 (12) 2.29 (4)
Fluorite 17.72 0.45 (8) � 1.49 (9) � 0.95 (9) 0.12 (8) 0.73 (8) � 1.25 (10) 0.70 (10) 0.45 (8) � 1.49 (9) � 0.38 (7)

Zincite 55.22 � 2.60 (11) � 0.23 (11) � 1.71 (12) � 0.31 (15) � 1.82 (16) 0.60 (16) � 0.88 (16) � 2.60 (11) � 0.23 (11) � 1.91 (6)

CPD-1g Corundum 31.37 1.86 (12) 2.15 (12) 2.78 (12) 0.63 (17) 1.25 (17) 1.50 (17) 2.16 (17) 1.87 (12) 2.12 (12) 0.94 (18)
Fluorite 34.42 � 0.08 (10) � 2.36 (10) � 1.71 (11) � 0.27 (11) 0.41 (11) � 2.05 (12) � 1.41 (13) 0.08 (10) � 2.36 (10) � 0.35 (12)

Zincite 34.21 � 1.94 (9) 0.22 (9) � 1.07 (10) � 0.36 (10) � 1.66 (11) 0.55 (11) � 0.75 (12) � 1.94 (9) 0.24 (9) � 0.49 (11)

CPD-1h Corundum 35.12 1.64 (11) 2.08 (12) 2.76 (12) � 0.10 (16) 0.55 (16) 0.94 (16) 1.65 (16) 1.68 (12) 2.15 (12) 0.37 (18)

Fluorite 34.69 0.33 (9) � 2.25 (10) � 1.62 (11) 0.27 (11) 0.94 (11) � 1.68 (12) � 1.03 (12) 0.34 (10) � 2.34 (11) 0.04 (12)
Zincite 30.19 � 1.97 (9) 0.18 (8) � 1.13 (9) � 0.17 (9) � 1.49 (10) 0.73 (10) � 0.61 (11) � 2.01 (9) 0.20 (9) � 0.41 (10)



4.2. Test on the IUCr round robin CPD-1 series dataset

Eight publicly available XRD patterns (from CPD-

1A.raw to CPD-1H.raw, see Data availability section)

measured for three-phase mixtures (corundum, fluorite and

zincite) of known weighed mass percentages (Madsen et al.,

2001) were used to test the accuracy of the analysis steps

proposed in Section 3. The file header of the TOPAS INP

(Cpd-1a.inp to Cpd-1h.inp in the supporting informa-

tion) allows readers to toggle between the Ck-corrected DDM

and the MSP method. The Sk values were set using TOPAS

keyword prm_with_error to propagate intensity errors

into those of the QPA results. Each phase has both structure

str and hkl_Is models set up for selection. The calculated

Ck values for corundum, fluorite and zincite are 1.48, 1.39 and

1.49, respectively. The calculated MSP mol_f2k values for them

are 825.609, 832.917 and 1509.435, respectively. The same

thermal vibration parameters beq used in the Rietveld QPA

were used in the calculation of these values. The macros AW

and AN return atomic weight and atomic number, respectively

(available in supporting information Section S3).

The QPA results using all eight combinations of Rietveld

QPA and the Ck-corrected DDM for these three-phase

mixtures are summarized in the ‘Ck-corrected DDM’ columns

of Table 2, together with the weighed percentages and the

QPA results from the original DDM method without Ck

corrections. These QPA results are also plotted on a ternary

phase diagram (Fig. S1) to visualize their accuracies and

precisions.

Table 2 and Fig. S1 show that the QPA results from the

proposed Ck-corrected DDM hybrid with Rietveld QPA are

generally more accurate than the results from the original

DDM without Ck correction. This set of QPA results suggest

that Ck correction for each phase improves DDM accuracy.

However, if individual Ck values (requiring crystal structure)

are not available, omitting this correction does not change the

QPA results too much (<3 wt%) for this dataset, in which the

average atomic numbers between phases are not as far apart

as they are in the first example in Section 4.1.

Analogously, the QPA results using all eight combinations

of Rietveld QPA and the MSP method using Pawley fitting

(hkl_Is) for these three-phase mixtures are summarized in

the ‘MSP using hkl_Is’ columns of Table 2. These QPA

results are also plotted on a ternary phase diagram (Fig. S2) to

visualize their accuracies and precisions. It can be seen from

Table 2 and Fig. S2 that, compared with Ck-corrected DDM,

although slightly worse QPA accuracies and precisions are

observed, their deviations from the weighed weight percen-

tages are scarcely higher than 3 wt%. The benefit of this MSP

method is that it totally eliminates the requirement of knowing

the crystal structure (atomic positions).

4.3. Applying the MSP method for phases of unknown lattice

parameters

The procedure of Section 3.2 is also tested on the CPD-1

series dataset, assuming the lattice parameters of the target

phases are also not known. The TOPAS INP files (Cpd-

1a_xo_Is.inp to Cpd-1h_xo_Is.inp) in the

supporting information include equation (19) derived for the

target phases, without using any lattice parameter, as shown in

Fig. 5(a). The same operation in TOPAS GUI Mode is shown

in Fig. 5(b). The peaks phase model xo_Is [also called the

Type A fitting function by Toraya (2018, 2019)] is used in these

examples.

The peak positions in the xo_Is model are not constrained

by lattice parameters as they are in Pawley fitting (hkl_Is

model). Owing to the inevitable peak overlapping of multi-

phase powder patterns, simultaneous fitting of two or more

unknown phases using peaks phases (xo_Is model) will not

partition the intensity correctly. Therefore, only four combi-

nations of Rietveld QPA and the MSP method using the

xo_Is model for the three-phase mixtures in the CPD-1

series were tested, and their results are summarized in the

‘MSP using xo_Is’ columns in Table 2. These QPA results are

also plotted on a ternary phase diagram in Fig. S3. From Table

2 and Fig. S3, compared with the MSP method using Pawley

fitting (hkl_Is), similar levels of QPA discrepancy from

weighed percentages (<3 wt%) are observed.

Figs. S1–S3 show that all methods, including the conven-

tional Rietveld method, overestimate corundum. This is
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Figure 5
Equation (19) of the MSP method implemented in TOPAS (a) Launch Mode and b) GUI Mode, to quantify a phase of unknown lattice parameters.

http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
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known to be due to the micro-absorption effect, in which the

high-mass-absorption phase tends to be underestimated, while

the low-mass-absorption phase tends to be overestimated.

4.4. Applying the MSP method for a phase of no known

lattice parameter or chemical composition

Toraya (2017) pointed out [equation (20) therein] that it is

still possible to quantify a phase of unknown crystal structure

and unknown chemical composition if all the other phases

have known scattering power per unit weight a� 1
k . This was

based on the idea of treating the whole mixture as a single

phase and deriving its chemical composition from either (1)

the starting raw materials before reactions, (2) other elemental

analysis techniques, e.g. X-ray fluorescence spectroscopy

(XRF) etc., or (3) scenarios elaborated in Section 3 of Toraya

(2017).

Since equation (20) of the present paper has shown that the

term Mk/mol_f2k in the current MSP method is essentially the

same as ak/Ck in DDM, a similar approach can be proposed

and tested (see Table 3). The chemical composition of sample

‘cpd-1h’ based on the publicly available XRF data (see the

Data availability section) is shown in the first row (left) of

Table 3. Using the TOPAS INP template of supporting

information Section S1, it is easy to calculate its ratio of Mk/

mol_f2. With the sum of LP-corrected total intensity Sk of the

‘cpd-1h’ pattern, the value of MkSk/mol_f2 for the whole

mixture sample can be calculated (second last row of Table 3),

which is close to the sum of the same parameter calculated for

the three individual phases on the right side of Table 3.

Therefore, if any individual phase has unknown chemical

composition (unknown Mk or mol_f2), it is still possible to

derive its MkSk/mol_f2 value by subtracting the MkSk/mol_f2

value of other known phases from the total MkSk/mol_f2 value

of the whole mixture sample. The weight percentages are just

normalized MkSk/mol_f2 values.

4.5. Disordered kaolinite

Kaolinite KGa-2 is a poorly crystalline kaolinite source clay

with stacking disorder (Sakharov et al., 2016). The diffraction

pattern of the mixture of this standard and 20 wt% corundum

after homogenizing in a McCrone micronizer was measured

using a Bruker D8 Advance diffractometer under Co K�

radiation (40 kV, 40 mA). Dynamic Beam Optimization

optics, including a variable divergence slit illuminating a

10 mm sample length and an automatic air-scattering knife

above the sample, were used to eliminate air-scattering

background and sample holder background, which helps in

direct extraction of the scattering intensity of poorly crystal-

line phases. Soller slits (2.5�) were used on both primary and

secondary sides of the beam path. A LynxEye XE-T detector

(1D mode) was used to collect the diffraction signal from the

sample spun at 15 rpm around the sample surface normal axis

(to improve statistics) from 2 to 90� 2� at a 0.015� step size

in 1 h.

Fig. 6 compares the whole-pattern fits from Rietveld QPA

using the kaolinite str model, from the Ck-corrected DDM

calculation and from the MSP method (hkl_Is), for the

above-described synthesized mixture of kaolinite KGa-2

source clay spiked with 20 wt% corundum. The QPA results

obtained from each method are shown in the top right corners.

Fig. 6(a) shows Rietveld QPA using the str structure model

(Lee & Xu, 2020) with various peak profile corrections,

including spherical harmonics correction for preferred orien-

tation (Järvinen, 1993; Bruker, 2024), stacking fault modelling2

(Ufer et al., 2004; Wang et al., 2012; Bruker, 2014; Coelho et al.,

2016; Bruker, 2017), and crystallite size broadening and micro-

strain broadening in TOPAS Launch Mode (INP file available

in the supporting information). Figs. 6(b) and 6(c) show

similar fits using the same hkl_Is model in GUI Mode,

which generate the same Sk value (sum of LP-factor-corrected

intensities). Stephens’ anisotropic peak broadening model

(Stephens, 1999) for triclinic space groups was used in the

‘Microstructure’ tab of GUI Mode to fit the kaolinite asym-

metric non-basal reflections. The difference between Figs. 6(b)

and 6(c) is only in their QPA equations as described below,

hence the slightly different phase weight percentages reported

in their top-right corners. The TOPAS PRO files implemented

with the Ck-corrected DDM and the MSP method (hkl_Is)

are also available in the supporting information.

Since TOPAS v7, a ‘GUI Text’ tab has been added to its

GUI, allowing users to implement custom equations within the

TOPAS GUI Mode. The implementations of the Ck-corrected

DDM method [equation (10)] and the MSP method [equation
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Table 3
Example of quantifying any component phase according to the chemical composition of the whole mixture sample, using the MSP method.

Mixture of cpd-1h Corundum Fluorite Zincite

Chemical formula (Al0.693Ca0.439Zn0.369O1.409F0.878)n Al2O3 CaF2 ZnO

Molecular weight Mk Mk/mol_f2 = 0.083 101.9613 78.0748 81.4084
MSP mol_f2 825.609 832.917 1443.86
Sum of LP-corrected intensity Sk 2004.9 = sum of 522.199 586.681 896.02
MkSk/mol_f2 166.4067 ’ sum of 64.4907 54.9935 50.5198

wt% 37.93% 32.35% 29.72%

2 The TOPAS Stack macro containing the stack keyword was used to
randomly shift the layer atoms flagged by the layer keyword in Cartesian x,
y, z directions (stacking vector) in a supercell of 20 times the length of the c
axis. The generated stacking layers have occupancies set to 0. The model is
essentially a single-layer model in a supercell. However, the generated
stacking layer atoms have geometric constraints set to avoid bumping into

each other or into non-layer atoms, therefore keeping the model geometrically
reasonable. With the keyword of continue_after_convergence,
multiple refinements were executed before the result with the lowest Rwp was
saved for the user.

http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054
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Figure 6
(a) Using the str structure model for kaolinite together with spherical harmonics for preferred orientation corrections, stacking fault modelling,
crystallite size broadening and micro-strain broadening. Rwp 8.03%, goodness of fit (GOF) 2.67. (b) Using hkl_Is Pawley fitting and the proposed Ck-
corrected DDM calculation [Fig. 7(b)] to quantify the kaolinite KGa-2 in synthetic mixture. Rwp 6.63%, GOF 2.19. (c) Same fitting except MSP QPA
equations [Fig. 8(a)] are used. All fits used first-order Chebyshev background.



(19)] in the TOPAS GUI Mode for this example are shown in

Figs. 7(b) and 8(a), respectively.

To minimize peak-area correlation with the background,

only the first-order Chebyshev polynomials were refined for

background across all methods. Both new approaches yielded

comparable QPA results to those from the conventional

Rietveld QPA, which is significantly more complex in disor-

dered structural modelling and corrections. Note that the MSP

method was design for analysing full-range XRD patterns (Li

et al., 2022; Li & He, 2023). Applying the method to a rela-

tively narrow 2� range (2–90�) in this example may reduce its

accuracy. Nevertheless, the discrepancies between the quan-

tified corundum weight percentages and its known values are

lower than 2 wt%.

In the example shown in Fig. 8, the unit-cell volume is

effectively cancelled out when the TOPAS QPA routine

calculates the product of cell mass and cell volume. As a result,

it is not explicitly required in the MSP QPA equation, i.e.

equation (19). In this case, the unit-cell parameter is used

solely to achieve a good fit to the kaolinite KGa-2 pattern,

ensuring accurate Sk extraction. The next example will

demonstrate the scenario in which the lattice parameters of

the unknown crystal structure phase are not used through the

MSP method (xo_Is).

4.6. Disordered chlorite

The aforementioned corrections applied to the crystal

structure in conventional Rietveld QPA may not adequately

account for other complex structural disorders. An illustrative

example is the clay mineral ripidolite, which represents an

intermediate chlorite group member between chamosite (Fe-

rich) and clinochlore (Mg-rich). Chlorite CCa-2 is a crystalline

ripidolite source clay with cationic disorder (Gailhanou et al.,

2009). The chemical formula of CCa-2 derived from the

chemical composition reported therein is Ca0.022(Fe3.682-

Mg5.650Mn0.022K0.013Na0.039Ti0.117P0.003)(Si5.040Al4.753)O20(OH)16,

with a molecular weight of 1214.033 g mol� 1. The MSP of this

formula is calculated as 4303.128, using the TOPAS file

cal_mol_f2_CCa-2_Co.inp (available in the support-

ing information).

The diffraction pattern of the mixture of this standard and

20 wt% corundum after homogenizing in a McCrone micro-

nizer was measured using a Bruker D8 Endeavor ECO

diffractometer under Co K� radiation (35 kV, 28 mA).

Dynamic Beam Optimization optics, including a variable

divergence slit at 15 mm sample illumination length and an

automatic air-scattering knife above the sample, were used to

eliminate air-scattering background and sample holder back-

ground, which helps in direct extraction of the scattering

intensity of poorly crystalline phases. Soller slits (4.1�) were

used on both primary and secondary sides of the beam path. A

LynxEye XE-T detector (1D mode) was used to collect the

diffraction signal from the sample spun at 15 rpm around the

sample surface normal axis (to improve statistics) from 2 to

90� 2� at a 0.015� step size in 1 h.

Fig. 9 compares the whole-pattern fitting from Rietveld

QPA using the clinochlore str model (Zanazzi et al., 2007)
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Figure 8
MSP method in TOPAS GUI Mode: (a) assign the sum of I from
hkl_Is fitting to the parameter S_Kao; calculate the M_Kao S_Kao /
mol_f2_Kao / Get(cell_volume) value from the molecule
weight M_Kao and the pre-calculated molecular scattering power
mol_f2_Kao; (b) input the above-calculated value of M_Kao S_Kao /
mol_f2_Kao / Get(cell_volume) into the ‘Cell Mass’ box for this
hkl_Is phase. Run the refinement again to obtain QPA results for all
phases in this mixture.

Figure 7
Ck-corrected DDM calculation in TOPAS GUI Mode: step (a) sum all I
values from Pawley or Le Bail fitting using an hkl_Is phase; step (b)
assign the sum to the parameter S_Kao; derive the DDM_aS_on_C
value from the pre-calculated correction factor C_Kao, the molecule
weight M_Kao and the sum of electron number squared for all atoms in
the molecule n2_Kao; step (c) type in the value of DDM_aS_on_C/
Cell Volume into the ‘Cell Mass’ box for this hkl_Is phase. Run the
refinement again to obtain QPA results for all phases in this mixture.

http://doi.org/10.1107/S1600576725004054
http://doi.org/10.1107/S1600576725004054


and from the MSP method (xo_Is) for the above-described

synthesized mixture of ripidolite CCa-2 source clay spiked

with 20 wt% corundum. As can be seen from Fig. 9(a), many

non-basal reflections calculated from the clinochlore str

crystal structure that ought to be present between 20 and

30� 2� are completely missing in the measured data. Stephens’

anisotropic peak broadening correction is applied but still not

able to handle such a large discrepancy. In contrast, a much

superior fit is achieved in Fig. 9(b) using the MSP method

(xo_Is), because it allows more flexible individual peak

profiles to be refined.

The QPA results in the top-right corner of Fig. 9(a) over-

estimate corundum. In contrast, Fig. 9(b) shows slightly more

accurate QPA results for corundum obtained through the

model-free MSP (xo_Is) approach. The calculated weight

percent of ripidolite CCa-2 [78.0 (2) wt%] is shown in the MVW

macro in Fig. 10.

In Fig. 10, the sum of I values extracted using the xo_Is

model pks_CCa-2 is assigned to Sk using the prm_with_

error keyword to take into account the errors from the

intensity extraction. With the molecular scattering power

mol_f2k calculated above and the formula weight Mk calcu-

lated using AW macros, MkSk/mol_f2k [equation (19)] can be

used as the cell_mass in the MVW macro, as described in

Section 3.2 step (c).

The CCa-2_20Std.pro file used for this calculation is

provided in the supporting information.3 In this example, the

proposed MSP method employs the peaks phase xo_Is

model to extract the diffraction intensities of CCa-2 and

calculate its molecular scattering power only from its

research papers

12 of 15 Wang and Spratt � New quantitative phase analysis methods in TOPAS J. Appl. Cryst. (2025). 58

Figure 9
(a) Using the str structure model for ripidolite CCa-2 together with Stephens’ anisotropic peak broadening model. Rwp 13.76%, GOF 12.21; (b) Using
xo_Is peak fitting for the MSP method (Fig. 10). Rwp 5.45%, GOF 4.87. All fits used a first-order Chebyshev background.

3 For the purpose of reloading, TOPAS replaces the quotation marks with ‘x’,
and replaces the divide mark ‘/’ with ‘£’ in the .pro file. Users need to replace
them back once the .pro file has been loaded into TOPAS.

http://doi.org/10.1107/S1600576725004054


published chemical composition. No information on lattice

parameters or atomic positions was used. The MSP method is

both simpler and more accurate than conventional Rietveld

QPA for quantifying the poorly crystalline clay mineral CCa-2

ripidolite.

5. Discussion

In the diffraction pattern of a multi-phase mixture, peak

overlaps are inevitable. By using crystal structural models for

known crystalline phases, we can subtract their intensities

from the overlapping peaks, allowing the remaining intensity

to be allocated to a Pawley or Le Bail fit for a poorly crys-

talline or disordered phase. This combined refinement was

also adopted by Toraya (2018, 2019), who used peaks phase

xo_Is and Pawley phase hkl_Is (Type A fitting function

therein) and Rietveld modelling or intensity data from data-

bases (Type B fitting function therein) alongside pre-measured

scans using the FULLPAT method (Chipera & Bish, 2002)

(Type C fitting function therein), all integrated within a single

refinement. This approach is considered superior to applying

Type A fitting functions to all phases, where the partitioning of

overlapping peak intensities among contributing phases

heavily depends on the partitioning strategy. The iterative

‘volume-proportional partitioning’ strategy (Toraya, 2016) still

requires an initial assumption of equal partitioning, which may

face problems when the primary diffraction peaks of an

unknown phase significantly overlap with those of other

phases.

In conventional Rietveld QPA, the structure factor of each

hkl reflection can be calculated from the known crystal

structures of the constituent phases, allowing for the recon-

struction of XRD patterns (Hill & Howard, 1987). In addition

to determining the weight percentages of component phases

(QPA), Rietveld QPA also provides valuable information on

crystallite size, microstrain, preferred orientation, atomic

displacement parameters, atomic occupancies and atomic

positions, among other structural characteristics. In this

context, knowledge of the crystal structure serves as a suffi-

cient but not a necessary condition for QPA. QPA can still be

performed as long as the total structure factors, or the scat-

tering power per unit mass of the analyte, can be either

calculated or experimentally calibrated.

The application field of the currently proposed Ck-corrected

DDM is limited to poorly crystalline phases, as it still relies on

the crystal structure being close enough to disorder free to

calculate the Ck values. In contrast, the MSP method totally

eliminates the need for information on atomic positions,

lattice parameters, unit-cell volume or the number of mol-

ecules per unit cell. Instead, it requires only the chemical

composition of the unknown phase.

Both of the proposed methods are classified as ‘direct’ QPA

methods (Madsen et al., 2011), which require accurate

separation of pattern background from phase contributions. In

the present examples, the proposed methods are shown to be

effective for analysing XRD powder patterns collected using a

variable divergence slit. The use of Dynamic Beam Optimi-

zation optics suppresses non-sample scattering background,

thereby facilitating the direct extraction of the scattering

intensity of poorly crystalline phases. Additionally, a very low

order Chebyshev polynomial (only first order) was used to

model the pattern background, further reducing the correla-

tion of background with intensity Sk extracted via Pawley

fitting or peaks phase fitting. In the case of applying a ‘direct’

QPA method to an amorphous phase, the separation of phase

contributions from background becomes more challenging

and typically necessitates experimental calibration. In such

cases, the PONKCS method and the internal standard method

remain more efficient alternatives. Effective background

determination methods for multi-phase mixtures have been

reported (Madsen et al., 2011; Toraya, 2019; Toraya & Omote,

2019) and can be adopted.

The proposed Ck-corrected DDM and MSP methods both

omit the electron density in interatomic bonds, which may

explain their discrepancy with the Rietveld method. Rietveld

QPA is still considered to be the most accurate QPA method,

supported by Table 2, in which methods with more ‘R’ yield

more accurate QPA results. However, if the accuracies of QPA

results obtained from the two currently proposed Ck-corrected

DDM and MSP methods (absolute deviation within �3 wt%)

are deemed acceptable, they could be widely applied to

quantify poorly crystalline, disordered phases or partially or

no known crystal structures. Such cases would otherwise

require complex explicit structural modelling or corrections,

or laborious experiment calibration. The two proposed

methods thus hold significant potential for, especially, indus-

trial applications.
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Figure 10
In the last macro, MVW, the first parameter is ‘Cell mass’, written as MkSk/mol_f2k; the 2nd parameter 1.000 represents the unit-cell volume of the
xo_Is model; the third parameter shows the refined QPA result for ripidolite CCa-2: 78.0 (2) wt%.



6. Conclusion

Analysing the equations of the direct derivative method

(Toraya, 2016) reveals that the akSk/Ck term in DDM termi-

nology is essentially equivalent to the ZkMkVk Scalek factor in

the conventional Rietveld QPA method. Incorporating indi-

vidual Ck factors for different phases enhances the accuracy of

the original DDM calculations, particularly for mixtures with

high atomic-number contrast. Similarly, analysing the equa-

tions of the original unit-cell scattering power method (Li et

al., 2022) enables its simplification into a molecular scattering

power method, where MkSk/mol_f2k is equivalent to the

ZkMkVkScalek factor in conventional Rietveld QPA. The MSP

method eliminates the need for knowledge of the number of

molecules per unit cell, lattice parameters and unit-cell

volume. While the MSP method endorses the concept of Ck-

corrected DDM, the MSP method does not require Ck

calculations to relate to the squared electron numbers of

atoms in the molecule. Instead, the MSP method determines

molecular scattering power by summing the atomic scattering

powers (the sum of squared product of atomic form factor and

atomic displacement parameter).

APPENDIX A

Meanings and relationships of the reserved intensity para-

meters in TOPAS

The TOPAS v7 software defines various reserved parameters

concerning diffraction intensity for hkl reflections, including

numerical_area, I_no_scale_pks, Iobs_no_scale_

pks, I_after_scale_pks, I etc. Their meanings are

summarized as below and are illustrated through a refinement

of the corundum.raw data publicly available from the IUCr

CPD QPA round robin (https://www.iucr.org/__data/iucr/

powder/QARR/intro.htm).

(1) numerical_area returns a value of direct integra-

tion (counts � degrees) for the observed diffraction peak or

diffraction pattern over the fitted 2� range. This is similar to

the ‘net area’ (cps � degrees) parameter in the DIFFRAC.

EVA software calculated from the measured XRD pattern.

(2) I_no_scale_pks equals the product of ‘scale factor’,

‘multiplicity’ and squared structure factor |F |2 for each hkl

reflection in the str structure model. This parameter does not

contain the LP factor and therefore reflects the nature of the

phase itself.

(3) Iobs_no_scale_pks partitions the measured

intensity Yobs at each 2� step into the contributing phases,

according to the ratio of their intensity contribution at that 2�

step. This parameter has the LP factor removed from the

measured intensities. Therefore, when a good fit is achieved,

this value should be close to the I_no_scale_pks value.

This parameter is equivalent to the I parameter in hkl_Is,

xo_Is and d_Is phases.

(4) I_after_scale_pks is equal to the product of

I_no_scale_pks and all the scale_pks terms, including

the LP factor. When a good fit is achieved, the value of

I_after_scale_pks should be close to the numer-

ical_area value for the same fitted 2� range.

The I and numerical_area for each corundum

diffraction peak extracted using the TOPAS file extract_

numerical_area.inp (available in the supporting infor-

mation) and the other three intensity parameters I_no_

scale_pks, Iobs_no_scale_pks and I_after_

scale_pks extracted using the TOPAS file extract_

Is.inp (available in the supporting information) are

compared in Fig. 11. It is obvious that the LP factor defined in

TOPAS.inc forms the ratio between any group 1 parameter

(numerical_area, I_after_scale_pks) and any

group 2 parameter (I_no_scale_pks, Iobs_no_scale_

pks, I) in hkl_Is/xo_Is phases.

LP factor ¼
1þ cos2 �m cos2 2�

sin2 � cos �
;

where �m represent the 2� angle for the monochromator; � is

the Bragg angle of the hkl reflection.

Therefore, it is clear that the numerical_area value in

TOPAS is not equivalent to the value Sk =
P

j Ijk Gjk in DDM,

because numerical_area does not have the LP factor,

which is defined as G� 1
jk by Toraya (2016), removed. DDM

macros based on the numerical_area parameter are not

equivalent to implementations of the direct derivation method

(Toraya, 2016). The sum of I values in the TOPAS xo_Is or

hkl_Is models should be used to calculate the Sk value in

DDM.
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