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The increase in the weighted agreement factor due to systematic errors in single-

crystal X-ray and neutron diffraction experiments can be quantified precisely,

provided the estimated standard uncertainties of the observed intensities,

s.u.(Iobs), are sufficiently accurate. The increase in the weighted agreement

factor quantifies the ‘costs’ of the systematic errors. This is achieved by

comparison with the lowest possible weighted agreement factor for the specific

data set. Application to 314 published data sets from inorganic, metal–organic

and organic compounds shows that systematic errors increase the weighted

agreement factor by a surprisingly large factor of g = 3.31 (or more) in 50% of

the small-molecule data sets from the sample. Examples of twinning, disorder,

neglect of bonding densities and low-energy contamination are taken from the

literature and examined with respect to the increase in the weighted agreement

factor, which is typically less than three. The large value g = 3.31 for the

supposedly simple case of rather small molecules, as opposed to macro-

molecules, is interpreted as a warning sign that there are not only the expected

remaining systematic errors, like not-modelled disorder, unrecognized twinning

or neglect of bonding electrons or similar errors, but additionally a common

systematic error of insufficiently accurate s.u.(Iobs). Inadequate s.u.(Iobs) may

not just compromise the model parameters and model parameter errors; they

are also a threat to the whole data quality evaluation procedure that relies

crucially on adequate s.u.(Iobs).

1. Introduction

The assessment of measurement methods and evaluation

procedures is an important part of the scientific method. To

this end it is also necessary to quantify the degree of

systematic error in any given crystallographic data set.

Appropriate metrics specifically for this purpose are needed.

A variety of metrics for the detection, quantification or

visualization of systematic errors or for the quality of results in

single-crystal diffraction experiments are already available,

like the normal probability plot npp (Abrahams & Keve,

1971), the Diederichs plot (Diederichs, 2010), the redundancy-

independent merging factor Rr.i.m. and precision-indicating

merging factor Rp.i.m. (Weiss, 2001), checkCIF procedures

(Spek, 2003; Spek, 2009; Spek, 2018; Spek, 2020) based on the

CIF standard (Hall et al., 1991), and alert systems from soft-

ware like PLATON (Spek, 2020). Each of these metrics and

procedures comes with individual limitations and advantages,

but it is out of the scope of this article to discuss all of these in

great detail. Therefore, only a small selection will be briefly

discussed in the following paragraph.

The npp visualizes deviations in the distribution of weighted

residuals from the ideal case. The question of the origin of
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these deviations is not answered by the npp; possible main

causes are structure model deficiencies or inadequate weights.

The Diederichs plot may be used to quantify the systematic

instrument error by evaluation of the maximum significance

max[Iobs/�(Iobs)]. Its reciprocal value is related to the merging

R factor. Diederichs concludes that ‘the accuracy of data at

low resolution is usually limited by the experimental setup

rather than by the crystal’ (Diederichs, 2010). The disadvan-

tage of the merging R factor Rmerge (Stout & Jensen, 1989;

Blundell & Johnson, 1976; Drenth, 2007) to show lower values

for less redundant data1 was overcome by the introduction of

the merging agreement factor Rr.i.m. (Weiss & Hilgenfeld,

1997; Weiss et al., 1998), which is also called Rmeas (Diederichs

& Karplus, 1997). More merging R factors are found in the

literature. A common disadvantage of Rmerge, Rr.i.m. and Rp.i.m.

is that they all lead to lower values, thus indicating higher

quality, when the observed intensities are overestimated,

which follows from the respective definitions. For a correct

interpretation of these merging R factors it is therefore

important to exclude overestimation of observed intensities.

Note that even a slight overestimation of Iobs on average may

influence the merging R factors considerably, as the abundant

weak data show the largest merging R factor and these are

most strongly affected by a slight overestimation of Iobs.

None of these briefly discussed metrics gives direct clues to

the origin of errors. Indeed, they need not from the subjective

perspective of this author, as it is deemed to be a valid

approach to separate the quantification and visualization of

systematic errors, which may already be a difficult task, from

finding the sources of systematic errors, which is often a much

harder task. Improving the ability to characterize, quantify

and discriminate between the appearance of systematic errors

in the data is, in the personal view of the author, an important

objective in itself for long-term progress in crystallography,

very similar to good diagnostics being important for questions

of health, despite the fact that a diagnosis in itself does not

cure any disease. It helps, however, to discriminate between

similar illnesses, which may need completely different treat-

ments. This ensures that the cure is not more harmful than the

disease.

In macromolecular crystallography, the ratio of the

‘working conventional agreement factor’ and the ‘free R

value’, the conventional agreement factor of a test set from the

observed intensities excluded from the refinement, is taken for

cross validation (Bruenger, 1992). The concept of the free R

value has also received some criticisms and modifications.

Holton et al. (2014) define an ‘R-factor gap in macromolecular

crystallography’ by comparison of the merging R factor and

the conventional agreement factor R. They suggest that ‘the

reason for high R factors in macromolecular crystallography is

neither experimental error nor phase bias, but rather an

underlying inadequacy in the models used to explain our

observations.’

As the weighted agreement factor is a very common and

popular metric, in particular for small-molecule crystal-

lography, it is rather surprising that there is not yet a metric in

use that quantifies the increase in the weighted agreement

factor in small-molecule crystallography due to the presence

of systematic errors or due to systematic errors in the variance

of the observed intensities, two connected metrics suggested in

this work. The concept of a predicted weighted agreement

factor was suggested earlier (Henn & Schönleber, 2013; Henn

& Meindl, 2014a; Henn & Meindl, 2014b; Henn, 2018; Henn,

2014) and the present article continues this former work by

defining how much lower the weighted agreement factor

would be in the absence of systematic errors compared with

the weighted agreement factor from a model refinement. This

metric is easy to grasp, and its development and application

serve to stimulate a discussion about systematic errors in

small-molecule crystallography. It will be seen later that this

value is surprisingly high, which reveals that there are some

common fundamental errors not only in macromolecular

crystallography but also in small-molecule crystallography.

According to the definition of the International Union of

Crystallography (IUCr), systematic errors are the ‘contribu-

tion of the deficiencies of the model to the difference between

an estimate and the true value of a quantity’.

In single-crystal diffraction, the word ‘model’ usually refers

to the structure model, the parameters of which are refined

against experimental intensities Iobs and deliver the model-

derived intensities Icalc. However, the observed intensities and

the corresponding standard uncertainties are also part of the

model according to the definition of the IUCr, as they are

constructed from the raw data using assumptions and models

regarding the scattering theory, detector properties, back-

ground intensities, polarization etc.

As a consequence of this definition, and maybe in contrast

to intuition, the phrase ‘systematic errors’ leaves the origin of

the error open. It may be in the ‘experimental data’, like in the

observed intensities Iobs and their corresponding standard

uncertainties s.u.(Iobs), or in the structure model, i.e. in Icalc, or

in both or e.g. in an oversimplified scattering theory. In this

case a correct structure model would still lead to systematic

differences with correct Iobs. In this work, the definition of the

IUCr is adhered to.

Systematic errors are found by comparing observed and

structure-model-derived entities like Iobs and Icalc. When

systematic differences are found this clearly indicates the

presence of systematic errors, but it does not necessarily reveal

anything about the origin of this error.

The word ‘data’ refers in this work mainly to the set of h, k,

l, Iobs, s.u.(Iobs) and Icalc,
2 the information available after

model refinement that includes the calculated intensities. For a

refinement with the SHELXL software (Sheldrick, 2015) the

corresponding data are found in the files ending with ‘.fcf’.

By no means is the word ‘data’ limited to Iobs and s.u.(Iobs).
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accuracy, despite the accuracy of the data being expected to be lower in this
case.

2 Additionally cell parameters, weighting scheme parameter values etc. also
need to be known. However, once these are known the analysis is done with
the .fcf files.



2. Metrics for the quantification of systematic errors

In a data set without any systematic error, a sufficiently

sophisticated crystal structure model is refined against the set

of observed intensities Iobs that are known with uncertainty

s.u.(Iobs). As a result, a set of corresponding calculated

intensities Icalc are obtained in return. The difference between

observed and calculated intensity is divided by the standard

uncertainty s.u.(Iobs) in order to obtain the weighted residual

� = ðIobs � IcalcÞ=s:u:ðIobsÞ. The standard uncertainties are

found in the input reflection file. The weighted residual is, in

the absence of systematic errors, a random variable. The

employment of s.u.(Iobs) in � is referred to as ‘statistical

weights’.

Many published data sets, however, have weights from a

more extended weighting scheme. As an example, equation

(1) gives a weighting scheme as implemented in SHELXL:

�2ðIobsÞ ¼ s:u:2ðIobsÞ þ ðaPÞ
2
þ bP; ð1Þ

with weighting scheme parameters a and b, and P =

½maxð0; IobsÞ þ 2Icalc�=3. The use of P instead of Iobs was

suggested by Wilson (1976) to reduce statistical bias. When the

s.u.(Iobs) are severely underestimated, however, bias is

increased by this choice (Henn, 2025). Equation (1) is already

a simplified version of the weighting scheme; there are more

parameters available in the full form but these are not needed

for the present discussion. Sheldrick (2015) referred to

equation (1) as inverse weight, 1/w = �2(Iobs), whereas here it

is deliberately written as the variance of the observed inten-

sity, �2(Iobs). After all, according to the SHELXL manual

pages the weighting scheme serves exactly this purpose, ‘so

that the variance shows no marked systematic trends with

the magnitude of F2
calc or of resolution’ (https://shelx.uni-

goettingen.de/shelxl_html.php#WGHT).

The purpose of the weighting scheme and the requirements

for appropriate application of a weighting scheme are of such

great importance that we take a moment to elaborate on this

topic here. There are two fundamentally distinct cases for the

variance of the residuals not being flat:

(i) The variance of the observed intensities s.u.2(Iobs) is

underestimated for a part of the data. In this case, the variance

of the residuals changes with resolution or intensity, even

when the structure model is entirely correct and no other error

is present. The application of a weighting scheme serves to

restore the correct variances. These could and should be used

to improve data integration such that adequate variances

result in the first place and application of a weighting scheme

is not necessary (provided there are no other errors).

(ii) There are other systematic errors present. Two impor-

tant cases are distinguished: (a) A few individual outliers

distort the model parameters such that it seems to be appro-

priate to weight these down in order to prevent distortion of

the model parameter values by these outliers. The application

of a weighting scheme is frequently discussed just in this

context. (b) There is a systematic – but not necessarily large –

deviation Iobs > Icalc or Iobs < Icalc for a fraction of the data,

such that certain bin mean values hIobsi/hIcalci 6¼ 1 for suffi-

ciently large chosen bins deviate distinctly from one. A frac-

tion of the calculated reflections, such as the weakest 10%, are

systematically larger or weaker than the corresponding

observed intensities in this case. This constitutes a systematic

error already in itself, as a fraction of 10% is for most data sets

too large to occur by accident. However, the weighting scheme

will only be invoked in SHELXL if additionally the differ-

ences between observed and calculated intensities are

frequently much larger than the respective s.u.(Iobs). Appli-

cation of the weighting scheme effectively disguises the

systematic error in this case, as it just makes the variance of

the observed intensities so large as to accommodate the

formerly significant (and still systematic) differences between

observed and calculated intensities. The variance is finally flat

and nothing points to the important systematic error.

To make this a bit more concrete, the reader may think for

example about not-modelled non-merohedral twinning, which

frequently leads to weak intensities being too large and thus to

a ratio K = hIobsi/hIcalci � 1 specifically for the weakest Icalc

(Müller, 2006). K is given in the SHELXL output list file. A

large value of K for low-intensity reflections is typically

accompanied by a large weighting scheme parameter value b

that becomes smaller or vanishes after modelling of twinning.

A non-vanishing value b > 0, however, indicates the presence

of one or more other systematic errors. To make this discus-

sion even more concrete we consider the first example of non-

merohedral twinning discussed in ch. 7.8.5 of Müller (2006)

(methylene diphosphonic acid, CH6O6P2). Here, the values in

the initial stage of the refinement, where twinning was not yet

modelled, were K = 11.456 and b = 27.6049 (nonm1-02) and in

the final stage K = 0.365 and b = 0.7180 (nonm1-07). Modelling

of twinning has thus led to a large reduction in the weighting

scheme parameter b. We will see later in Table 1 that

modelling of twinning decreased the weighted agreement

factor in this case by an impressive factor of 2.94. However,

because a, b 6¼ 0 in the final stage of the refinement, the

agreement factor could be reduced still further by another

factor of 2.92. In other words, another systematic error

remains, which is, in terms of the ratios of agreement factors,

of similar magnitude to the twinning. The absolute values are

less dramatic but still impressive: modelling of twinning

reduces the weighted agreement factor from 31.03 to 10.56%

and for a = b = 0 it is 2.92%. So, wR(F 2) = 2.92% is the

potential of the data provided there are no systematic errors,

but only wR(F 2) = 10.56% is realized in this example, which is

still much less than the initial wR(F 2) = 31.03%. Twinning was

here just taken as an example; one could equally well choose

other examples like not-modelled disorder.

Whenever the weighting scheme parameters increase the

variance of the observed intensities, that is, whenever the

weighting scheme parameters a and/or b are not identical to

zero, the induced increase in the variance of the observed

intensities should be monitored, quantified and set into

proportion. Section 2.2 will provide a metric for that purpose.

Increasing the variance of the observed intensities will also

reduce the weighted agreement factor and lead in this way to

an agreement factor gap. This will be discussed in Section 2.3.
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Any given weighting scheme – not only the SHELXL type –

can be decomposed into the contribution s.u.2(Iobs) from the

reflection input file and additional contributions. Therefore,

the new metric (‘systematic error in the variance of the

observed intensity’) as developed in Section 2.2 is not tied to a

SHELXL-like weighting scheme, which is just used as a

widespread and popular example.

A need to apply weights different from statistical weights

already confirms the existence of systematic errors. However,

the cause remains unclear. A fundamental discrimination

between different types of causes was made in the discussion

above: (i) inadequate standard uncertainties s.u.(Iobs) as given

in the input reflection file, (ii)(a) individual outliers and (ii)(b)

systematic differences between observed and calculated

intensities.

This distinction is not currently made despite being

important and sensible, as insufficiently accurate s.u.(Iobs)

cannot always be adequately corrected for. Inadequate

correction of inaccurate standard uncertainties can represent

the above-mentioned case of a cure worse than the disease

and is described in the literature for the case of uniformly

underestimated s.u.(Iobs) (Henn, 2025).

2.1. Another remark on the SHELXL weighting scheme

For comparison with other types of weighting schemes like

Chebychev polynomials [see, as an example, Carruthers &

Watkin (1979)] and for another reason that will be discussed

shortly, it is important not just to compare the numerical

values of weighting scheme parameters but also to study the

overall effect of the weighting scheme on the variance of the

observed intensities. The first statement is self-evident, as

other weighting schemes may have a very different para-

meterization and therefore they may not have a parameter

equivalent to a weighting scheme parameter a or b (or any

other from the SHELXL type of weighting scheme), so they

cannot be compared directly. Even if they have a similar

parameter, different weighting schemes may involve a

different number of parameters, which is again an obstacle to

comparison.

The other reason is more subtle and is tied to a SHELXL-

like weighting scheme: all individual contributions to �2(Iobs)

in equation (1) are quadratic except for the term connected to

b. This has a strange and not very obvious consequence:

structures with lower scattering mass F000 will tend to have

larger values of b. As a result the weighting scheme parameter

value b is dependent not only on systematic errors but also on

the total scattering mass as expressed by F000. In the following,

a Gedankenexperiment is discussed in order to make this

unexpected dependence visible and to understand it. For this

Gedankenexperiment one needs to keep in mind that the

scaling of the data is arbitrary, since it follows a convention

rather than any natural law. One special scale is when the

intensity of the individual reflections is given in photons like

with scintillation detectors. Every scale needs to be in

proportion to the count of photons, but in this special choice

the factor of proportionality is equal to one.

Dimensionless physical properties like the mean signifi-

cance of the data must not depend on scaling as they express a

physical reality that is not dependent on the units used for the

measurement. If the length of a wall is twice its height, it will

be so regardless of whether the distances are measured in

ångströms, inches, feet, metres or lightyears.

Now assume that the refinement of a model against

observed data Iobs,1, s.u.(Iobs,1) results in a1 = 0, b = b1, such

that �2
1 ¼ s:u:2ðIobs;1Þ þ b1P1. The results of this discussion do

not depend on a1 = 0, but it simplifies the discussion. In

SHELXL, the scaling of the observed intensities is tied to F000.

The resulting mean significance of the data is given by

hIobs;1=�1i. Now, after the refinement is finished we want to

scale to 0.5F000 instead of F000 for whatever reason (for

instance, a friend developed their own refinement software

and just chose this scale out of curiosity). The intensities and

standard uncertainties expressed in the new scale get an index

2 and they just double, since the scale factor is applied by

division:

Iobs;2 ¼ 2Iobs;1; ð2Þ

Icalc;2 ¼ 2Icalc;1; ð3Þ

s:u:ðIobs;2Þ ¼ 2 s:u:ðIobs;1Þ; ð4Þ

P2 ¼ 2P1 ð5Þ

Equation (5) follows from the definition P = f max(0, Iobs) +

(1 � f)Icalc and equations (2) and (3). It holds for any value of

f 2 [0, 1]. The dimensionless physical properties must not

change as no physical change has been applied, only a change

of the units, so hIobs;1=s:u:ðIobs;1Þi ¼ hIobs;2=s:u:ðIobs;2Þi must –

and evidently does – hold, as can be seen from equations (3)

and (4). However, it is a requirement that

�2ðIobs;2Þ ¼
!

2�1ðIobs;1Þ ð6Þ

in order to obey hIobs;1=�1ðIobs;1Þi ¼
!
hIobs;2=�2ðIobs;2Þi, where

the exclamation mark above the equals sign symbolizes that

equality between the term on the left-hand side and the term

on the right-hand side is demanded. Using the definition in

equation (1) and equations (2)–(5) in equation (6), one arrives

after a very short calculation at

b2 ¼ 2b1: ð7Þ

For the rescaled data we need to chose a weighting scheme

parameter b twice as large as the original one in order to arrive

at the same mean significance of the data. This is in contrast to

the weighting scheme parameter a, which does not change

under rescaling. If the weighting scheme parameters a and b

described solely the data quality, they would both be

unchanged under a change of scale, as the data quality is not

affected by a change of scale. However, the weighting scheme

parameter b obviously depends on the applied scale.

The consequences of this argument are as follows. The

preceding paragraphs show that the weighting scheme para-

meter b is intimately connected to the scale, whereas the

weighting scheme parameter a is not. As a consequence, the
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weighting scheme parameter b is comparable only for refine-

ments with the same or a very similar scale factor F000, i.e. for

different model refinements with constant F000 against the

same data, but not for entirely different structures. For some

hypothetical structures labelled 1–3 taken from a crystal-

lographic databank and having the same weighting scheme

parameter a1 = a2 = a3, structure 1 with F000,1 = 1000, b1 = 1 is

comparable with structure 2 with F000,2 = 500, b2 = 2 and with

structure 3 with F000,3 = 250, b3 = 4. A smaller numerical value

of b does not automatically imply a better least-squares fit; it

depends additionally on F000. A basic requirement for a metric

describing data quality is independence from the scale, which

applies to weighting scheme parameter a but not to b. As a

consequence, instead of comparing the numerical values of the

weighting scheme parameters directly, it is more objective to

compare how the weighting scheme parameters affect the

variance of the observed intensities, as will be described in the

next section. This approach has the advantage of being inde-

pendent of the scale and additionally facilitates comparison

between different weighting scheme types.

2.2. Systematic error in the variance of the observed intensity

The variance of the observed intensity �2(Iobs) can be

broken down into a statistical part and a systematic part,

where s.u.2(Iobs) is the variance due to stochastic error and X 2

is that due to systematic error:

�2ðIobsÞ
� �

¼ s:u:2ðIobsÞ
� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
stochastic error

þ X2
� �

|{z}
systematic

error

; ð8Þ

X2
� �

�2ðIobsÞ
� � ¼ 1 �

s:u:2ðIobsÞ
� �

�2ðIobsÞ
� � : ð9Þ

The angle brackets in equations (8) and (9) indicate averaging

over the data set. Equation (9) defines the fraction of sys-

tematic error in the variance of the observed intensity. It is a

positive number ranging between zero and one. For statistical

weights with a = b = 0, it follows that hX 2(Iobs)i/h�
2(Iobs)i = 0,

indicating that 100% of the variance in the observed intensity

is due to stochastic fluctuations. For values of the weighting

scheme parameters different from zero, a 6¼ 0 and/or b 6¼ 0, the

stochastic part is reduced and a systematic error enters, such

that both numbers always add up to 100%. This parameteri-

zation is taken as a convenient measure to quantify the degree

to which systematic errors affect or even dominate the average

variance of the observed intensity h�2(Iobs)i in a given data set.

[It may very well be that equations similar to equation (9)

were discussed previously in the literature, but not to the

knowledge of the author.] The significance of this number lies

in the fact that (i) it enables us to define intuitive threshold

values for high-quality data sets based on a convention and (ii)

this threshold value is based on the effect of the weighting

scheme on h�2(Iobs)i rather than being based on weighting

scheme parameter values. In this way different weighting

schemes can easily be compared with each other.

As an example for (i), one might define data sets with

hX2i=h�2ðIobsÞi < 0:5, i.e. data sets with less than 50%

contamination of systematic errors in the variance of the

observed intensities, to be of high quality. If this definition

appears to be quite generous to the reader, they will probably

be surprised to learn that less than 20% of all data sets in our

sample of N = 314 small-molecule data sets conform to this

requirement [see Fig. 1(a) in Section 3]. This result can be

interpreted in very different ways. (i) Either the s.u.(Iobs) are

so small that even small errors like slight disorder or not-

modelled bonding density are detected and lead to a large

increase in the weighted agreement factor, or (ii) the s.u.(Iobs)

are just too small and do not describe the variance in the

observed data adequately. Interpretation (i) assumes a very

high precision of the experimental data, while interpretation

(ii) assumes that the high precision of the data is exaggerated

and only of a formal nature and is not physically realized. In

case (i), the task for enabling further progress in data quality

would be to identify and remove those slight errors, and in

case (ii) the task would be to learn how to obtain correct

s.u.(Iobs) in the first place. The often tacitly assumed notion

that the weighting scheme enables corrections in a meaningful

way may not necessarily hold in any individual case, and it

certainly does not hold in the simple case that all s.u.(Iobs) are

underestimated by a common factor (Henn, 2025).

2.3. Agreement factor gap

The weighted agreement factor is designed to measure the

overall difference between the structure-model-derived entity

Icalc as obtained after a least-squares refinement of a crystal

structure model against observed intensities and those

observed reflection intensities Iobs. Random deviations are

characterized by being of the order of magnitude of the

individual s.u.(Iobs) and typically even within the limits of only

one or a few standard deviations, which is a reasonable

measure if the s.u.(Iobs) describe the actual fluctuations in Iobs.

Systematic errors may lead to larger deviations, which leads to

invoking a weighting scheme in order to ensure the model

parameter values are not overly aligned with the strongest

outliers. This increases the variance of the observed intensities

which in turn increases the weighted agreement factor.

The extent to which the agreement factor is increased in

total due to systematic errors can be quantified by dividing the

post-refinement weighted agreement factor wR(F 2) by a

reference value wRðF2Þpred
s:u: . The reference value is the

weighted agreement factor in the absence of systematic errors,

i.e. the adequacy of the structure model and of s.u.(Iobs) and

Iobs is assumed:

wRðF2Þ
pred
s:u: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nobs � Npar

P
I2

obs=s:u:2ðIobsÞ
� �

s

; ð10Þ

with the number of included reflections in the refinement Nobs

and the number of model parameters Npar.

The ratio
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g ¼
wRðF2Þ

wRðF2Þ
pred
s:u:

ð11Þ

with the post-refinement weighted agreement factor

wRðF2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i �

2
i

P
i Iobs;i=�ðIobs;iÞ
� �2

s

ð12Þ

gives the factor by which the agreement factor is increased due

to systematic errors. A difference from g = 1 implies a gap. The

summation index i runs over all Miller triples involved in the

refinement and �i ¼ ðIobs;i � Icalc;iÞ=�ðIobs;iÞ is the weighted

residual i. The entity defined in equation (11) may be termed

the ‘weighted agreement factor gap’ in small-molecule crys-

tallography and is therefore abbreviated here as g for ‘gap’.

The agreement factor gap is also reported in the checkCIF

procedure and may lead to a PLAT969 type PLATON

message in the CIF report. Our next stage of application to

published data sets will show that g = 3.31 or larger for half of

all sets in our sample of N = 314 published data sets.

3. Application to published data sets

All data sets published through a peer-review process in the

open-access journal IUCrData between 2020 and 2022 were

examined. This comprises metal–organic, organic and in-

organic compounds. Most data sets were collected with Mo or

Cu radiation. Data sets that needed editing or were incom-

plete were excluded. Some publications were just corrigenda

without experimental data (Fang et al., 2020; MacNeil et al.,

2020; Naveen et al., 2021). In one publication an unusual

format of the embedded diffraction data was used (Patel et al.,

2020), in one publication Chebychev polynomials were used

(Peña Hueso et al., 2022) and in some data sets the calculated

intensities were not given (de Freitas et al., 2020; Zhang et al.,

2020; Sarr et al., 2020; Flores-Alamo et al., 2020; Lee et al.,

2020; de Araújo et al., 2020; Prapakaran & Murugavel, 2022;

Neviani et al., 2022). After discarding the above-mentioned

data sets, 314 data sets remained in the sample. A complete list

of these with full literature references is available in the

supporting information.

Statistical weights were applied in only two of the 314

analysed data sets. The fraction of systematic error in the

variance of the observed intensities is 66% or more for three

quarters of all data sets in the sample [Fig. 1(a)]; for half of the

data sets it is 83% or more. Either there are a lot of remaining

model errors in the overwhelming majority of all published

data sets in the sample or the s.u.(Iobs) are flawed themselves.

That underestimation of the s.u.(Iobs) is a common phenom-

enon was also emphasized earlier (Henn & Meindl, 2015b;

Henn, 2019). Instead of ‘correcting’ underestimated s.u.(Iobs)

with the help of a more extensive weighting scheme, it would

be more important to produce correct s.u.(Iobs) in the first

place. Flawed s.u.(Iobs) and other systematic errors inflate the

agreement factor by 3.31 times or more in 50% of the

published data sets [Fig. 1(b)].

4. Increase in wR(F2): examples from the literature

Values were taken from the literature to gain an impression of

typical increases in wR(F 2) due to systematic errors. The

choice of examples is, of course, highly arbitrary, but it may

still be helpful to get an impression of how much systematic

errors affect the weighted agreement factor.

4.1. Twinning

4.1.1. Non-merohedral twinning

Sevvana et al. (2019) discuss examples of non-merohedral

twinning and give corresponding weighted agreement factors.

For detailed information about the corresponding data sets,

see the cited literature and the references therein. Only the
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Figure 1
(a) Cumulative distribution of the fraction of systematic error hX 2i/
h�2(Iobs)i in the variance of the observed intensities for 314 data sets.
Only 25% of the data sets have a fraction of systematic error in the
variance of the observed intensities of 66% or less. (b) Cumulative
distribution of the agreement factor gap as defined in equation (11). For
50% of all data sets the weighted agreement factor is increased by a factor
of 3.31 or more as a consequence of systematic errors. For more infor-
mation see the text.

http://doi.org/10.1107/S1600576725004376


results for the small-molecule data sets are discussed here. The

mineral chromite, FeCr2O4 (cubic spacegroup Fd3m), was

measured on a Bruker diffractometer with Mo K� radiation at

292 K up to � = 30.35�. The twin fraction was estimated to be

0.574 for the larger domain. The agreement factors for dis-

regarding twinning (both domains) and for the detwinned data

are compared in Table 1.

The second example is an organometallic compound

Cp�2MeZrOTiMe2Cp� (monoclinic spacegroup Pc), with Cp�

standing for pentamethylcyclopentyl, collected at 100 K with a

Bruker diffractometer and Mo K� radiation up to � = 25.36�.

The increase in the weighted agreement factor due to the

unaccounted-for systematic error of non-merohedral twinning

remains well below two in both cases. Two more examples for

non-merohedral twinning were taken from the book by Müller

(2006), where more information on the data sets including

references is found. The first structure is diphosphonic acid,

CH6O6P2, measured on a four-circle diffractometer with a

scintillation detector (space group P21/c). A large absolute off-

diagonal element of 0.822 in the twin law indicates a strong

overlap of the reciprocal lattices. This explains the large

increase in the weighted agreement factor of 2.94 when

twinning is not taken into account. The second structure, 2-

(chloromethyl)pyridinium chloride (space group P21/c), was

measured on a diffractometer equipped with an area detector.

The twin law corresponds to a twofold rotation about one axis.

Modelling of twinning does not reduce the weighted agree-

ment factor in this case.

In all these examples the predicted agreement factor based

on �(Iobs) is smaller than the weighted agreement factor from

the detwinned data sets (Fig. 2). For example, for chromite,

wRðF2Þpred
� = 3.13% and the agreement factor from detwinned

data wR(F 2)detw. = 4.41%. The ratios wRðF2Þdetw:=wRðF2Þpred
�

are 1.41, 1.06, 1.07 and 1.05 in the order of Table 1. These are

close to one, with the exception of the chromite case in which

the increase in the agreement factor due to neglect of twin-

ning, 1.54, is similar to the increase in the weighted factor

due to an unknown systematic error of 1.41. But things are

even more serious when comparing the agreement factors

from the detwinned data with the predicted agreement factor

based on s.u.(Iobs). For example, again for chromite,

wRðF2Þdetw:=wRðF2Þpred
s:u: = 4.12, indicating a 4.12-fold increase

in the weighted agreement factor due to other unknown

systematic errors in the data set. This increase is much larger

than that due to neglect of twinning (1.54). The ratios for the

remaining data sets in the order of Table 1 are 1.54, 3.62 and

7.20, i.e. they are all larger than the corresponding reference

values from detwinning.

4.1.2. Obverse/reverse twins

Two structures are discussed as an example for obverse/

reverse twinning; a detailed description of the structures

is given by Herbst-Irmer & Sheldrick (2002). The two struc-

tures are as follows. 2,2,4,4,6,6-Hexa-tert-butylcyclotrisiloxane

(C24H54O3Si3, trigonal space group R3c, structure V) was

measured on a STOE diffractometer at 133 K employing Mo

K� radiation up to �max = 25.20�. Neglect of twinning increases

the weighted agreement factor 1.82-fold. Structure VI

(C50H121Al3F10Li4O5Si9, trigonal space group R3) was also

measured on a STOE diffractometer, again at 133 K with Mo

K� radiation, up to � = 24.07�. The weighted agreement factor

wR(F 2) = 38.30% given in Table 2 corresponds to the case

where twinning is not considered at all and it is compared with

the case in which the obverse/reverse setting was assigned

correctly [wR(F 2) = 30.40%, not shown] and additionally with

the case where merohedral twinning was taken into account,
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Figure 2
How modelling of twinning affects the weighted agreement factor.
Compare with Tables 1 and 2. The blue bars show the weighted agree-
ment prior to modelling of twinning. The orange bars show the weighted
agreement factor after twinning was taken into account. Taking twinning
into account reduces the weighted agreement factor in all cases, with the
exception of structure IV. The green bars show the weighted agreement
factor in the absence of systematic errors. The difference between the
orange and green bars is the agreement factor gap. The gap is sometimes
comparable to the difference between the blue and orange bars and
sometimes even larger, as for structure I. The values for the agreement
factors are taken from the literature (Müller, 2006) and the predicted
agreement factor was calculated from the data provided therein.

Table 1
Modelling of non-merohedral twinning.

Data taken from Sevvana et al. (2019) (structures I and II) and from the chapter Twinning by R. Herbst-Irmer in the book by Müller (2006) (structures III and IV).

wRðF2Þ=wRðF2Þdetw:

�max

(�)

Wavelength

(Å)

sin �=�

(Å� 1)

wRðF2Þpred
�

(%)

wRðF2Þpred
s:u:

(%) wRðF2Þdetw:=wRðF2Þpred
s:u:

I FeCr2O4 6.80/4.41 = 1.54 30.35 0.71073 0.71 3.13 1.07 4.12
II Cp�2 MeZrOTiMe2Cp� 13.14/10.19 = 1.29 25.36 0.71073 0.60 9.65 6.62 1.54
III CH6O6P2 31.03/10.56 = 2.94 30.06 0.71073 0.71 9.86 2.92 3.62

IV C6H7ClN+·Cl� 7.11/7.13 = 1.00 30.47 0.71073 0.71 6.77 0.99 7.20



wR(F 2) = 8.70%. This extreme case leads to a factor of 4.40 in

the weighted agreement factors.

Like in the above example for non-merohedral twinning,

the �-based predicted agreement factors are close to the

actual ones from the detwinned data sets. However,

wRðF2Þdetw:=wRðF2Þpred
s:u: = 5.20 and 7.07. Again, an unknown

systematic error leads to invoking the weighting scheme,

which increases the variance in the observed intensities

considerably in order to accommodate the unknown system-

atic error. In other words, if there were no systematic errors in

these data sets, the agreement factor would be much smaller.

4.2. Disorder

Some examples of relevance for disorder are discussed by

Müller (2006). The individual stages in model building to solve

the disorder are described in detail there, and the corre-

sponding input and output files are also given. Some of these

examples are compiled in Table 3. The agreement factors from

the final stage, in which disorder is incorporated into the

model, and from the initial stage are compared with each

other in column 2.

In some cases the initial weighted agreement factor was

already extremely high, like in the case of the titanium

compound [wR(F 2) = 0.7874] and in the solvent disorder case

of benzoic acid [wR(F 2) = 0.6476]. These extremely large

weighted agreement factors are accompanied by the weighting

scheme parameter value a = 0.2. It is quite rare to find such

large weighting scheme parameters in published data sets.

When disorder is properly accounted for, the weighted

agreement factors go down by sometimes very large factors of

8.25 (TiIII compound) and 4.41 (benzoic acid). The ratios of

agreement factors for the remaining cases remain below three

(Fig. 3).

The agreement factor ratios after taking disorder into

account are wRðF2Þfinal=wRðF2Þpred
s:u: = 3.30, 3.28, 3.86 and 5.62,

i.e. of the same order of magnitude as neglect of disorder.

4.3. Aspherical scattering factors and crystal environment

The values in Table 4 are taken from the article by Chod-

kiewicz et al. (2024), who apply an elaborate model called

HAR� (where HAR stands for Hirshfeld atom refinement)

that not only accounts for aspherical scattering factors and

electron correlation at a density functional theory level of

B3LYP with a rather large basis set (cc-pVTZ) but addition-

ally takes into account to a certain degree of polarization of

the molecules in the unit cell due to the crystal environment.

The structure name is given in the first column. More details

on these structures are found in the cited literature. The

second column gives the ratio of the weighted agreement
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Figure 3
How modelling of disorder affects the weighted agreement factor.
Compare with Table 3. The blue bars show the weighted agreement prior
to modelling of disorder. The orange bars show the weighted agreement
factor after disorder was taken into account. Taking disorder into account
reduces the weighted agreement factor in all cases. The green bars show
the weighted agreement factor in the absence of systematic errors. The
difference between the orange and green bars is the agreement factor
gap. The values for the agreement factors are taken from the literature
(Müller, 2006) and the predicted agreement factor was calculated from
the data provided therein.

Table 3
Modelling of disorder.

Data taken from the chapter Disorder by P. Müller in the book by Müller (2006).

wRðF2Þinitial=wRðF2Þfinal

�max

(�)

Wavelength

(Å)

sin �=�

(Å� 1)

wRðF2Þpred
�

(%)

wRðF2Þpred
s:u:

(%) wRðF2Þfinal=wRðF2Þpred
s:u:

VII Gallium iminosilicate† 18.51/6.87 = 2.69 26.37 0.71073 0.62 6.11 2.08 3.30
VIII TiIII compound‡x 78.74/9.55 = 8.25 26.99 0.71073 0.64 9.37 2.91 3.28
IX Benzoic acid‡} 64.76/14.69 = 4.41 54.24 1.54178 0.53 13.86 3.81 3.86

X Toluene‖ 29.93/10.23 = 2.93 26.02 0.71073 0.62 8.43 1.82 5.62

† Disorder of two ethyl groups (Ga-01, Ga-06). ‡ Very large initial weighting scheme parameter a = 0.2. x Disorder of TiIII cation (Ti-01, Ti-07). } Disorder of a benzoic acid

molecule on a twofold axis (Benz-01, Benz-04). ‖ Disorder of a toluene solvent molecule about a special position (Tol-01, Tol-05).

Table 2
Modelling of obverse/reverse twinning.

Data taken from Herbst-Irmer & Sheldrick (2002).

wRðF2Þ=wRðF2Þdetw:

�max

(�)

Wavelength

(Å)

sin �=�

(Å� 1)

wRðF2Þpred
�

(%)

wRðF2Þpred
s:u:

(%) wRðF2Þdetw:=wRðF2Þpred
s:u:

V C24H54O3Si3 16.40/9.00 = 1.82 25.20 0.71073 0.60 8.12 1.73 5.20
VI C50H121Al3F10Li4O5Si9 38.30/8.70 = 4.40 24.07 0.71073 0.57 9.21 1.23 7.07



factor from an independent atom model (IAM) and from the

elaborate HAR� model. Additional information about the

maximum �, wavelength � and maximum resolution is given.

The increase in the weighted agreement factor due to

neglect of aspherical bonding density, electron correlation and

polarization from the crystal field ranges between 1.48 for

BIPa and 1.92 for carbamazepine, i.e. they are all smaller than

three, even for high-resolution data sets (Fig. 4).

After taking into account bonding features and polarization

of the electron density due to the crystal environment, the

ratios wRðF2ÞHAR�=wRðF2Þpred
s:u: = 1.48 (carbamazepine), 4.65

(BIPa), 1.76 (NAC·H2O) and 0.92 (urea) indicate an unknown

systematic error comparable to wRðF2ÞIAM=wRðF2ÞHAR� or

larger in all cases but urea. The factor wRðF2ÞHAR�=wRðF2Þpred
s:u: =

0.92 for urea indicates overfitting.

4.4. Low-energy contamination

The data in Table 5 (Fig. 5) are taken from Tables 4 and 5 of

Krause et al. (2015) and from the corresponding CIFs. The

weighted agreement factor is compared for data affected by

low-energy contamination and data corrected for low-energy

contamination by the empirical correction method proposed

in the mentioned publication. All experimental data sets were

taken on Bruker diffractometers equipped with an Incoatec

microsource. Data sets XV–XVIII and XX, a high-resolution

data set, were taken at 100 K, and data set XIX at 293 K.

References for the data sets and more details are found in the

cited literature.

The increase in the weighted agreement factor due to low-

energy contamination varies between 1.02 for C11H10O2S (set

XIX) and 1.19 for C52H38P2S2 (set XX), i.e. they are all much

smaller than three, including the high resolution data set XX.

5. Discussion and conclusions

The application to published data sets in Section 3 shows that

in the supposedly simple case of small-molecule crystallography
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Figure 4
How modelling of aspherical electron density affects the weighted
agreement factor. Compare with Table 4. The blue bars show the
weighted agreement for the spherical independent atom model (IAM).
The orange bars show the weighted agreement factor after taking
aspherical effects into account. The weighted agreement factors decrease
in all cases. The green bars show the weighted agreement factor in the
absence of systematic errors. The difference between the orange and
green bars is the agreement factor gap. The values for the agreement
factors are taken from the literature [see Chodkiewicz et al. (2024) and
references cited therein]. The predicted agreement factor was calculated
from the published data.

Figure 5
How modelling of low-energy contamination affects the weighted
agreement factor. Compare with Table 5. The blue bars show the
weighted agreement for the data sets contaminated by low-energy
radiation. The orange bars show the weighted agreement factor after
correction for low-energy contamination. The weighted agreement
factors decrease in all cases. The green bars show the weighted agreement
factor in the absence of systematic errors. The difference between the
orange and green bars is the agreement factor gap. The respective
agreement factor gap is much larger than the reduction in weighted
agreement factors for structures XV–XIX. The values for the agreement
factors are taken from the literature (Krause et al., 2015). The predicted
agreement factor was calculated from the published data.

Table 4
Effect of bonding density and crystal field.

Data taken from the article by Chodkiewicz et al. (2024) for results with B3LYP density functional and exponent n = 1. BIPa (C25N11O16H25): a co-crystal of a
betaine zwitterion, two imidazolium cations and two picrate anions; NAC (C7H10NO4): N-acetyl-l-4-hydroxyproline monohydrate.

wRðF2ÞIAM=wRðF2ÞHAR�

�max

(�)
Wavelength
(Å)

sin �=�
(Å� 1)

wRðF2Þpred
�

(%)
wRðF2Þpred

s:u:

(%) wRðF2ÞHAR�=wRðF2Þpred
s:u:

XI Carbamazepine 12.53/6.54 = 1.92 57.99 0.71073 1.19 12.40 4.42 1.48
XII BIPa 13.72/9.25 = 1.48 58.41 0.71073 1.20 – 1.99 4.65

XIII NAC·H2O 7.67/4.90 = 1.57 31.88 0.5166 1.02 – 2.78 1.76
XIV Urea 6.38/3.54 = 1.80 86.97 0.71073 1.41 – 3.85 0.92



– as opposed to macromolecular crystallography – systematic

errors remain. These systematic errors are so large that they

increase the average variance of the observed intensity and

the weighted agreement factor substantially: in half of all data

sets from the sample they lead to a percentage of 83% (or

more) of systematic errors in the variance of the observed

intensities [hX2i=h�2ðIobsÞi � 0:83] and, as a consequence, to

g = 3.31 or more. Only 17% of the variance of the observed

intensities is on average due to stochastic fluctuations as

indicated by s.u.(Iobs). In other words, the variance of the

observed intensities as given by s.u.(Iobs) is too small to

explain the physical variance in the data in virtually all data

sets from the sample. Application of a weighting scheme is

needed to increase the variance to 83/17 = 4.88-fold or more in

half of the data sets from the sample. This is clearly a finding

that needs an explanation. Finding the correct explanation

may help to reduce the agreement factor gap.

Note that the two metrics hX2i=h�2ðIobsÞi and g are

connected to each other, as the lowest attainable weighted

agreement factor is limited by the mean significance of the

observed reflections. This principle is also used in the

Diederichs plot (Diederichs, 2010) for data quality evaluation.

An increase in the variance of the observed intensities with

the help of a weighting scheme leads to a reduction in the

mean significance and necessarily induces an agreement factor

gap.

Different systematic errors discussed in the literature were

evaluated in order to identify possible causes for the large

agreement factor gap in low-resolution small-molecule crys-

tallography and led to the following results.

Neglect of modelling of twinning in the six examples

discussed led on average to a 2.17-fold increase in the

weighted agreement factor. The resulting agreement factors,

however, were on average still 4.70-fold increased compared

with the s.u.(Iobs)-based predicted agreement factor

wRðF2Þpred
s:u: ; this is the value for the lowest attainable agree-

ment factor in the absence of systematic errors with a model

using the same number of model parameters Npar as in the

refinement, after modelling of twinning. After modelling of

disorder, a factor wRðF2Þfinal=wRðF2Þpred
s:u: > 3 remained in all

cases. Not modelling the asphericity of the electron density

and the polarization due to the crystal environment increased

the weighted agreement factor 1.69-fold on average for the

discussed high-resolution data sets, but the resulting agree-

ment factors were on average still 2.20 times larger than

wRðF2Þpred
s:u: after taking asphericities and polarization of the

electron densities into account.

Low-energy contamination increased the weighted agree-

ment factor on average by 10% for the six discussed examples,

but the weighted agreement factor is still on average 5.24 times

larger than for the case without systematic errors after

correcting for low-energy contamination. The lowest factor

wRðF2Þcorrected=wRðF2Þpred
s:u: ¼ 1:41 is obtained for the data set

with highest resolution.

Provided the s.u.(Iobs) are accurate, it remains a mystery

what may cause the large median value g = 3.31 in the sample

with N = 314 small-molecule data sets published in IUCrData.

All of the above-mentioned sources of systematic errors and

others may contribute. However, these discussed examples

also show that after correction of the respective systematic

errors the potential of the data as expressed by wRðF2Þpred
s:u: is,

in virtually all cases, still not realized and therefore there is

still room for progress.

A very simple and plausible interpretation of these findings

is that the s.u.(Iobs) are on average too small in most data sets

from the sample. This hypothesis would also explain why all

data sets but two employed a weighting scheme – because the

s.u.(Iobs) are underestimated as standard. Note that a

SHELXL-like weighting scheme is not well designed to

handle such an error, where the s.u.(Iobs) are on average too

small (Henn, 2025). It was emphasized and discussed earlier

that underestimation of the s.u.(Iobs), particularly of strong

reflections, leads to artificially reduced weighted agreement

factors [see, for example, Section 3.3 of Henn & Meindl

(2015a), Henn & Meindl (2015b), and Sections 5 and 6 of

Henn (2019)], which may unintentionally and even unknow-

ingly pose a subliminal incentive for crystallographic software

developers to rather underestimate than overestimate the

s.u.(Iobs) of the strong reflections. A specific systematic error in

the s.u.(Iobs) leading to a particular strong artificial reduction

in wR(F 2), namely underestimation of the s.u.(Iobs) of the

strong reflections accompanied by overestimation of the

s.u.(Iobs) of the weak reflections, leaves a specific trace in the

weighted residuals. This trace is derived from theoretical

considerations and has also been found in experimental data,

as described in Sections 6.4.1 and 6.4.2 of Henn (2019). This

whole discussion must be seen in the wider context of how to

find accurate standard deviations of the observed intensities in

diffraction experiments; this was addressed early on [see, for

example, Blessing (1987)] but still appears to be unsolved.

It is concluded that there is still a problem with s.u.(Iobs)

that needs attention as it poses a methodological problem. For

the future it is important to discriminate between those cases

where a weighting scheme is applied due to flawed s.u.(Iobs)
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Table 5
Effect of not-modelled low-energy contamination on wR(F 2).

wRðF2Þno filter=wRðF2Þcorrected

�max

(�)
Wavelength
(Å)

sin �=�
(Å� 1)

wRðF2Þpred
�

(%)
wRðF2Þpred

s:u:

(%) wRðF2Þcorrected=wRðF2Þpred
s:u:

XV C28H18N2 12.65/11.08 = 1.14 25.50 0.71073 0.61 11.34 1.32 8.39
XVI C12H4N4 10.74/9.67 = 1.11 30.68 0.71073 0.72 9.86 1.11 8.71
XVII C18H17CuO6 7.04/6.51 = 1.08 28.43 0.71073 0.67 6.59 1.68 3.88
XVIII C34H26MgN4O4 11.48/11.02 = 1.04 30.62 0.71073 0.72 11.16 2.73 4.04
XIX C11H10O2S 6.80/6.69 = 1.02 28.31 0.71073 0.67 6.25 1.33 5.03
XX C52H38P2S2 2.50/2.10 = 1.19 52.96 0.71073 1.12 1.49 1.49 1.41



and those cases where it is applied due to other model defi-

ciencies. This will help in leading the focus back to the elim-

ination of systematic errors and help in establishing more

accurate s.u.(Iobs). It will most likely also lead on average to

larger agreement factors. The agreement factor gap will most

likely be closed from below, by finding accurate s.u.(Iobs), and

from above, by eliminating or at least identifying and quan-

tifying other remaining systematic errors.

The agreement factor gap g and the fraction of systematic

errors in the variance of the observed intensities �2(Iobs) may

be used as metrics for an author-based assessment of

systematic errors. Providers of crystallographic data banks and

publishers of crystallographic journals may apply these

metrics as well and set their level of tolerance for the degree of

contamination by systematic errors in submitted data sets.

Quantification of the degree of contamination by systematic

errors is in itself helpful for paving the way to higher data

quality standards. It also shows the ‘costs’ of application of a

weighting scheme in terms of the increase in the weighted

agreement factor.

A threshold value may be established by using the

systematic error in the variance of the observed intensities.

Contamination with systematic errors less than, for example,

50% could be regarded as high quality. Implementation of

these processes would entail (i) the evaluation of the degree of

contamination with systematic errors and (ii) an author-based

assessment of likely causes for the need to apply a weighting

scheme, with the basic categories (a) underestimation of

s.u.(Iobs) and (b) other systematic errors with the important

distinction between (b1) the influence of a few strong outliers

on the model parameters needs to be reduced and (b2) a

substantial part of the data (such as the weakest 10% of the

intensities) show systematic differences Iobs < Icalc or Iobs >

Icalc with corresponding bin mean values. Guidance from

science organizing bodies such as the IUCr or from others with

intrinsic motivation and interest in reducing systematic errors

in deposited diffraction data like crystallographic data banks

may be needed to establish such threshold values and routines.

Less than 20% of the 314 data sets in the sample discussed in

this work conform to this criterion of having less than 50%

systematic error in the variance of the observed intensities.

This is an alarming signal and calls for immediate changes, in

particular since it is known that underestimation of the

s.u.(Iobs) of strong reflections leads to artificially lowered

agreement factors and underestimation of the s.u.(Iobs) of

weak data leads to model bias (Henn, 2025).
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