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We report a comparison of modulation of intensity with zero effort (MIEZE), a

neutron spin–echo technique, and neutron time-of-flight (ToF) spectroscopy, a

conventional neutron scattering method. The evaluation of the respective

recorded signals, which can be described by the intermediate scattering function

I(Q, �) (MIEZE) and the dynamic structure factor S(Q, E) (ToF), involves a

Fourier transformation that requires detailed knowledge of the detector effi-

ciency, instrumental resolution, signal background and range of validity of the

spin–echo approximation. It is demonstrated that data obtained from pure water

align well within the framework presented here, thereby extending the applic-

ability of the MIEZE technique beyond the spin–echo approximation and

emphasizing the complementarity of the two methods. Computational methods,

such as molecular dynamics simulations, are highlighted as essential for

enhancing the understanding of complex systems. Together, MIEZE and ToF

provide a powerful framework for investigating dynamic processes across

different time and energy domains, with particular attention required to ensure

identical sample geometries for meaningful comparisons.

1. Introduction

Quasielastic neutron scattering (QENS) describes a limit of

inelastic neutron scattering in which the energy transfers are

small with respect to the energy of the incident neutron. Three

spectroscopic techniques are well established for studies of

QENS: time-of-flight (ToF), backscattering (BS) and neutron

spin–echo (NSE) spectroscopy. While these methods provide

information on correlations in somewhat similar regimes in

energy and time as well as momentum and space, the infor-

mation obtained differs substantially. For instance, BS and

ToF spectroscopies determine the change in energy of the

neutron by means of a crystal analyser or the time of flight of

the neutron, respectively, whereas NSE exploits the precession

of the neutron spin in a suitable magnetic field. Further, BS

and ToF provide the dynamic structure factor S(Q, E), while

NSE provides the intermediate scattering function I(Q, �),

where Q, E and � are the momentum transfer, energy transfer

and spin–echo (SE) time, respectively. All methods have their

strengths and weaknesses, yet conceptual differences in the

data collected and the scientific insights gained have been

discussed controversially in the scientific community.
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The aim of this paper is to highlight the complementarity of

NSE and ToF and to illustrate key aspects when comparing

data. As our main message, we argue that an unambiguous

understanding of complex physical processes, which are

forcibly addressed in cutting-edge research, requires the

combination of both S(Q, E) and I(Q, �).

Neutron ToF spectroscopy infers the kinetic energy of a

neutron from the time of flight between two known points in

space. In indirect-geometry ToF instruments, the sample is

illuminated by a pulsed white beam and the energy of the

scattered beam is determined using a crystal analyser. In

contrast, in direct-geometry ToF instruments the incident

beam is monochromated either by a crystal monochromator or

by a set of at least two choppers. In both cases the final energy

is inferred from the time of flight in traversing the distance

between the sample and the detector.

ToF spectrometers have the advantage of large detector

coverage. However, at neutron sources such as reactors which

provide a continuous neutron flux, they suffer from a dramatic

reduction in flux due to the chopping of the beam. In contrast,

for pulsed beams provided by spallation sources, ToF instru-

ments appear to be a natural choice. ToF instruments are quite

versatile, with an energy resolution as high as a few micro-

electronvolts. Typical instruments cover a large range of

momentum transfers Q that encompass atomic and inter-

atomic distances below 10 Å but lack resolution on meso-

scopic length scales above 10 Å due to their relaxed beam

collimation.

Important examples include LET at ISIS (Didcot, UK)

(Bewley et al., 2011; Nilsen et al., 2017) or IN5 at the ILL

(Grenoble, France) (Ollivier et al., 2002; Ollivier & Mutka,

2011). As another advantage, ToF spectrometers may use

incident energies of up to 1000 meV, such as MARI

(Andersen, 1996; Le et al., 2023). In addition, the use of

polarized beams (Zaliznyak et al., 2005) and polarization

analysis are available (Winn et al., 2015; Bewley et al., 2011).

Neutron BS spectroscopy utilizes crystals in (nearly) perfect

backscattering geometry to analyse the energy of the scattered

neutrons. The energy of the incoming neutron beam is varied

using a Doppler monochromator. This configuration offers

high energy resolution with a limited dynamic range, and

instruments at reactor sources offer the highest energy reso-

lution, with a maximum of 0.3 eV on IN16B at the ILL

(Gardner et al., 2020; Frick et al., 2010). In comparison,

instruments at spallation sources offer a broader dynamic

range at a somewhat reduced resolution. The largest dynamic

range of �3.5 � 103 meV can be reached on the spectrometer

IRIS at ISIS (Demmel et al., 2018). Analogously to ToF, BS

spectrometers include a large detector bank, offering simul-

taneous information on a large range in Q space. Instruments

with an Si(111) analyser crystal typically reach up to Q =

1.8 Å� 1 at the highest energy resolutions, while higher Q of up

to 3.8 Å� 1 may be reached at a reduced energy resolution,

using a graphite or Si(311) analyser (Gardner et al., 2020).

Taken together, ToF and BS are widely used to study e.g.

molecular reorientation, hydrogen diffusion and liquid

dynamics. However, ToF and BS cannot resolve the dynamics

on mesoscopic length scales, such as domain motion in

macromolecules, polymer chain dynamics or emergent exci-

tations in quantum magnets. This shortcoming is due to the

combination of intermediate energy resolution and relatively

poor resolution of momentum transfer at small Q.

NSE techniques are well known for achieving very high

energy resolutions down to below 1 neV (Holderer &

Ivanova, 2015; Farago et al., 2015). By decoupling the energy

resolution from the wavelength spread, a very high neutron

intensity is reached (Mezei, 1972; Mezei, 1980). In NSE,

comparison of the total phase of the Larmor precession of the

neutron spin, acquired in a well defined magnetic field region

before and after the sample, serves to encode energy transfers

due to scattering. NSE is especially well established in the

investigation of slow relaxation processes of the order of�1 to

�100 ns. Typical scientific problems addressed with NSE are

thermal fluctuations of surfactant membranes in microemul-

sions (Mihailescu et al., 2001), the molecular rheology of

polymer melts (Schleger et al., 1998), dynamics in lipid phases

(Nylander et al., 2017), thermally activated domain motion in

proteins (Bu et al., 2005), relaxation phenomena in networks

and rubbers (Salatto et al., 2021), interface fluctuations in

complex fluids like emulsions (Kyrey et al., 2019) and poly-

electrolytes (Kanaya et al., 1989), transport processes in

polymeric electrolytes (Hopfenmüller et al., 2018), and

domain dynamics of proteins (Biehl & Richter, 2014) or

enzymes (Inoue et al., 2010). Typically, an NSE measurement

only covers a small part of momentum space compared with

ToF spectroscopy. However, wide-angle NSE variants have

been developed such as SPAN (Pappas et al., 2000) and WASP

(Fouquet et al., 2007).

To increase the resolution of NSE, the field integral seen by

the neutron has to be increased. The associated technical

challenges regarding the field homogeneity have been

addressed in different ways. Most importantly, highly sophis-

ticated correction coils have been developed (Monkenbusch,

1990). However, this approach is limited by the energy density

stored in these coils and the mechanical forces generated. To

overcome these limitations of classical NSE instruments,

superconducting coils have been developed (Pasini et al., 2019;

Walter et al., 2009), offering increased field homogeneity and

higher magnetic fields.

Pursuing a different approach to overcome the limitations

of classical NSE, Golub & Gähler (1987) proposed the reso-

nant neutron spin–echo technique (NRSE), where the sole-

noids are replaced by a pair of radio-frequency (RF) neutron

spin-flippers. In NRSE, different SE times are reached by

tuning the RF flippers to different frequencies.

While classical NSE and NRSE are well established in

studies of soft matter, several shortcomings are known in

studies of hard condensed matter. Perhaps most importantly, a

reduction or total loss of signal occurs in depolarizing samples

or when using depolarizing sample environments. Measure-

ments under such depolarizing conditions are cumbersome,

e.g. as witnessed for ferromagnetic NSE (Mezei et al., 2001;

Keller et al., 2022). Further, signal contributions due to in-

coherent scattering may reduce signal contrast substantially.
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In addition, studies in the limit of small momentum transfer Q

will suffer from substantial background scattering.

To overcome these limitations of NSE and NRSE, modu-

lation of intensity with zero effort (MIEZE) may be used,

representing a variant of NRSE. Analogously to NRSE

(Golub & Gähler, 1987; Gähler et al., 1992), MIEZE uses RF

spin-flippers, instead of large solenoids, to create a precession

zone for the neutron spin. However, in MIEZE the pair of RF

spin-flippers before the sample is operated at different

frequencies, leading to an intensity modulation of the signal

behind the analyser with a frequency fM = 2(fB � fA). If the

analyser is placed in front of the sample, depolarizing effects

by the sample or sample environment no longer affect the

measurements. Moreover, unlike the polarization in conven-

tional NSE, the MIEZE contrast is not reduced by incoherent

spin-flip scattering in the sample (Gähler et al., 1992).

Since the RF flippers are compact, they allow for the

insertion of a field-subtraction coil between them (Jochum et

al., 2019; Häussler & Schmidt, 2005). This permits extension of

the dynamic range of MIEZE and NRSE by several orders of

magnitude towards shorter echo times, deep into the nominal

range of energy transfers covered by ToF or BS. For instance,

on the RESEDA instrument SE times as short as �min = 0.1 fs

may be reached at a wavelength of 4.5 Å (Jochum et al., 2022).

However, this advancement towards shorter SE times, and

therefore putatively larger energy transfers, reaches well

beyond the SE approximation representing the standard

framework underlying NSE in the limit of small energy

transfers (Franz et al., 2019a; Franz et al., 2019c).

In this paper we consider the validity of NSE techniques in

parameter regimes at the border of and outside the SE

approximation. In principle, MIEZE investigations are limited

to dispersionless excitations, unless additional sample infor-

mation, such as molecular dynamics (MD) simulations or

input from other neutron spectroscopic methods, is available

(Keller et al., 2022). However, a significant advantage is that

MD simulations can generate intermediate scattering func-

tions using force field parameters – now increasingly refined

with machine learning (Unke et al., 2021) – which, when

processed with the transformation algorithm presented here,

can be accurately converted into MIEZE spectra, enabling the

optimization of these parameters. The algorithm presented

here essentially follows the van Hove formalism, with a focus

on instrument-specific resolution effects in both reciprocal and

real space, as well as in energy and frequency space.

2. Theoretical framework

In the following, we present the theoretical framework for

NSE and the MIEZE technique, as some of the concepts

discussed have a significant impact on the data presented

below. For a theoretical background on neutron ToF spec-

troscopy, we refer the reader to standard works such as Bee

(2025). NSE techniques are based on the precession of the

neutron spin in magnetic fields as a probe that allows the

inference of energy transfers during scattering events. For an

introduction we refer to the book by Mezei et al. (2003). In the

following we focus on the concepts needed to discuss the SE

approximation and its implications. We start by defining the

precession angle of a neutron travelling with a velocity v

perpendicular to a magnetic field of field strength B and

length L:

� ¼ �0 þ
�BL

v
; ð1Þ

where � is the neutron’s gyromagnetic ratio (� =

183.25 MHz T� 1 for angles in radians). Without loss of

generality, we assume �0 = 0 in the following. In an NSE setup,

a neutron travels across a well defined magnetic field region

(B1, L1) before reaching the sample, followed by a trajectory

across a second well defined field region after the sample

position (B2, L2). The phase �D of the neutron at the detector

position may be written as

�D ¼ �1 þ�2 ¼
�B1L1

v1

þ
�B2L2

v2

: ð2Þ

Choosing the lengths and field strengths such that L2 = L1 = L

and B2 = � B1 = B, equation (2) becomes

�D ¼ �BL
1

v1

�
1

v2

� �

: ð3Þ

Writing v2 = v1 + �v, where �v is the change in velocity the

neutron undergoes when interacting with a sample positioned

between the precession fields, one obtains

�D ¼ �BL
1

v1

�
1

v1 þ�v

� �

: ð4Þ

For a purely elastic scattering process, �v = 0 and therefore

�D = 0. If the neutron exchanges energy with the sample,

�v 6¼ 0, resulting in a phase shift �D. The change in neutron

energy during such an interaction may be written as

E ¼
m

2
v2

2 � v2
1

� �

¼
m

2
v1 þ�vð Þ

2
� v2

1

� �

¼
m

2
2v1�vþ�v2
� �

: ð5Þ

The SE approximation assumes E� 1
2

mv2, i.e. the energy

transfer E is much smaller than the kinetic energy Ei ¼
1
2

mv2

of the incoming neutrons. Thus �v� v1, from which it follows

that

E ’ mv1�v: ð6Þ

In turn, �v can be written as

�v ’
E

mv1

: ð7Þ

Within the SE approximation �v + v1 ’ v1 and therefore

�D ’ �BL
�v

v2
1

’ �BL
E

mv3
1

¼
!
�

E

h-
: ð8Þ
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Assuming the SE approximation, equation (8) hence defines

the SE time � as a proportionality factor between the neutron

phase �D at the detector and the energy transfer E.

Using a neutron polarization analyser and a neutron

detector at a certain scattering angle 2#, the number of

polarized neutrons is recorded. This corresponds to the

expectation value of cosð�DÞ over the scattered neutrons

(hcos �Di) in 2#. Within the SE approximation,

�f ’ �i / 1=
ffiffiffiffiffi
Ei

p
, the momentum transfer Q is well defined

via 2# and the probability of a scattering event with energy

transfer E is given by S(Q, E). This assumption leads to

Px ¼ hcos �DiE ’

R1
� 1

SðQ;EÞ cos �D dE
R1
� 1

SðQ;EÞ dE

’

R1
� 1

SðQ;EÞ cos½ðE=h- Þ �� dE
R1
� 1

SðQ;EÞ dE
: ð9Þ

The numerator of equation (9) is the cosine Fourier transform

of S(Q, E), which represents the real part of the time-

dependent correlation function, also known as the inter-

mediate scattering function I(Q, �). The denominator is the

static structure factor S(Q). Therefore,

Px ¼
RefF ½SðQ;EÞ�g

SðQÞ
¼

IðQ; �Þ

IðQ; 0Þ
: ð10Þ

Within the SE approximation, this leads to the interpretation

that the measured polarization Px is essentially the energy

cosine transform of S(Q, E) normalized by the static structure

factor. Alternatively, expressed in the time domain this

represents the intermediate scattering function normalized to

its value at zero Fourier time.

2.1. NSE beyond the SE approximation

Assuming a typical wavelength of � = 6 Å for the incoming

neutrons, corresponding to a kinetic energy of Ei = 2.27 meV,

the SE approximation holds true for quasielastic scattering

processes with energies in the microelectronvolt range (Fig. 1).

Accordingly, NSE as it was originally conceived is not suited to

investigating processes with energy transfers in the milli-

electronvolt range. However, as we will show below, using for

example shorter wavelengths or state-of-the-art numerical

methods, SE techniques can be pushed beyond their original

parameter space.

The first subtle yet important difference that arises when

considering larger energy transfers is the necessity of

accounting for the wavevector transfer. In its general form it

reads

Q ¼ kf � ki; ð11Þ

with its magnitude given by the law of cosine,

jQj2 ¼ jkij
2 þ jkfj

2 � 2jkfjjkij cos 2#: ð12Þ

Within the SE approximation, the energy transfer remains

small (less than 10% of the incoming neutron energy),

ensuring that |kf| ’ |ki| and correspondingly �f ’ �i. This

significantly simplifies the expression for the momentum

transfer Q, relating it directly to the neutron wavelength and

scattering angle through the well known equation

Q ¼
4�

�
sin

2#

2

� �

: ð13Þ

Strictly speaking, the measured quantity given in equation

(10) now explicitly depends on the scattering angle rather than

the wavevector transfer, which remains undefined, as all

energy transfers are inherently permitted.

The second important difference is the probability of a

scattering event which, in the more general case, is described

by the double differential cross section and is related to the

dynamic structure factor by

d2�

d� dE
/

kf

ki

Sð2#;EÞ: ð14Þ

Note that the structure factor is defined here as a function of

the scattering angle, which is necessary for comparing SE and

ToF spectroscopy techniques. If kf /ki ’ 1, as assumed in the

SE approximation, it is sufficient to consider only the dynamic

structure factor S(Q, E) instead of the double differential

cross section (Zolnierczuk et al., 2019).

The third important factor to consider is the wavelength-

dependent resolution function of an NSE instrument.

Typically, I(Q, �) is normalized not to the full integralR1
� 1

SðQ;EÞ dE but to a structure factor where the integral is

taken only over the band pass of the spectrometer (Richter et

al., 1998). The lower boundary of this integral is given by � Ei,

the energy of the incoming neutron, and the upper boundary is

given by the maximum wavelength accepted by the neutron

polarization analyser. The integral is further weighted by the

transmission functions of the materials in the beam path and

the detector efficiency.

Finally, the explicit expression for the phase at the detector

�D must be taken into account [see equation (4)].

Taken together, equation (9) then becomes

Px ¼hcos �DiE ¼

Z 1

� 1

d2�

d� dE
cos �D dE

Z 1

� 1

d2�

d� dE
dE

ð15Þ

¼

Z 1

� 1

kf

ki

Sð2#;EÞ cos �BL
1

v1 þ�v
�

1

v1

� �� �

dE

Z 1

� 1

kf

ki

Sð2#;EÞ dE

:

ð16Þ

Here, v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei=2m
p

, with the incoming neutron energy Ei, and

�v is as defined above.

2.2. The MIEZE method

The energy-dependent transmission function of an SE

instrument is non-trivial to describe as it involves a variety of

elements, including wavelength-dependent spin flip, spin

analysis, magnetic guide fields, adiabatic transition fields and

absorption. In contrast, this is not the case for MIEZE, as all
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spin manipulation is performed on the unperturbed beam

prior to the sample.

The data presented below were recorded using the MIEZE

technique (Gähler et al., 1992). In a MIEZE setup a pair of

resonant spin flippers before the sample are operated at

different frequencies, fA and fB, and separated by a distance

LAB (Golub & Gähler, 1987). Similarly to classical NSE, the

spin phase at the detector may be defined as (Golub et al.,

1994; Keller et al., 2002)

�D ¼ 2�fMtD � 2�fM

LBD

v
þ 2�fA

LAB

v
; ð17Þ

where tD represents the time of flight of the neutron from the

first spin flipper to the detector, v is the initial neutron velocity

before the sample, fM = 2(fB � fA) is the MIEZE frequency

and LBD is the distance between the second spin flipper and

the detector. The MIEZE detector is placed such that the

velocity-dependent terms cancel out, referred to as the

MIEZE condition, simplifying the equation (Gähler et al.,

1992; Jochum et al., 2019).

Energy transfers E during the scattering event will induce a

delay �tD in the neutron flight time over the distance between

the sample and the detector LSD:

�tD ¼ LSD

1

v1

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ 2E=m
p

 !

: ð18Þ

This leads to a change in the spin phase at the detector by

��D ¼ 2�fM�tD; ð19Þ

which reduces the contrast of the time-dependent intensity

variation.

Within the SE approximation, this equation may be written

by exact analogy to classical NSE spectroscopy as

�D ’
2�fMLSDh-

mv3
1

E

h-
¼
!
�M

E

h-
; ð20Þ

where the Fourier time �M, also known as the MIEZE time,

represents a proportionality factor between the phase at the

detector and the energy transfer.

Averaging this effect over all possible energy transfers, by

analogy to the polarization Px for classical NSE [see equation

(15)], results in the following general expression for the

contrast:
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Figure 1
Illustration of typical signals observed in MIEZE spectroscopy. The wavelength of the incoming neutron beam was assumed to be monochromatic and
� = 6.0 Å, which corresponds to Ei = 2.27 meV. (a) The dynamic structure factor described by a Lorentzian with a narrow linewidth � 0 = 0.01Ei,
corresponding to quasielastic scattering. (b) The curve shown in panel (a) after the application of equation (9) (SE approximation, blue circles) and
equation (21) (explicit calculation, solid orange line). (c) The dynamic structure factor described by a Lorentzian with a narrow linewidth � 0 = 0.01Ei and
a small energy transfer E0 = 0.01Ei, corresponding to low-energy inelastic scattering. (d) The curve shown in panel (c) after the application of equation
(9) (SE approximation, blue circles) and equation (21) (explicit calculation, solid orange line).



C ¼ hcos �DiE ¼ hcosð2�fM�tDÞiE ð21Þ

¼

Z 1

� 1

d2�

d� dE
cosð2�fM�tDÞ dE

Z 1

� 1

d2�

d� dE
dE

ð22Þ

¼

Z 1

� 1

kf

ki

Sð2#;EÞ cos 2�fMLSD

1

v1

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ 2E=m
p

 !" #

dE

Z 1

� 1

kf

ki

Sð2#;EÞ dE

:

ð23Þ

2.3. Computation of the MIEZE contrast

To elucidate the physical meaning of the MIEZE contrast

C, it is instructive to discuss a few illustrative examples. To

evaluate the importance of the SE approximation, the

expected MIEZE contrast was computed for different

dynamic structure factors S(Q, E), assuming a monochromatic

neutron beam with a wavelength � = 6 Å, corresponding to a

kinetic energy of Ei = 2.27 meV.

Two simple examples for quasi- and inelastic scattering are

first considered, as shown in Fig. 1. For the purposes of these

simple examples, the following definitions of quasi- and

inelastic scattering are adopted. Quasielastic scattering is

considered as the limiting case of inelastic scattering, where

the spectrum is defined by a central peak at E = 0, corre-

sponding to a broadening of the elastic line. In the cases

presented here, the energy transfers are only 1% of the

incoming neutron energy Ei, indicating a dynamic structure

factor for which the SE approximation remains valid. As a

result, applying equations (9) and (21) to S(Q, E) produces the

same curve. A simple quasielastic signal is represented in

S(Q, E) as S(E) / � 0=ð�
2
0 þ E2Þ þOffset, where � 0 is the

linewidth and Offset denotes a time-independent background

[Fig. 1(a)]. This results in an exponentially decaying signal

C / expð� � 0�M=h- Þ in the time domain, from which a char-

acteristic timescale �R can be extracted [Fig. 1(b)]. This

characteristic timescale is connected to the linewidth

(HWHM) of the Lorentzian in S(Q, E) via �R = h- /� 0.

A corresponding inelastic signal, described as S(E) /

� 0=½�
2
0 þ ðEþ E0Þ

2� + � 0=½�
2
0 þ ðE � E0Þ

2� + Offset, where � 0

and Offset are defined as above and E0 denotes the finite

energy transfer, is shown in Fig. 1(c). For ease of comparison
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Figure 2
Illustration of the difference between the SE approximation and the explicit phase calculation for quasielastic scattering. Panels (a) and (d) show two
dynamic structure factors whose transformation into the time domain is shown in graphs (b) and (c), and (e) and ( f ), respectively, as indicated by their
colour. The transformation calculated by the SE approximation is shown as circles, while the solid lines depict the result of equation (21). The wavelength
of the incoming neutron beam was assumed to be monochromatic and � = 6.0 Å, which corresponds to Ei = 2.27 meV.



with the quasielastic case, Lorentzians are also used to

describe the inelastic case. Applying equations (9) and (21) to

this Lorentzian leads to curves that comprise an exponential

decay with C / expð� � 0�M=h- Þ modulated by a cosðE0�M=h- Þ

term, as shown in Fig. 1(d). Next, these simple examples are

modified to emphasize the influence of larger energy transfers

and a time-independent background.

Four Lorentzian distributions describing the quasielastic

case are shown in Fig. 2. Application of equation (9) to the

Lorentzians in Fig. 2(a) produces the curves shown by circles

in corresponding colours in Figs. 2(b) and 2(c). Using equation

(21) – applicable independently of the measured excitation

energy – to calculate the contrast of the curves in Fig. 2(a)

yields the continuous lines, also colour-matched. For a line-

width � 0 = 0.1Ei, small deviations between the two curves

occur [Fig. 2(b)]. Adding a constant background to the

Lorentzian with � 0 = 0.1Ei results in the green curve in

Fig. 2(a) and leads to an oscillatory modulation on top of the

exponential decay, as shown in Fig. 2(c). When increasing the

linewidth further to � 0 = Ei, significant discrepancies are

observed between the SE approximation and the explicit

calculation [Fig. 2(e)]. Analogously to the case of � 0 = 0.1Ei,

the addition of a constant background leads to an oscillatory

modulation atop the exponential decay [Fig. 2( f)]. These

oscillations, which arise for large � 0 or increased background,

are due to the nature of the finite integration window of the

Fourier transform (Wuttke et al., 1995). In the first approx-

imation the finite energy window, bounded below and above

by the maximum neutron energy loss and the highest detect-

able neutron energy, respectively, may be approximated by a

top-hat function. Therefore, effectively a Fourier transform of

S(2#, E) convoluted with a top-hat function is performed. As

the Fourier transform of a top-hat function is a sinc function,

this results in a contrast C modulated with a sinc function, i.e. a

damped oscillation along the positive x axis, with an amplitude

that decreases as 1/n. Here, n is defined via the Taylor series

sinc(x) = sinðxÞ=x =
P1

n¼0 ð� 1Þnx2n=ð2n þ 1Þ!. These oscilla-

tions are absent from the SE approximation [Figs. 2(c) and

2( f)]. Consequently, oscillations indicative of purely inelastic

scattering in the SE approximation may also be present when

measuring a quasielastic scatterer. These two contributions

cannot easily be disentangled, noting that the parameters used

for this illustration in Figs. 2(e) and 2( f) are somewhat

unrealistic and chosen to highlight the basic mechanism.

Fig. 3 visualizes, in the same layout as Fig. 2, true inelastic

scattering. Fig. 3(a) shows two Lorentzians for finite excitation
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Figure 3
Illustration of the difference between the SE approximation and the explicit phase calculation for inelastic scattering. Panels (a) and (d) show two
dynamic structure factors whose transformation into the time domain is shown in graphs (b) and (c), and (e) and ( f ), respectively, as indicated by their
colour. The transformation calculated by the SE approximation is shown as circles, while the solid lines depict the result of equation (21). The wavelength
of the incoming neutron beam was assumed to be monochromatic and � = 6.0 Å, which corresponds to Ei = 2.27 meV.



energies E0. Similarly to the quasielastic case, the SE

approximation and the explicit calculation [equation (21)]

agree well if E0 and � 0 are smaller than 10% of Ei. For

increasing � 0 and E0 the deviations increase as well, leading

first to a mismatch in the curvature of the decay and then to

additional oscillations for equation (21). Analogously to the

quasielastic case, we can see that an increased background

leads to additional oscillations.

The features discussed here, though presented as examples,

are observed in real data. They must be taken into account

when analysing MIEZE and classical NSE data, as well as

when applying a Fourier transform to ToF data to separate

contributions to the resolution function (Zorn, 2012).

3. Experimental methods and data reduction

Three neutron scattering measurements on liquid Milli-Q

ultrapure water were performed. Firstly, MIEZE measure-

ments were conducted on the resonant SE spectrometer

RESEDA (Franz & Schröder, 2015; Franz et al., 2019b; Franz

et al., 2019a) at the MLZ. The measurements were performed

under a scattering angle 2# = 22� using a wavelength � = 6 Å.

For the measurements, the water was kept in a Hellma macro-

cell with an optical path length of 1 mm. The cell thickness was

chosen to optimize the scattering signal. Previous measure-

ments using a Hellma macro-cell with an optical path length of

0.2 mm suffered from low statistics. However, in terms of

evaluated translational diffusion coefficients, the data

extracted from the measurements using the different cells

agreed well with each other and with literature values. The cell

was kept at a temperature of 300 K using a closed-cycle

cryostat in closed-loop temperature control. The resolution

curve was recorded using carbon powder, representing a

purely elastic scatterer, inside an identical Hellma macro-cell.

The data were reduced using the software package MIEZEPY

(Schober et al., 2019). This procedure includes the normal-

ization of the sample contrast to the contrast of a purely elastic

scatterer to take into account all instrument-specific resolution

effects, such as the different wavelengths and wavelength

bands used, potential polarization losses in the primary

spectrometer, scattering off the sample environment, and

intrinsic background scattering off instrument components.

The process yields the contrast C(2#, fM) at a fixed scattering

angle 2#.

ToF measurements were performed on the spectrometers

FOCUS at SINQ (Janßen et al., 1997; Mesot et al., 1996) and

TOFTOF at the MLZ (Unruh et al., 2007) using a wavelength

� = 6 Å. For both measurements the sample cell was kept at a

temperature of 300 K using a closed-cycle cryostat in closed-

loop temperature control. For the measurements performed

on FOCUS the water was kept in an identical sample cell to

that used for the RESEDA measurements, while for the

measurements performed on TOFTOF a hollow cylindrical

aluminium container with outer diameter d1 = 22.5 mm and

inner diameter d2 = 22.2 mm, and therefore a path length of

0.15 mm, was used. The influence of the difference in sample

thickness on the comparability of MIEZE and ToF data is

discussed below. For the data acquired on FOCUS, the

reduction was performed using the Data Analysis and

Visualization Environment (DAVE) (Azuah et al., 2009), while

TOFTOF data were treated with Mantid (Arnold et al., 2014).

For both data sets the same procedure was applied. The data

were first normalized to the incoming flux to account for small

fluctuations. To account for scattering off the cuvette, an

empty cell was measured and the data subsequently

subtracted. The detector was calibrated using a vanadium

standard, taking into account a correction for the anisotropy

of the Debye–Waller factor of vanadium. The vanadium

measurement was also used to determine the resolution of the

elastic line. Subsequent to these corrections, the energy

transfer was calculated from the measured neutron time of

flight.

Knowing the energy transfer and the scattering angle 2#,

the momentum transfer Q may be calculated. However, this
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Figure 4
Vanadium data recorded on TOFTOF. (a) Vanadium data in energy space, shown together with a Gaussian fit to the data. (b) The data set and fit shown
in panel (a) after the MIEZE transform [equation (21)] is applied.



step was omitted since a comparison with the data recorded on

RESEDA was only possible for constant scattering angle 2#.

As a final step, the measured neutron intensity was corrected

for the energy-dependent detector efficiency (Unruh et al.,

2007) and for the kf /ki factor in the double differential cross

section.

Before discussing the neutron scattering data recorded on

ultra-pure water, it is helpful first to examine the vanadium

resolution data measured on TOFTOF in the light of the

observations presented in Section 2.3.

As can be observed in Fig. 4, application of equation (21) to

the vanadium data and to a Gaussian fit to these data yields

differing results. The vanadium sample was measured as a

powder in the same sample container as the water sample,

with the primary difference being a path length of 2 mm for

the vanadium to increase scattering. The MIEZE transform

applied to the Gaussian leads to a smoothly decaying curve,

while the MIEZE transform of the data themselves exhibits

oscillations. These oscillations originate from the time-

independent instrumental background, which stretches over a

wide range in energy up to the cutoff for the integration

window used during the transform.

4. Data analysis

Two separate approaches were taken to compare the data

measured at the three different spectrometers: (i) a direct

approach, namely a transformation between time and energy

domains, and (ii) an indirect approach, namely a parallel fit of

model functions. Both data evaluation pathways are described

in the following.

4.1. Direct approach: transformation between time and

energy domains

As outlined in Sections 2.2 and 2.3, it proves to be essential

to go beyond the SE approximation to transform the ToF

energy spectrum. The results of applying equations (9) and

(21) to the data measured on the flat Hellma cuvette

(FOCUS) and the hollow cylinder (TOFTOF) compared with

the data measured on RESEDA (circles) are depicted in

Fig. 5. The error bars representing the statistical uncertainties

in the contrast are smaller than the markers themselves. In

Fig. 5(a) an increasing number of corrections to the simple SE

approximation were taken into account in the transformation

of the FOCUS data. Emphasizing the inadequacy of the SE

approximation, the blue line was calculated using the standard

framework expressed by equation (9), which is unable to

describe the MIEZE data. Adding the full expression of the

MIEZE phase change ��D and the correction factor kf /ki,

introducing a natural cutoff at kf = 0, yields the orange curve,

which reproduces the characteristic oscillations in terms of

their frequency but not with the correct amplitude. Factoring

in the energy-dependent detection efficiency of the

CASCADE detector on RESEDA (Köhli et al., 2016), desig-

nated as "(E), achieves a reduction in the amplitude of the

oscillations around 100 to 1000 Hz to the exact level seen in

the MIEZE data (green curve). This transformation, including

the full expression of the MIEZE phase, the factor kf /ki and
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Figure 5
Direct transformation of the recorded ToF spectra S(2# = 22�, E) into the
time domain. (a) The transformed ToF spectrum of FOCUS with
increasing number of corrections for direct comparison with the
RESEDA data (circles). The simplest case uses the SE approximation
[equation (9)] and results in the blue curve. The orange curve is obtained
by transforming the energy spectrum with equation (21), which repro-
duces quite accurately the frequency of the oscillations visible in the
RESEDA data. The green line includes the energy-dependent detection
efficiency of the CASCADE detector, which now gives the correct
amplitude of the oscillations. Comparing this last with the MIEZE data,
at high frequencies the transformed ToF data decay faster and at medium
frequencies the contrast is about 0.05 lower than expected. (b) A
visualization of the effect of adding (red line) or subtracting (purple line)
a constant background to the FOCUS data before applying the trans-
formation, leading to a downward or upward shift compared with the
original curve, respectively. (c) A comparison of the RESEDA data
(circles) with the Fourier transforms of the different ToF data sets. The
data measured with the same sample cell as RESEDA (green line,
measured on FOCUS) match the RESEDA data much better than the
data recorded in a much thinner hollow cylinder (brown line, measured
on TOFTOF), emphasizing the impact of sample thickness and multiple
scattering.



the CASCADE detector efficiency, is referred to as ‘MIEZE

transformation’ in the following.

Despite these refinements, it remains impossible to repro-

duce the exact numerical values of the MIEZE data, in either

the mid-frequency or high-frequency ranges. These discre-

pancies have distinct origins, which we now describe.

For the mid-frequency range, the main contribution to the

difference between the RESEDA data and the transformed

ToF data appears to be due to the background of the energy

spectrum and its treatment. This can be seen in Fig. 5(b),

where the MIEZE transformation of the FOCUS data (green

line) is compared with the same data set modified by adding a

constant background c1 = 0.058 or by subtracting c2 = 0.035.

This seems minuscule compared with the peak value of the

measured intensity on FOCUS, S(2#, E)max = 1593 (arbitrary

units). However, the resulting contrast curve has been

noticeably shifted upwards (purple line) and downwards (red

line) in the mid- to low-frequency ranges, respectively, while

the general structure of the oscillations has been preserved.

When adding a constant background, the contrast shifts down,

because in relative terms more integrated intensity is added to

the high-energy part of the spectrum. Integrated over the

entire energy range of S(2#, E), the contributions of the

constants c1 and c2 account for about 2.2% and 1.3% of the

spectrum, respectively. This shows that, for a successful and

quantitative comparison with MIEZE data, a detailed

knowledge of the instrument background, especially at high

energies, is essential. Spurious inelastic scattering at such high

energy transfers cannot be entirely ruled out, but it appears

unlikely to be the cause of the additional background. The

dark count rate of the ToF detectors on the other hand could

prove to be crucial. Dark counts are evenly distributed across

the time bins and manifest as a constant background along the

resolved energy band. These finite values at the edges of the

Fourier transform window drastically alter the amplitude of

the oscillations in the time domain, as shown in Fig. 5(b) and

Figs. 2 and 3. In this context, it is suspected that incomplete

knowledge of the detector efficiency, e.g. ageing detectors at

high neutron energies, may be complicating the comparison.

The remaining mismatch in the high frequency range, fM >

1000 Hz, is mainly attributed to the ToF data, which are

basically a convolution of the broadening stemming from the

sample and the instrument’s resolution function (elastic and

inelastic). In ToF measurements, the resolution function

R(2#, E), which comprises contributions from the incident

energy spread, initial pulse width, flight path length uncer-

tainties, sample geometry, detector depth etc., enters the

experimentally measured S(2#, E)exp as a convolution:

S(2#, E)exp = R(2#, E) � S(2#, E) (Zorn, 2012). Using the

convolution theorem, the Fourier transform of this expression

simplifies to S(2#, t)exp = R(2#, t) S(2#, t), making it in prin-

ciple possible to deconvolute the measured data from reso-

lution effects. However, to obtain a unique solution, all

contributions to the instrumental resolution function – such as

energy-dependent quantities like detector efficiency, polar-

ization analysis and transmission coefficients – must be

considered, which, unfortunately, is not feasible.

Fig. 5(c) compares the MIEZE transformation of the

FOCUS and TOFTOF data, which were acquired utilizing two

different sample containers: a flat Hellma macro-cell with an

optical path length of 1 mm was used on FOCUS (and

RESEDA), whereas a hollow cylinder with an optical path

length of 0.15 mm was used on TOFTOF. The difference

between the two data sets is significant. The solid brown line,

showing the MIEZE transform of the data measured on

TOFTOF, shows a plateau at much higher contrast values than

the green curve showing the MIEZE transform of the data

measured on FOCUS. A likely explanation is the difference in

path length between the two samples, which leads to varying

contributions from multiple scattering.

To circumvent the challenges of transforming ToF data into

time/frequency space, an inverse Fourier transformation of the

RESEDA data based on Bayesian analysis was attempted.

This approach employed various regularization techniques

that have been successfully used in the analysis of small-angle

neutron scattering data (Bender et al., 2017). This method

profits from the fact that, for the MIEZE technique, the

instrumental resolution can easily be disentangled from the

signal contributions of the sample by normalizing it to the data

of a purely elastic scatterer. However, this approach failed for

energies beyond the SE approximation for several reasons.

Firstly, for an accurate comparison, the transformed MIEZE

data would need to be convoluted with the ToF resolution

function. While a numerical approximation exists for large

energies, the experimentally determined resolution function is

mainly defined for small E. Secondly, the low data point

density of the MIEZE measurement results in numerical

artefacts that can only be addressed through strict regular-

ization [see e.g. Bender et al. (2017)]. Thirdly, the reduced

sensitivity of MIEZE at high energies makes the determina-

tion of a meaningful solution at high energies very challenging.

Nevertheless, we acknowledge the capabilities of the analysis

using an inverse Fourier transform and aim to apply it to an

appropriately designed experiment in the future.

4.2. Indirect approach: parallel fit of model functions

A common approach to assess neutron scattering data is a

standard forward analysis, meaning that an idealized model

function is assumed and compared with the experimental data.

This approach allows the simultaneous refinement of multiple

data sets, such as those from different X-ray and neutron

scattering techniques. In particular, it allows the fitting of data

obtained from both MIEZE and ToF spectroscopy using a

single model function. As a prerequisite, the resolution func-

tions of each scattering technique must be properly incorpo-

rated. For ToF measurements, the elastic linewidth can be

determined using a vanadium reference sample, while the

resolution at finite energy transfers can only be estimated by

means of analytical models or simulation. For TOFTOF this

has been explicitly studied by Unruh et al. (2007) and Gaspar

(2007). We will therefore follow this approach to compare the

RESEDA data with the TOFTOF data. The main contribu-

tions to the uncertainty in the energy transfer were found to
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be the opening angles of the pulsing and monochromating

choppers, the chopper rotation speeds, and the detector tubes.

These last introduced uncertainties in terms of the detector’s

dead time, differences in flight time due to the geometry and

the wavelength-dependent detection efficiency of the tubes.

The dependence on scattering angle was not included in the

resolution function and was neglected in this treatment.

For MIEZE the situation is reversed: as mentioned in

Section 3, the instrumental resolution is inherently included in

the data reduction. Therefore, before transforming into the

time/frequency domain, the model function only needs to be

corrected for detector efficiency and detailed balance in the

energy domain. The starting point for the parallel fit is a model

consisting of analytical functions describing S(2#, E), since Q

cannot be clearly defined for large energy transfers in MIEZE.

As the heuristic model a sum of Lorentzian distributions,

Sð2#;EÞ ¼
X

i

Ai

�

� i

ðE � EiÞ
2
þ � 2

i

; ð24Þ

is employed. Here 2� i is the linewidth (FWHM), Ei is either 0

(quasielastic contribution) or a finite energy transfer (inelastic

contribution), and Ai is the contribution of the excitation to

the total dynamic structure factor, normalized to unity

(
P

i Ai ¼ 1).

The treatment follows two pathways, one for each scattering

technique, as depicted in Fig. 6. The blue and orange boxes

represent the respective approaches, both originating from the

heuristic model shown in the black box.

Starting with the blue path, the convolution of the heuristic

model with the TOFTOF resolution function, Sð2#;EjÞ, is

given by

Sð2#;EjÞ ¼

Z
1
ffiffiffiffiffiffiffiffiffiffiffi
2��Ej

q exp �
E � Ej
ffiffiffi
2
p
�Ej

 !2" #

Sð2#;EÞ dE;

ð25Þ

where �Ej
is the standard deviation expressing the instru-

mental uncertainty evaluated at the energy transfer Ej. �Ej
was

calculated using the framework described by Gaspar (2007).

Using this expression, the least-squares function for the

TOFTOF data �2
ToF was computed (Fig. 6). For the sake of

comparison, both the data set and the convolution models

were normalized to unit area such that
R
Sð2#;EÞ dE ¼ 1.

Now following the orange path, the analysis of the MIEZE

data required the transformation of the baseline model from

the energy domain into the time domain. Especially in the case

of large energy transfers, this required the computation of the

contrast using equation (21). To comply with the theoretical

framework laid out above for the baseline model, the detailed

balance factor nBðE;TÞ ¼ exp � E=kBTð Þ (where kB is the

Bolztmann constant), the detector efficiency "(E) and the

correction factor kf(E)/ki were taken into account in the

dynamic structure factor. This is marked in the upper orange

box on the right-hand side of Fig. 6. Subsequently, the MIEZE

transformation, denoted M½� � ��, was calculated using the

effective structure factor Seff(2#, E) in equation (21). Then the

least-squares value of the MIEZE data, �2
M, is computed.

Three variations of the heuristic Lorentzian model,

consisting of two quasielastic + one inelastic peak (2Q1I),

three quasielastic peaks (3Q) and three quasielastic + one

inelastic peaks (3Q1I), have been fitted to the combined data

set. As this last has shown the best agreement with the data,

we will limit our discussions to model 3Q1I. The result of this

procedure is presented in Fig. 7. While the combined fit

captures the main features of both data sets, the agreement

between the data and the fit could be improved. The discre-

pancy most likely arises from the different sample thicknesses

used at TOFTOF and RESEDA, leading to varying contri-

butions from multiple scattering. When comparing the inde-

pendent fits of MIEZE and ToF data in the energy domain,

reasonably good agreement between the two fits is achieved,

with the exception of the sharp peak at E ’ 50 meV. Unfor-

tunately, the MIEZE data are not very sensitive to the large

energy transfer of the inelastic contribution observed in the

contrast. The inelastic contribution ought to appear in the

three or four MIEZE data points around the contrast drop at

10� 4 ns. However, since its relative contribution to the total

dynamic structure factor is �2%, the corresponding variation

in the contrast is of the order of the statistical uncertainty of

the experiment. As a result, an unconstrained fit of the 3Q1I

model to the RESEDA data converges to a model comprising

four superimposed quasielastic distributions. For this reason,

we analysed the RESEDA data with a model where E ’

50.1 meV was fixed for the inelastic contribution. This value

corresponds to the result of the ToF fit. A higher data point

density around the drop in contrast could improve the MIEZE

fit.

Summing �2
ToF and �2

M yields the total least-squares value

�2
tot, which should be minimized by the optimal model through

variation of the free parameters Ai, Ei and � i of each

Lorentzian peak. However, adding up �2
ToF and �2

M is not

straightforward. Due to the comparatively large number of

data points and the smaller relative uncertainty, �2
ToF domi-
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Figure 6
Flow chart of fitting combined data sets. The ToF procedure is depicted
using blue boxes and the MIEZE procedure is highlighted using orange
ones.



nates the combined least-squares function. While this has far

reaching consequences, especially in the context of the esti-

mated uncertainties, we opted to weight �2 by 1/N, with N

being the number of data points.

The model parameters were optimized numerically using

the differential evolution algorithm (Storn & Price, 1997)

implemented in the SciPy (Virtanen et al., 2020) library and

the Python wrapper package iminuit, which makes the

MIGRAD algorithm of CERN’s ROOT data analysis frame-

work available (Dembinski et al., 2020; Antcheva et al., 2011).

The uncertainties in the fitting parameters obtained were

evaluated using an inverse Hessian matrix and population

statistics acquired by differential evolution fitting, as described

in Appendix A.

5. Further discussion

Several pitfalls that significantly affect the transformation and

thus complicate direct comparisons between the methods have

been identified and need careful consideration. These aspects

have been demonstrated using the extreme examples in

Section 2.3 and will be discussed in more detail here.

5.1. Sample geometry

The sample geometry (Zorn, 2012) – or more specifically,

the sample thickness in the context of this study – has been

identified as a significant challenge when directly comparing

ToF and MIEZE data. This is shown in Fig. 5(c), where the

MIEZE transformations of the FOCUS and TOFTOF data,

which were acquired utilizing two different sample containers,

are compared with the RESEDA data. A likely explanation is

the difference in path length between the two samples, which

leads to varying contributions from multiple scattering. This

was shown for example by Busch & Unruh (2011), who

investigated the effects of sample thickness on the (inter-

mediate) scattering function of H2O. The authors found that,

in thicker layers, the increased contribution to multiple scat-

tering broadens the experimentally determined linewidth in

S(Q, E), corresponding to a shorter relaxation time in I(Q, �).

A detailed analysis of the influence of different sample shapes

on ToF data has been performed by Zorn et al. (2012) but is

beyond the scope of this article.

5.2. Background signal

In addition to the geometry of the sample, effects such as

the energy resolution of the ToF spectrometer, the character
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Figure 7
Results of fitting the 3Q1I model. The points in blue and orange visualize measurements on the TOFTOF and RESEDA spectrometers, respectively.
Where error bars are not shown, they are significantly smaller than the size of the markers. The solid lines represent the results of the fit analyses. The
orange line represents the fit of the RESEDA data, convoluted with the instrument resolution for comparison with the TOFTOF data. Similarly, the blue
line represents the fit of the TOFTOF data, transformed for comparison with the RESEDA data. The fit of the MIEZE data is insensitive to the inelastic
scattering contribution, which is why the amplitude is overestimated to improve the fit at low energy transfers. The black line shows the result of the
combined fitting. Panels (a) and (b) show the entire dynamic range of both measurements, whereas panels (c) and (d) give more detailed views of the
parameter space where the SE approximation is valid.



of the background and control over the latter during the data

reduction process influence the transformation. Dark counts

in the detector electronics, spurious scattering from e.g.

sample environment components or air, and cross talk due to

coarse collimation are certainly difficult to characterize, often

leaving a background that cannot be neglected. As a final

significant influence, accurate knowledge of the neutron

detection efficiency, and of the spin-flip ratio of the analyser

and its dependence on the neutron energy, is required when

analysing data beyond the SE approximation.

5.3. Outlook

The transformation presented here can be readily applied

to various approaches for analysing and designing experi-

ments. It allows e.g. MD simulation outputs to be converted

into expected MIEZE spectra, facilitating direct comparison

with experimental data and allowing one to distinguish

between competing models. Using model 3Q1I (Section 4.2) as

an example, this approach is demonstrated as a means of

guiding experiment design, ensuring that appropriate time-

scales and data point distributions are chosen for meaningful

validation of simulation results. Fig. 8 presents the results of

transforming the model used in Fig. 7, which was fitted to the

data acquired at �i = 6.0 Å while accounting for the different

�i = 4.5 Å setting. The prediction (red line) without any

adjustment of model parameters is in good agreement with the

measured data using neutrons with �i = 4.5 Å, except for the

precise vertical position of the oscillations. The oscillations,

which are in this case a consequence of the MIEZE method,

are a source of instability in the fitting process and possibly

lead to increased uncertainty in the model parameters.

However, as demonstrated in Section 2.3, a higher kinetic

energy of incoming neutrons suppresses these unwanted

features, increasing the reliability of the data analysis. Fig. 9

visualizes this effect. The different curves correspond to a

transformation of the same model function as before with

decreasing wavelength �i. The star marks the MIEZE time

�min = h- /(0.1Ei) below which the SE approximation is no

longer valid. This capability will become available when

implementing the proposed instrument upgrade to TIGER

(Jochum et al., 2022) at RESEDA.

The parallel fitting procedure will also be highly beneficial

for a MIEZE instrument at a pulsed neutron source. The

broad wavelength range readily available at such a source will

enable the parallel fitting of multiple wavelengths, leading to a

more precise determination of the model parameters. As

shown in Fig. 9, varying wavelengths allow probing of the

region of I(Q, �) that is most sensitive to the energy cutoff,

facilitating the study of inelastic signals with exceptional

energy resolution.

6. Conclusions

In conclusion, two methods for comparing ToF and NSE/

MIEZE data have been introduced. The first approach is

based on a direct transformation, enabling a straightforward

comparison between excitation spectra measured in a ToF

instrument and their counterparts observed by a MIEZE

spectrometer in the time domain. Several factors that become

important when considering large energy transfers relative to

the kinetic energy of the neutron, such as detector efficiencies

and energy conservation (kf /ki), are taken into account. This

framework has been successfully applied to data acquired on

an ultra-pure water sample at room temperature using the ToF

spectrometers FOCUS and TOFTOF, and the results have

been compared with data measured on the MIEZE instrument
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Figure 8
Comparison of the predicted contrast calculated from the optimized 3Q1I
model (Section 4.2) for data at �i = 4.5 Å recorded on RESEDA. The data
were collected at an angle 2# such that the momentum transfer Q is the
same in the SE approximation. The predicted curves account for the
increased integration area and the adjustments in the MIEZE phase
calculation.

Figure 9
Prediction for typical data measured on RESEDA for different initial
wavelengths �i. The purple curve corresponds to the results of fitting the
TOFTOF data with model 3Q1I. This result was then used to predict
MIEZE data for different wavelengths, similar to Fig. 8. The star labelled
�min indicates the smallest Fourier time, below which the SE approx-
imation becomes invalid, at the corresponding wavelength �i.



RESEDA. Under identical sample conditions, convincing

agreement is observed between the transformed ToF data and

the MIEZE data.

In addition to enabling direct comparisons between data

sets from different instruments, this approach also allows data

from numerical calculations to be transformed to predict

MIEZE measurement outcomes for given experimental

conditions. This capability will further support the efficient

planning of future experiments.

The second approach employs a combined fit of model

functions to describe both data sets. This method provides an

opportunity to test a model against data measured in both the

energy and time domains while accounting for detector effi-

ciency, instrumental resolution and detailed balance. A

persistent challenge is the presence of measurement artefacts

that cannot be determined empirically or through numerical

calculations, such as detector dark counts and other energy-

independent backgrounds.

As a final conclusion, we emphasize the complementarity of

MIEZE and ToF and the importance of ensuring quantitative

consistency between data collected with these techniques.

While MIEZE offers significantly higher energy resolution,

ToF provides broader coverage of Q–E space in a shorter

measurement time. MIEZE is ideally suited for studying

dynamic processes at small scattering angles, whereas ToF

allows for a clearer investigation of dynamics at large energy

transfers which would pose a challenge to the MIEZE tech-

nique alone.

APPENDIX A

Uncertainty analysis

Using only a single data set, one can employ the common

uncertainty estimation in terms of a quadratic approximation

of the least-squares cost function around the minimum. For

the least-squares analysis, the 1� uncertainty estimate and

covariance of a fit parameter ai are given by the contour in

parameter space where �2 ¼ �2
min þ 1. This contour can be

traced by mapping out the least-squares cost function around

the minimum, which becomes exceedingly time consuming in

cases of a high-dimensional space of fitting parameters. More

efficient is the calculation of a quadratic approximation of the

least-squares function using the Hessian matrix H adopted in

gradient descent or related minimization algorithms. The

standard uncertainty of a fit parameter ai is then calculated as

�ai
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH� 1Þii

p
. Ideally, the fit of an appropriate model func-

tion to a set of data points and their standard deviation (yi, �i)

should result in a goodness-of-fit value gfit ’ 1, which is

calculated as

gfit ¼
1

n � m

Xn

i

wi f ðxijaÞ � yi

� �2
; ð26Þ

similar to the reduced �2 value. However, the �i values do not

necessarily capture all uncertainty associated with the value yi,

leading to a gfit significantly larger than 1. n is the number of

data points and m is the number of fitting parameters included

in the model function f. In a first attempt to account for this

fact, gfit can be used as a scaling factor between the weights in

the least-squares function wi and the �i associated with each

data point: wi ¼ gfit=�
2
i . Then, �i represent the relative

uncertainties between the data points, but not the ‘total

uncertainty’. As a result, the uncertainties in the fitting para-

meters need to be re-scaled to �2
ai
¼ gfitðH

� 1Þii as well (Strutz,

2011).

The method of estimating the reliability of the fitting

parameters assumes certain statistics of the data points used in

the computation of the �2 value. In case of the combined

model with �2
tot, the unnatural emphasis of the MIEZE data

skews the results compared with a standard least-squares

function. Thus, besides the uncertainty estimates obtained

from the calculations described above, we used the inter-

mediate results of the differential evolution algorithm to study

the distribution of fitting parameters, which yielded

�2
tot � 1:02�2

tot;min. The populations of vectors in parameter

space, which are drawn by the differential evolution algorithm,

were produced via the best1bin strategy (Storn & Price, 1997).

The uncertainty in each optimal parameter is then estimated

by calculating the standard deviation of the marginalized

distribution with respect to the optimal value. For a 2%

deviation from the minimal �2, between 200 and 400 para-

meter vectors are used for this analysis.
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