
computer programs

J. Appl. Cryst. (2025). 58 https://doi.org/10.1107/S160057672500398X 1 of 10

ISSN 1600-5767

Received 11 February 2025

Accepted 5 May 2025

Edited by A. Barty, DESY, Hamburg, Germany

Keywords: X-ray diffraction; XRD analysis;

software.

Supporting information: this article has

supporting information at journals.iucr.org/j

Published under a CC BY 4.0 licence

Pydidas: a tool for automated X-ray diffraction data
analysis

Malte Storm,* Peter Staron and Christina Krykwa

Institute of Materials Physics, Helmholtz-Zentrum Hereon GmbH, Geesthacht, Germany. *Correspondence e-mail:

malte.storm@hereon.de

The processing and analysis of X-ray diffraction (XRD) data at synchrotrons is

often left to the user groups, which limits the user base to groups with a back-

ground in analyzing XRD data. Pydidas is a new Python package for processing

XRD data. It provides an easy and intuitive interface and versatile processing

options with the aim of being accessible to non-experts in XRD analysis. A

graphical user interface (GUI) allows users to perform the full pipeline of data

browsing, experiment calibration, workflow setup, processing and visualization

in a single tool. In addition, pydidas’ logic is decoupled from the GUI and it can

be fully used from within scripts or embedded into other processing pipelines.

The pydidas processing pipeline is assembled from individual plugins which

perform specific processing steps. This modular design allows for very versatile

pipelines covering a wide range of applications. To improve the usability even

further, custom plugins can be integrated in the pydidas workflow to allow

specialized processing steps.

1. Introduction

Pydidas is software developed by Helmholtz-Zentrum Hereon

to improve data processing at its X-ray diffraction (XRD)

oriented beamlines operated at the PETRA III synchrotron

radiation source (DESY, Hamburg, Germany). Hereon oper-

ates multiple beamlines, among which are the P03 nanofocus

endstation for nano-diffraction experiments and the P07 high-

energy materials science beamline (HEMS), which are dedi-

cated to diffraction experiments. At both beamlines, in situ or

operando sample environments are frequently used. Espe-

cially fast in situ or operando experiments require fast feed-

back (in the form of data processing) to optimize the

beamtime usage during experiments. In addition, the

increased data rates of all experiments require novel solutions

to allow more user-friendly and automated data processing by

beamline users.

Historically, data reduction and pre-processing of XRD

datasets has been left in the hands of user groups which

limited the user community to those groups who had the

capabilities and personnel to perform diffraction data analysis.

To make XRD methods more accessible for user groups with

little to no experience in XRD data analysis and to attract

more users from industry, suitable data analysis tools must be

made available. So far, this objective has been successfully

implemented only in selected areas, reflected by the fact that

different techniques at synchrotron beamlines offer hugely

different user experiences. Specific techniques like macro-

molecular crystallography already offer highly automated

solutions for both experiments and analysis which allow users

without any prior technical knowledge to perform successful

https://doi.org/10.1107/S160057672500398X
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=XRD%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=software&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Storm,%20M.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Staron,%20P.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Krykwa,%20C.
mailto:malte.storm@hereon.de
http://crossmark.crossref.org/dialog/?doi=10.1107/S160057672500398X&domain=pdf&date_stamp=2025-06-16


experiments (Gabadinho et al., 2010; ISPyB, https://github.

com/ispyb/ISPyB).

A wide range of software tools exist for XRD data analysis,

but these are usually either designed for expert users or

tailored to specific use cases. Python packages for efficient

(azimuthal) integration like pyFAI (Kieffer & Karkoulis, 2013;

Kieffer & Wright, 2013; https://github.com/silx-kit/pyFAI) or

azint (Jensen et al., 2022; https://github.com/maxiv-science/

azint) allow expert users a high degree of flexibility and

scripting options as well as very performant computational

implementations. While pyFAI, for example, also offers

graphical user interfaces (GUIs), these are limited to pyFAI’s

core role of calibration and integration.

In addition, a wide range of tools have been developed

which aim to integrate GUIs and processing functionality.

Usually these include additional tools like data browsing or

advanced fitting routines. FIT2D (Hammersley et al., 1996;

Hammersley, 2016), created by the ESRF, was one of the first

generic tools widely available for a large user community and

it is a testament to the software that it is still used today even

though it is no longer actively supported. A variety of other

analysis software tools have been developed over the years,

either driven by facilities or by specific techniques and their

requirements. Facility-specific tools include DAWN, created

by Diamond Light Source (Filik et al., 2017), Xi-Cam (https://

github.com/Xi-CAM/Xi-cam), developed by the Advanced

Light Source, and GSAS-II (Toby & Von Dreele, 2013),

created by the Advanced Photon Source. Other tools have

been developed with a particular expert community in mind,

like Dioptas (Prescher & Prakapenka, 2015) for high-pressure

powder diffraction or DPDAK (Benecke et al., 2014) for

small-angle X-ray scattering and grazing-incidence small-

angle X-ray scattering. Except for FIT2D and DAWN, which

both have their own integration algorithms, all these tools use

the pyFAI engine.

Most of these tools offer GUIs which are, however,

designed primarily for expert users familiar with diffraction

techniques and the required analysis steps. In particular, the

wealth of possible parameters required to set up the proces-

sing can be overwhelming for inexperienced users.

To improve the analysis throughput of both our expert and

first-time beamline users, we need software with an intuitive

and user-friendly interface. It should also support fast, parallel

processing of large datasets, potentially containing tens of

thousands of images, due to the continuously increasing data

rates at beamlines. Existing software often falls short in one or

more of these areas. Pydidas was developed to address this

gap by offering software designed to be intuitive and acces-

sible to users with little or no experience in XRD data analysis,

while still providing expert users with low-level access to all

essential parameters.

2. Preparation of an XRD analysis in pydidas

The configuration for workflow processing has been split into

the three individual categories of experiment, scan and

workflow. The parameters in these categories correspond to

answers to the questions of ‘How did you measure your data?’

for the experiment, ‘What did you measure?’ for the scan and

‘How do you want to process your data?’ for the workflow.

This division allows the configuration to be reused exten-

sively for later or repeated processing, for example of a scan

series during an experiment, or reuse of the same workflow

during other beamtimes.

Covering a wide range of different applications and use

cases requires a high flexibility with respect to the design of

the analysis workflow. Therefore, the pydidas processing

pipeline is based on a sequence of individual plugins which

each only handle a specific processing step. The full pipeline is

then assembled by combining individual plugins to the full

processing workflow.

Table 1 gives an overview of the items in the three cate-

gories. Except for specific filenames, for example, subtracting a

background image, no filenames are defined in the workflow

definition. The global detector mask file, if applicable, is

defined in the experiment definition while the raw data path

and the filenaming pattern are part of the scan definition.

Batch processing of different scans only requires updating the

paths in the scan configuration which facilitates the processing

setup for inexperienced users. Also, this makes reusing

workflows between experiments or facilities straightforward

as the filenames and paths are all defined in the scan section.

These global configurations are considered to be static

during an experiment and analysis. This assumption allows

more efficient handling of these, for example by loading

detector masks once at the start. However, the architecture

allows the use of local instances instead of the global config-

uration. For example, plugins can use a dynamic detector mask

instead of the global one.

Because pydidas uses pyFAI for data reduction (most

notably the integration of 2D datasets), it follows the pyFAI

definitions for the detector and PONI geometry (point of

normal incidence), which describes the detector by the point

where the beam from the sample would hit the detector at a

right angle (Kieffer & Wright, 2013).

computer programs

2 of 10 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis J. Appl. Cryst. (2025). 58

Table 1
Separation of the configuration into three different groups.

Category Content

Experiment Beamline setup:

X-ray energy/wavelength
X-ray detector configuration (detector model)
Detector mask file, if applicable
Detector geometry

Scan No. of scan dimensions
No. of points in each dimension

Scan base directory
Scan naming pattern
Metadata:

Scan title
Scan axis names, units and ranges

Workflow Processing plugins used
Plugin data flow
Plugin configuration
Export of results

https://github.com/ispyb/ISPyB
https://github.com/ispyb/ISPyB
https://github.com/silx-kit/pyFAI
https://github.com/maxiv-science/azint
https://github.com/maxiv-science/azint
https://github.com/Xi-CAM/Xi-cam
https://github.com/Xi-CAM/Xi-cam


3. Design considerations

3.1. General design

Pydidas is a Python package which uses Qt (https://www.qt.

io) through the qtpy bindings (https://github.com/spyder-ide/

qtpy) and is compatible with Qt versions 5 and 6. The default

implementation is currently PyQt5 and pydidas has also been

tested using PySide6. Qt is used both for the GUI and, in some

circumstances, for internal communication using Qt’s signals

and slots. For example, signals are used when running work-

flows with parallel processing for triggering internal actions

(e.g. saving to disk).

A well designed GUI is a key requirement to make pydidas

easily accessible to inexperienced users with no prior experi-

ence with command-line interfaces. Also, data visualization

and interactive tasks require a graphical interface. Therefore,

pydidas was primarily designed around the graphical interface.

Nevertheless, care has been taken to separate the core func-

tionality from the GUI and to allow pydidas to be used from

the command line or scripts. Only interactive functionality

which requires graphical feedback is available exclusively

from the GUI.

3.2. User experience

The explicit aspiration of pydidas is to allow full processing

workflows of diffraction data within a single software tool.

Therefore, users only have to use two programs: the beamline

control software for experimental control and pydidas for data

analysis.

A minimal workflow for any data analysis consists of data

exploration, experiment calibration, definition of the analysis

workflow and visualization of the results, as shown schemati-

cally in Fig. 1. All these steps are available via the pydidas

GUI. The detailed process for setting up the analysis config-

uration is depicted in Fig. 2.

Global configurations of pydidas are stored on a per-user

basis using the functionality available in Qt which allows for a

convenient and platform-independent solution. The config-

uration of user preferences like default colormaps, font or font

size improves the user experience and also allows different

visual requirements to be catered for.

In addition, pydidas allows storage of the state of the GUI

and configuration manually at any time in files and auto-

matically when closing the program. This allows users to

interrupt complex analysis processes and conveniently resume

working after restarting the GUI.

An important part of the user experience is also knowing

how to obtain support, if required. The first step should always

be the documentation. The documentation for pydidas is

available as webpages (https://hereon-gems.github.io/pydidas)

and it includes content for user groups from novice users to

experts who want to develop and integrate their custom

plugins. In addition, a local version of the documentation is

included with the Python package. This allows both offline

access (e.g. during travel or in an isolated environment) as well

as direct integration with the GUI. Asking for help in the GUI

computer programs

J. Appl. Cryst. (2025). 58 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis 3 of 10

Figure 1
Flow-chart diagram of all steps required to perform a typical analysis of XRD data. The main idea is to provide all required functionality within only two
interfaces, the beamline control software for data acquisition and pydidas (shown in the red box) for data analysis. The two boxes for definition and
testing of analysis workflows are highlighted in blue and are shown in more detail in Fig. 2.

Figure 2
Detailed flow-chart diagram of the XRD analysis configuration which
corresponds to the ‘definition of analysis workflow’ and ‘testing of
analysis workflow’ steps from Fig. 1. The experimental setup, scan
metadata and workflow are individually defined by the user. Together,
they make up the configuration required for XRD data analysis.

https://www.qt.io
https://www.qt.io
https://github.com/spyder-ide/qtpy
https://github.com/spyder-ide/qtpy
https://hereon-gems.github.io/pydidas


(by pressing F1) will open the local documentation for the

current view.

3.3. Supported data formats

HDF5 is the de facto standard file format for modern area

detectors at synchrotrons as it allows both native data

compression and storage of multiple detector images in a

single file which eases the burden on the file system. However,

many detectors still write other data formats (e.g. TIFF or

binary) or – in the case of point or line detectors – even in

ASCII formats. Pydidas is designed to support most common

data formats (HDF5, TIFF, binary, formats supported by

ESRF’s FabIO) and the modular structure of workflows allows

users to easily implement loaders for additional data formats.

The flexibility of the HDF5 container allows metadata to be

attached to all result files written by pydidas, thus improving

clarity and reproducibility. Pydidas uses HDF5 as its native

format for results and written results adhere to the NeXus

definition (Könnecke et al., 2015; https://www.nexusformat.

org/) for data annotations. Reproducibility is improved by

including metadata about the configuration in the results,

which allows users to repeat the exact processing, assuming

access to the raw data. Nevertheless, some other software tools

(e.g. for texture or Rietveld analysis) require data in other

formats, for example ASCII. We acknowledge the need to

preserve compatibility with other tools and pydidas includes a

plugin for ASCII export. Exporters for other data formats can

also be added through custom plugins.

3.4. Utilities

Next to processing workflows, additional utilities are

required at many points during data analysis. For example,

calibration data or background images might need to be

averaged. Data might have to be modified with mathematical

and logical operations, e.g. by multiplication and subtraction

to allow for background subtraction which accounts for

varying sample absorption. Detector masks might need to be

created or modified to exclude damaged pixels or inter-

module gaps from data analysis. All these tasks are required to

prepare the data evaluation. Hence, these tools have also been

integrated into the pydidas GUI.

3.5. Flexibility

Another key design consideration is flexibility. The variety

of possible data acquisition and analysis schemes requires very

broad analysis capabilities. While pydidas tries to cover a large

portion of standard use cases, we acknowledge that covering

all possible cases is impossible. Consequently, pydidas allows

users to create their own plugins for extending the analysis

capabilities and make them available within pydidas. In this

way, new file formats can also be added without needing to

modify pydidas’ source code. An example of a minimal plugin

is given in Appendix A.

The GUI is designed in a modular fashion and even

extending the GUI and adding new widgets is possible for

users with some programming experience.

4. Software architecture

This section will detail the architectural design decisions which

have been made to obtain a system which both is performant

and complies with the design considerations discussed above.

4.1. Parameter handling

All configuration parameters (this includes processing

parameters and plugin configurations) are managed through

class objects, which allows parameters to be shared between

programmatic objects and implementation of type-checking of

inputs directly as they are entered. User input is thus auto-

matically checked for wrong data types with custom exception

handling to improve the user experience.

4.2. Processing workflows

Processing workflows are user-defined sequences composed

of individual plugins that perform specific operations on the

data. Splitting the processing into many small items gives a

high flexibility in editing workflows. It also limits the necessary

parameters for each plugin because most optional function-

ality can be moved to specific plugins. The processing work-

flow always starts with a single plugin which loads the data.

Each plugin can pass its results to multiple plugins further

down the processing workflow, called its children. This beha-

vior allows branching workflows.

The plugin organization, calling and data transport between

plugins is managed through a single object, which has been

named ProcessingTree. This object allows for convenient

access and management of plugins.

For pydidas, we have made the design decision to limit

workflows to a strictly linear data flow. This decision was the

result of an internal analysis of possible use cases and differs

from other popular workflow engines like Orange (https://

github.com/biolab/orange3) which is also based on Qt and

comes with a GUI for the creation and customization of

workflows. While the decision to use linear data workflows is a

limitation in the sense that it prevents, for example, the

implementation of feedback loops, it makes up for this by

having a very simple interface for plugins which is in line with

the demand for pydidas to be easily accessible on all scales.

Also, having data flow only from one plugin to the next greatly

reduces the risk of users accidentally misconfiguring the

workflow by connecting incompatible plugins.

4.3. Export of results

Next to the final result of an analysis process (e.g. residual

stress map), multiple intermediate results are typically

generated along the way, all of which may carry important

information to e.g. verify the plausibility of the final result.

Therefore, processing results from all plugins and for all scan

points are stored during runtime in one global object called

WorkflowResults. By default, only plugins which have no

children export their results, but data export can be enabled

for all plugins, if required. Results can be accessed internally

or exported to file. Pydidas exports results for each plugin in

computer programs

4 of 10 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis J. Appl. Cryst. (2025). 58

https://www.nexusformat.org/
https://www.nexusformat.org/
https://github.com/biolab/orange3
https://github.com/biolab/orange3


HDF5 format with the full processing metadata of experiment,

scan and workflow as well as information about the pydidas

version written in each resulting file. Therefore, each HDF5

result file alone includes all the information required to

reproduce the full processing. While other formats for global

result exports are not natively included, the pydidas archi-

tecture allows the easy addition of other output formats, if

these are required by specific user communities. Additionally,

output plugins can be used to export results from each scan

point in the workflow. For example, pydidas includes a plugin

to export results from each scan point to individual ASCII

files.

4.4. Parallelization

To make efficient use of system resources, pydidas allows

parallelization with multiple processes. While some packages,

for example pyFAI, make use of CPU resources quite effi-

ciently, file reading and other processing steps (e.g. fitting) are

not very well parallelized and the full workflow benefits from

processing multiple images at once. This argument is even

stronger when using GPUs for pyFAI’s integrations and

thereby freeing up CPU resources to be used for other tasks.

When using GPUs for processing, the overhead for data

transfer to the GPU is usually also significant compared with

the processing time on the GPU, which leads to processing

speed improvements when accessing the GPU in parallel from

multiple processes.

Pydidas uses multiple, independent processes for batch

processing scans. Communication between the controller and

worker processes is handled through pipes. To allow efficient

data transfer between processes, a shared memory array is

used. Only indices to find data in the shared array need to be

transferred, significantly increasing the communication speed

between processes.

The pydidas parallelization is not based on other, existing

parallelization engines like Dask (https://dask.org) but custom

built. The main reason for a customized parallelization is the

handling of results. Results are made available in the GUI as

soon as they are available, which allows users to inspect results

as they are computed and which is a requirement when

visualizing, for example, in situ measurement results as the

experiment progresses. Headless processing, for example by

submitting to high-performance computing scheduling

systems, has so far not been a development priority. Never-

theless, the pydidas architecture clearly separates the proces-

sing logic from the parallelization logic which allows pydidas

processing workflows to also be run in other workflow engines,

e.g. Dask, and use their parallelization routines.

4.5. GUI

The GUI is composed of individual widgets, called frames in

pydidas. The GUI itself is an empty window and we have

included a register_frame method. This gives an easy

way to either create GUI instances with limited functionality

or add custom frames.

The arrangement of these frames reflects the sequence of

actions required to perform a typical data analysis. The main

GUI includes classical menus but the main navigation is

handled through toolbars on the left. A screenshot of the GUI

after startup is given in Fig. S1 in the supporting information.

Each frame includes a corresponding button in the taskbar for

displaying it. To keep startup times performant and to allow

for easy extensions, frames are not actually initialized until

needed by the user. A list of the standard frames and a short

description is given in Table 2.

4.6. Command-line interface

Pydidas is a Python package and, as such, all functionalities

can be imported and used in scripts or interactive Python

shells. Those pydidas objects that are required for user inter-

actions (e.g. for processing setup) are designed to have iden-

tical interfaces to allow an easy start also from the command-

line interface. Except for interactive elements, pydidas can be

fully used from the command line. Parameters in all objects

are accessible through similar methods and an example is

given in Appendix B. The pydidas documentation also

describes the most used objects in detail.

5. Use case example: 2D strain scanning

This section is meant to showcase an analysis workflow in the

pydidas GUI. It is based on data from Zeilinger et al. (2016)

which they kindly shared. Following a general description of

the experiment, the specific processing steps within pydidas

are described. However, to not overburden this section with a

large number of figures, the corresponding GUI screenshots

computer programs

J. Appl. Cryst. (2025). 58 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis 5 of 10

Table 2
Overview of the available standard frames in pydidas.

Frame title Content

Data browsing Explore files via a file system browser and display the

file contents as 1D graphs or 2D images via a
visualization widget

pyFAI calibration Calibrate the experimental detector geometry via an
integrated version of the pyFAI-calib2 tool

Image math Perform arithmetic operations on single images or
pairs of images and apply operators (e.g.
thresholding, log) on images

Quick integration Perform an interactive beamcenter selection in an
image and a quick integration with a simplified
geometry (no tilts)

Utilities Access various utilities like averaging images,
maskediting, configuration

Workflow processing
Define diffraction

setup
Configure the experimental parameters, as detailed

in Table 1
Define scan Configure the scan, as detailed in Table 1
Workflow editing Define and edit the workflow, as detailed in

Table 1
Test workflow Test the workflow on a single scan point and inspect

all intermediate results
Run full workflow Run the full workflow for all scan points and

visualize results
Import and display of

workflow results
Import workflow results from previous runs and

display the resulting data

https://dask.org
http://doi.org/10.1107/S160057672500398X


are provided in the supporting information and only refer-

enced herein. The data were acquired during a nano-

indentation experiment at the Nanofocus Endstation of

beamline P03 (PETRA III, DESY, Hamburg, Germany)

(Krywka et al., 2012). The sample was a nanocrystalline TiN

hard coating deposited on a steel substrate using plasma-

assisted chemical vapor deposition and nitriding. The 9 mm-

thick TiN film consisted of nanocrystallites arranged in a

columnar grain morphology. The sample was prepared by

cutting a cross-sectional lamella consisting of the substrate and

the film with a thickness of 40 mm in the beam direction and

was analyzed in transmission via wide-angle X-ray diffraction.

During data collection, the film was subjected to a micro-

scopically localized mechanical load through a sharp diamond

tip pushing into the surface. An X-ray beam focused to a size

of 350 � 350 nm was used to record a grid of spatially resolved

XRD datasets (referred to as a 2D scan) of the area around

the indenter tip, and multiple 2D scans were performed at

different loads. The objective of the experiment was to obtain

a 2D map of the elastic stresses in the material below the

indenter tip.

For the sake of this example, only one scan taken at a static

load of F = 0.85 N is processed and discussed. This re-

processing of published data was selected to give a baseline

with which to compare results. This example was processed

offline. The raw data consisted of a 2D scan of 21 by 23

datapoints (horizontal � vertical) arranged on a 500 �500 nm

grid. The data were acquired using a Photonic Science CCD

detector with a 62 mm pixel size and at a photon energy of

14.73 keV (wavelength approximately 0.824 Å).

A typical detector image shows two complete rings from the

TiN 111 and TiN 200 reflections and partial rings from the TiN

220 reflection in the corners. A raw image is given in Fig. 3.

5.1. Calibration

To determine the exact geometry of the experiment

(sample-to-detector distance, detector tilt, beamcenter) a

detector calibration measurement was performed by scanning

over a microcrystalline LaB6 sample to acquire a sufficient

number of diffraction spots. Prior to the calibration process,

the acquired calibration images were averaged using the

pydidas image series operations tool to get a single file with all

reflections.

The calibration was performed using the pyFAI-calib2

application. The calib2 application has been embedded in the

pydidas GUI for convenient access. This leads to some minor

visual changes in pyFAI-calib2 but also allows an integrated

use of the calibration result in pydidas. The calibration results

can be copied into the experiment definition with a single

button click. Fig. S2 shows exemplary screenshots of the

calibration window embedded in pydidas and the standalone

pyFAI-calib2. The use of pyFAI-calib2 is described very well

in the online help (https://www.silx.org/doc/pyFAI/latest/usage/

cookbook/calib-gui/index.html#cookbook-calibration-gui) and

will not be discussed further here.

5.2. Experimental setup and scan definition

The experimental setup frame, labeled ‘Define diffraction

setup’ in the toolbar, is shown in Fig. S3. It features import and

export buttons at the top and bottom, respectively. Also, a

button allows parameters to be copied from the calibration.

Parameters have been grouped into three categories: ‘Beam-

line X-ray energy’, ‘X-ray detector’ and ‘Detector geometry’.

Because pydidas uses pyFAI for integrations, it uses the PONI

geometry as introduced in pyFAI. A converter for changing

FIT2D-style geometries to PONI is included to support

working with previously calculated calibrations.

The beamline energy can be given either as photon wave-

length or energy, and both values are displayed and updated

upon changes to one of the two.

The full definition of the X-ray detector is required because

pyFAI’s PONI geometry is given in absolute positions in SI

units. Conveniently, pyFAI includes a number of stored mask

layouts for the most widely used detectors with module gaps.

Updating the detector mask allows additional hot or dead

pixels to be masked. In addition to allowing direct editing of

the detector geometry definition, the GUI includes tools to

define the beamcenter position manually in a simplified

geometry (without detector tilts) or to import a FIT2D

geometry. Because the PONI position in metres from the

detector corner is not directly intuitive, the derived beam-

center position in pixel coordinates is also given in the pydidas

GUI.

The scan definition window is shown in Fig. S4. For the

users’ convenience, it also features an explanation of the

ordering for the scan dimensions. The global scan parameters

are shown on the left and include the definition of scan

dimensionality, scan base directory and scan naming pattern.

Defining the data directory in the scan definition allows all

workflow plugins to reference it without explicitly including

computer programs

6 of 10 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis J. Appl. Cryst. (2025). 58

Figure 3
An exemplary image of the raw data used for this use case example, as
displayed in the pydidas GUI. The innermost ring is the TiN 111 reflec-
tion and the second ring is the TiN 200 reflection, both of which can be
used in the analysis.

https://www.silx.org/doc/pyFAI/latest/usage/cookbook/calib-gui/index.html#cookbook-calibration-gui
https://www.silx.org/doc/pyFAI/latest/usage/cookbook/calib-gui/index.html#cookbook-calibration-gui


paths in the workflow, which makes reusing workflows much

easier. The scan naming pattern uses hashes (‘#’) as place-

holders to mark counting variables. This nomenclature allows

the use of fixed numbers, e.g. a sample reference number, in

combination with counters. Each input plugin determines how

it uses the naming pattern to create the full filename.

Depending on the selected scan dimensionality, only the

necessary parameter inputs for the selected dimensions are

shown on the right. The GUI also includes small buttons to

conveniently reorder the definitions of the scan dimensions.

5.3. Workflow editing

A view of the workflow editing frame is shown in Fig. S5. It

has three main elements: a graphical visualization of the

current workflow tree and its plugins as well as the plugin

connections, a widget to browse all available plugins, and the

plugin configuration on the right. Plugins can be reordered in

the graphical visualization with drag and drop or through

context menus. A single click on a plugin will show the

corresponding plugin configuration on the right of the frame

and highlight the selected plugin on the canvas. Fig. 4(a) shows

the workflow used in this example.

Managing the parameter configuration for each plugin

individually allows each plugin to have small numbers of

parameters and clear association to the respective plugin.

While most plugins have generic configuration widgets, this

arrangement also allows unique configuration widgets to be

implemented for specific plugins. For example, the output of

peak fitting can be selected using checkboxes to allow all

possible parameter combinations (peak position, width, height

etc.). An example of the parameter configuration is given in

Fig. 4(b).

The plugin browser at the bottom of the frame allows users

to inspect the full list of available plugins, apply filters and

display additional information for each plugin. All the infor-

mation is taken automatically from the plugins’ docstrings and

meta information. Custom plugins will be displayed auto-

matically in the list if the plugins’ path is known to pydidas.

In the nano-indentation example, the workflow consists of

an HDF5 file loader plugin, a plugin to subtract a background

image to correct for the detector dark current, the azimuthal

integration using pyFAI, and two fitting plugins for the TiN

111 and TiN 200 peaks.

5.4. Workflow testing

Before running the full workflow on all scan points, it is

often reasonable to test the workflow on single input frames.

The ‘Test workflow’ frame allows users to select single scan

points and run the full processing workflow on these points.

Points can be specified by either the global frame index, the

detector image number or the scan position. Users can then

inspect all intermediate results of all plugins. Fig. S6 shows a

screenshot of the ‘Test workflow’ frame. All plugins in the

workflow tree can be selected to inspect their intermediate

results.

While intermediate results help to understand the data flow

in the workflow tree, they do not allow the inner working of

individual plugins to be inspected. If plugins specify that they

give additional detailed intermediate results, these are also

available here through a button. Fig. S7 shows a screenshot of

the detailed results for a fitting plugin. The detailed results

give an option to inspect intermediate runtime results for

selected data points without keeping them available globally

for all scan points.

In addition to visualizing intermediate results, the test

workflow also allows plugin parameters to be tweaked on the

fly and changes in the plugin’s output seen directly. Updated

results are also propagated to all downstream plugins so that

all results are consistent and up to date.

5.5. Running the full workflow

The ‘Run full workflow’ frame allows the workflow to be

run for all scan points in independent background processes.

computer programs

J. Appl. Cryst. (2025). 58 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis 7 of 10

Figure 4
(a) Visualization of the workflow in the pydidas GUI. The individual
nodes and their relationship show how data will be processed. (b)
Exemplary configuration for a single plugin: the configuration is managed
separately for each plugin to not overwhelm users with too many options.
In this example, the configuration for the pyFAI 2D integration is
displayed. Parameters for expert users are hidden to begin with but can
be edited after using the ‘Display advanced Parameters’ button.



Results are stored in the main process and can be displayed as

they are produced. Fig. S8 shows a screenshot of the frame.

Any results from the workflow can be displayed and the

desired plugin is selected with a drop-down menu. This will

display a textbox with additional information about the

results, including data and axis labels and axis ranges. Controls

below the textbox allow users to specify how data should be

displayed (i.e. image or plots) and to select the display

dimensions and slices. Slices can be selected both in axis

indices and with data values. Pydidas will find the closest index

to the selected data value to display.

During processing, the data display will automatically be

updated as results come in from the worker processes. Data

can be exported in HDF5 format for later use in pydidas or

other applications. In this example, the data in Fig. 5 show the

results at the azimuthal � = 90� position, as shown in pydidas.

The results clearly show the layered deposition of the TiN

coating and how the indenter has left its mark on the sample.

For the scientific discussion of the sample, readers are referred

to the work of Zeilinger et al. (2016).

The processing has been benchmarked in comparison with a

direct processing in Python on a local workstation. Details

about the comparison and machine are given in Appendix C.

A graphical representation of the results is shown in Fig. 6.

The processing speed in pydidas is comparable to direct calling

of pyFAI and scipy least-squares peak fits with an overhead of

approximately 10% of the processing time. This includes,

however, the data transport between the processes and gath-

ering and writing of the results in an HDF5 file. In the script

implementation, only the raw processing has been analyzed.

6. Summary

Pydidas has been developed as a user-friendly integrated

toolbox for the automated analysis of diffraction data. It

allows beamline users to perform fast analysis on site during

experiments and to continue analysis in the same tool later at

their home institutions. The open architecture allows inclusion

of specialized loaders for additional file and path structures,

and additional processing plugins for functionality which is not

included in the pydidas core functionality.

Special emphasis has been placed on an intuitive user

interface to extend the potential user community for XRD

experiments by offering improved analysis software.

We are actively promoting pydidas to our users at beamlines

P03, P07 and P07B, and the majority of user groups at these

beamlines actively use pydidas for their analysis. The feedback

from our users has been overwhelmingly positive and they

computer programs

8 of 10 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis J. Appl. Cryst. (2025). 58

Figure 5
Processing results of the TiN 200 reflection peak fit from the use case
example: (a) peak position; (b) peak area; (c) peak FWHM. The positions
where the fit quality did not achieve the required threshold are marked in
cyan for easy identification.

Figure 6
Runtime test for processing of all 399 data points in the scan. Compared
with a direct Python implementation (using pyFAI and scipy), pydidas
introduces an overhead of approximately 10% which includes data
transport between the processes.



have reported a significant reduction in the working time they

need to reduce and analyze their experimental data.

At our beamlines, integrating pydidas in the alignment of

advanced experiments, for example for conical slits, has

reduced the setup time significantly, which improves the

beamline efficiency and allows beamline scientists to spend

more time with the user groups.

In addition, we are in discussion with other beamlines to

determine their specific requirements for starting to use

pydidas.

APPENDIX A

Plugin example

A minimal example for a custom plugin is given below. Plugins

need to inherit from one of the base classes InputPlugin,

ProcPlugin (short for processing plugin) or Output-

Plugin. As a bare minimum, the plugin class needs to define

a plugin_name and default_params, if required. The

pre_execute and execute methods are required as well.

pre_execute performs static tasks that need to be run once

before running batch processing and the execute method

will be called for each processing point. It receives the input

data and any kwargs from the earlier plugins and needs to

return a single dataset and dictionary again. More detailed

information on customization is available at https://hereon-

gems.github.io/pydidas/dev_guide/dev_guide_plugins.html.

Custom plugins will be automatically identified and loaded

by pydidas. Pydidas will search for plugins in user plugin paths

and import all plugins that are child classes of the base plugin

classes. An example for setting a custom path is given below:

Note that multiple paths can be specified and they need to

be separated by a double semicolon. In the GUI, the user

plugin path is included in the user options. Plugins can then be

accessed as in-built plugins:

APPENDIX B

Command-line interface example

The configuration for all context objects is handled through an

identical interface. Parameters can be accessed by their

reference keys. The following example shows how to configure

the experiment in the command-line interface:

APPENDIX C

Runtime benchmarks

The runtime tests were performed on a workstation with an

Intel Xeon W7-3465X with 28 physical CPU cores and 256 GB

RAM and a single Nvidia RTX A5000, running Windows 11

(version 23H2).

The processing pipeline included the following: (i) loading

single frames from HDF5 files; (ii) subtracting a detector

background image with thresholding at 0; (iii) running pyFAI

integrate2d with 1000 � 36 points in the radial range of 2� =

[18�, 25�], and using the ‘bbbox, csr, opencl/cython’ engine.

The azimuthal intervals [18.5�, 21�] and [21�, 23.5�] were used

to fit a Voigt profile (scipy.special.voigt_profile) including a

constant background to the data. These two fits have been

performed for each of the 36 radial bins.

In the direct script implementation, a worker pool (multi-

processing.Pool) of n workers was used and the Pool.ap-

ply_async method was used to process each frame. The calling

argument was the frame number to keep data transfer

between the processes small. Each worker then determined

the respective frame to process on the basis of the frame

number and ran the full processing pipeline.

Acknowledgements

The authors are grateful to Jozef Keckes’ group for permission

to show their data as an example. Open Access funding

enabled and organized by Projekt DEAL.

Conflict of interest

The authors declare no conflicts of interest.

computer programs

J. Appl. Cryst. (2025). 58 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis 9 of 10

https://hereon-gems.github.io/pydidas/dev_guide/dev_guide_plugins.html
https://hereon-gems.github.io/pydidas/dev_guide/dev_guide_plugins.html


Data availability

The source code for pydidas is available under the GPL3

open-source license via https://github.com/hereon-GEMS/

pydidas and https://doi.org/10.5281/zenodo.13788623 with

online documentation at https://hereon-gems.github.io/

pydidas/.

Funding information

This publication was written in the context of the work of the

consortium DAPHNE4NFDI in association with the German

National Research Data Infrastructure (NFDI) e.V. NFDI is

financed by the Federal Republic of Germany and the 16

federal states and the consortium is funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Founda-

tion) project No. 460248799. Thanks are also due to all insti-

tutions and actors who are committed to the association and

its goals.

References

Benecke, G., Wagermaier, W., Li, C., Schwartzkopf, M., Flucke, G.,
Hoerth, R., Zizak, I., Burghammer, M., Metwalli, E., Müller-
Buschbaum, P., Trebbin, M., Förster, S., Paris, O., Roth, S. V. &
Fratzl, P. (2014). J. Appl. Cryst. 47, 1797–1803.

Filik, J., Ashton, A. W., Chang, P. C. Y., Chater, P. A., Day, S. J.,
Drakopoulos, M., Gerring, M. W., Hart, M. L., Magdysyuk, O. V.,

Michalik, S., Smith, A., Tang, C. C., Terrill, N. J., Wharmby, M. T. &
Wilhelm, H. (2017). J. Appl. Cryst. 50, 959–966.

Gabadinho, J., Beteva, A., Guijarro, M., Rey-Bakaikoa, V., Spruce,
D., Bowler, M. W., Brockhauser, S., Flot, D., Gordon, E. J., Hall,
D. R., Lavault, B., McCarthy, A. A., McCarthy, J., Mitchell, E.,
Monaco, S., Mueller-Dieckmann, C., Nurizzo, D., Ravelli, R. B. G.,
Thibault, X., Walsh, M. A., Leonard, G. A. & McSweeney, S. M.
(2010). J. Synchrotron Rad. 17, 700–707.

Hammersley, A. P. (2016). J. Appl. Cryst. 49, 646–652.

Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. &
Hausermann, D. (1996). High Pressure Res. 14, 235–248.

Jensen, A. B., Christensen, T. E. K., Weninger, C. & Birkedal, H.
(2022). J. Synchrotron Rad. 29, 1420–1428.

Kieffer, J. & Karkoulis, D. (2013). J. Phys. Conf. Ser. 425, 202012.

Kieffer, J. & Wright, J. (2013). Powder Diffr. 28, S339–S350.

Könnecke, M., Akeroyd, F. A., Bernstein, H. J., Brewster, A. S.,
Campbell, S. I., Clausen, B., Cottrell, S., Hoffmann, J. U., Jemian,
P. R., Männicke, D., Osborn, R., Peterson, P. F., Richter, T., Suzuki,
J., Watts, B., Wintersberger, E. & Wuttke, J. (2015). J. Appl. Cryst.
48, 301–305.

Krywka, C., Neubauer, H., Priebe, M., Salditt, T., Keckes, J., Buffet,
A., Roth, S. V., Doehrmann, R. & Mueller, M. (2012). J. Appl.
Cryst. 45, 85–92.

Prescher, C. & Prakapenka, V. B. (2015). High Pressure Res. 35, 223–
230.

Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.

Zeilinger, A., Todt, J., Krywka, C., Müller, M., Ecker, W., Sartory, B.,
Meindlhumer, M., Stefenelli, M., Daniel, R., Mitterer, C. & Keckes,
J. (2016). Sci. Rep. 6, 22670.

computer programs

10 of 10 Malte Storm et al. � Pydidas: automated X-ray diffraction data analysis J. Appl. Cryst. (2025). 58

https://github.com/hereon-GEMS/pydidas
https://github.com/hereon-GEMS/pydidas
https://doi.org/10.5281/zenodo.13788623
https://hereon-gems.github.io/pydidas/
https://hereon-gems.github.io/pydidas/
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5156&bbid=BB25

	Abstract
	1. Introduction
	2. Preparation of an XRD analysis in pydidas
	3. Design considerations
	3.1. General design
	3.2. User experience
	3.3. Supported data formats
	3.4. Utilities
	3.5. Flexibility

	4. Software architecture
	4.1. Parameter handling
	4.2. Processing workflows
	4.3. Export of results
	4.4. Parallelization
	4.5. GUI
	4.6. Command-line interface

	5. Use case example: 2D strain scanning
	5.1. Calibration
	5.2. Experimental setup and scan definition
	5.3. Workflow editing
	5.4. Workflow testing
	5.5. Running the full workflow

	6. Summary
	APPENDIX A: Plugin example
	APPENDIX B: Command-line interface example
	APPENDIX C: Runtime benchmarks
	Acknowledgements
	Conflict of interest
	Data availability
	Funding information
	References

