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Standard X-ray crystallography methods use free-atom models to calculate

mean unit-cell charge densities. Real molecules, however, have shared charge

that is not captured accurately using free-atom models. To address this

limitation, a charge density model of crystalline urea was calculated using high-

level quantum theory and was refined against publicly available ultra-high-

resolution experimental Bragg data, including the effects of atomic displace-

ment parameters. The resulting quantum crystallographic model was compared

with models obtained using spherical atom or multipole methods. Despite using

only the same number of free parameters as the spherical atom model, the

agreement of the quantum model with the data is comparable to the multipole

model. The static, theoretical crystalline charge density of the quantum model is

distinct from the multipole model, indicating the quantum model provides

substantially new information. Hydrogen thermal ellipsoids in the quantum

model were very similar to those obtained using neutron crystallography,

indicating that quantum crystallography can increase the accuracy of the X-ray

crystallographic atomic displacement parameters. The results demonstrate the

feasibility and benefits of integrating fully periodic quantum charge density

calculations into ultra-high-resolution X-ray crystallographic model building

and refinement.

1. Introduction

Efforts to increase the accuracy of charge density models from

X-ray crystallography have mainly focused on fitting the

Bragg data using functions that are more expressive than the

usual free-atom spherical distributions. Stewart (1969)

proposed using general scattering factors that are the products

of atom-centered orbital wavefunctions, and restrictions to

better match the number of free parameters to the number of

reflections in fitting (Stewart, 1970). Coppens et al. (1971)

separated the free atom charge density into core and valence

components, and allowed them to be centered on different

positions. Dawson decomposed the charge into symmetric and

antisymmetric components centered on each atom (Dawson,

1967a), and expanded each atom-centered charge density in

spherical harmonics (Dawson, 1967b). Hirshfeld developed a

least-squares method that models aspherical atomic charge

densities using basis functions related to spherical harmonics,

but with alternative symmetry properties (Hirshfeld, 1971).

Spherical harmonic-related methods were integrated into

multipole refinement computer programs that are used when

charge density models are desired (Hansen & Coppens, 1978;

Hirshfeld, 1977a; Craven & Weber, 1977; Stewart &

Spackman, 1983; Jelsch et al., 2005; Volkov et al., 2006).

Although less well exploited than multipole methods, the

potential for combining quantum theory and X-ray diffraction

to obtain accurate charge density models of molecular crystals
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has been long appreciated (Lipscomb, 1972). This combina-

tion has been termed quantum crystallography (Massa et al.,

1995). The high computational cost of quantum electronic

structure calculations has been a major barrier to exploiting

the theory for crystallography; however, recent linear scaling

methods have made calculations possible for large systems

(Bowler & Miyazaki, 2010, 2012; Goedecker, 1999; Vande-

Vondele et al., 2012), and fast quantum molecular dynamics

simulations for systems approaching 104 atoms with 105 time

steps are now possible (Mniszewski et al., 2015). Methods

using quantum theory to calculate crystallographic charge

density models for all but the largest systems therefore might

soon be within reach, not only for small-molecule crystal-

lography (Capelli et al., 2014) but also for macromolecular

crystallography.

Several methods have been proposed for quantum crystal-

lography, including the method of kernel projector matrices

(Massa et al., 1995) and fitting of wavefunctions to diffraction

data (Jayatilaka, 1998). One method that is showing promise

in practical applications is Hirshfeld Atom Refinement

(HAR) (Bruning & Feil, 1992; Capelli et al., 2014; Jayatilaka &

Dittrich, 2008). In HAR, the static charge density of a mole-

cule is calculated using quantum theory and is partitioned into

individual atom contributions using Hirshfeld’s stockholder

method (Hirshfeld, 1977b). The partitioned charge is used to

calculate aspherical atomic structure factors that are substi-

tuted for the usual structure factors in crystallographic

refinement, considering both the atomic positions and

displacement parameters (Bruning & Feil, 1992). Whereas

Bruning & Feil (1992) originally decomposed the charge

density into individual atom contributions using a multipole

expansion; the more recent implementation of Jayatilaka &

Dittrich and coworkers (Capelli et al., 2014; Jayatilaka &

Dittrich, 2008) directly makes use of a Becke grid for indivi-

dual atom charge densities. The HAR method has been

automated to apply iterative updates of the quantum elec-

tronic structure calculation during refinement of atomic

positions (Capelli et al., 2014). So far HAR has been limited to

gas-phase electronic structure calculations, with cluster

charges placed at symmetry-related positions to approximate

the crystal environment.

Whether HAR or other quantum crystallography methods

will be adopted widely depends critically on whether they will

substantially increase the accuracy of X-ray crystallography

models. To date the main focus on the accuracy of HAR has

been whether it yields molecular geometry and atomic

displacement parameters that are consistent with neutron

crystallography. The results here have been promising: appli-

cations to X-ray diffraction from crystalline benzene and urea

(Jayatilaka & Dittrich, 2008), l-phenylalaninium hydrogen

maleate (Woińska et al., 2014), and a Gly l-Ala dipeptide

(Capelli et al., 2014) found that HAR bond distances agreed

very well with neutron crystal structures, overcoming known

deficiencies in spherical-atom charge density models (Lips-

comb, 1972). Atomic displacement parameters from HAR

similarly agreed reasonably well with the neutron crystal

structures.

This study addresses a major factor that so far has been

lacking in evaluating quantum crystallographic methods: the

accuracy of the charge density model. Here, charge density

models for crystalline urea are obtained using spherical atom,

atomic multipole or quantum methods. For the quantum

method, the HAR method (Jayatilaka & Dittrich, 2008) is

adapted for crystalline phase electronic structure calculations

performed using VASP (Kresse & Furthmüller, 1996). Elec-

tronic structure calculations using VASP previously were

performed on hexachlorobenzene for comparisons to the X-

ray crystallographic multipole charge density (Aubert et al.,

2011), but without allowing for individual ADPs. The novel

aspect of the present method therefore is the combination of a

crystalline phase density-functional-theory-based electronic

structure calculation with an atomic displacement model from

HAR. The results indicate that HAR can yield not only

molecular geometries and ADPs that are similar to the

neutron crystal structure, but also both 2Fo � Fc maps and

static charge densities that are distinct from the multipole

model, but that nevertheless agree comparably with the

experimental data. Quantum crystallography therefore can

yield accurate charge densities that are consistent simulta-

neously with theory and experiment.

2. Methods

2.1. Diffraction data and initial crystal structure

Ultra-high-resolution urea synchrotron diffraction data

were obtained from Birkedal et al. (2004) at http://journals.

iucr.org/a/issues/2004/05/00/xc5013/xc5013Isup7.hkl. These

data were collected at a temperature of 123 K using a wave-

length of 0.5996 (1) Å, and were merged into 1045 unique

reflections (992 positively valued) extending to 0.347 Å reso-

lution. The data were consistent with a P�4421m unit cell (space

group 113), with a = b = 5.5780 (6), c = 4.6860 (7) Å, � = � = �
= 90�. Other data collection details are published in Birkedal

et al. (2004), Table 1. The multipole refined urea crystal

structure was obtained from Birkedal et al. (2004) at http://

journals.iucr.org/a/issues/2004/05/00/xc5013/xc5013sup1.cif.

The hydrogen parameters of this model were copied from a

123 K neutron crystal structure (Swaminathan et al., 1984).
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Table 1
Values of crystallographic agreement factors for: spherical atom (sphere);
quantum starting with the spherical atom (Quant-S), Birkedal et al.
(2004) multipole (Quant-M), and neutron (Quant-N) model; and
multipole (Birkedal et al., 2004) model.

wR2F wR2I RF RSR GooF

Sphere 0.034 0.068 0.038 0.042 6.5
Quant-S 0.009 0.018 0.023 0.021 1.7
Quant-M 0.009 0.018 0.023 0.021 1.7
Quant-N 0.009 0.018 0.023 0.021 1.7
Multipole 0.011 0.021 0.026 0.023 2.0



2.2. Spherical atom and multipole crystallographic models

The program SHELXL (Sheldrick, 2008, 2015), Version

2014/1, was used to refine a spherical atom model of urea.

Atomic coordinates and anisotropic atomic displacement

parameters (ADPs) were refined for all atoms, in addition to

an overall scale factor (27 parameters in all). The experimental

temperature of 123 K was selected for geometry restraints.

SHELXL reported agreement factors for the final model are:

R1 = 0.0370, wR2 = 0.0796, and SHELX goodness of fit = 0.639

for all reflections. Mean unit cell charge-density maps Fo,

2Fo � Fc, and Fo � Fc were calculated using the program

shelx2map provided in the SHELX software distribution,

using the refined .fcf file as the input, with default weighting,

yielding a map of dimensions 56� 15 � 42 for the asymmetric

unit. The maps were expanded to P1 using CCP4 (Stein et al.,

1994) mapmask and were interpolated to a 64 � 64 � 64 grid

using CCP4 maprot.

The program MoPro, Version 14.06 (Guillot et al., 2001;

Jelsch et al., 2005), was used to refine a multipole charge-

density model of urea. Refinement was based on the ultra-

high-resolution data and structure from Birkedal et al. (2004).

20 cycles of automated density refinement were performed

using the REFI DENS method. The total number of free

parameters was 37: one scale factor; five valence (VAL); five

�1 (K1); five �2 (K2); 21 Plm (PLM) multipole parameters. The

atom coordinates and ADPs were kept constant. MoPro

reported agreement factors for the final model are: RF =

0.0242, wR2F = 0.0107, RI = 0.0212, wR2I = 0.0212, and GooF =

2.293 for 992 nonzero reflections. Charge density maps were

calculated using the MoPro supplied program VMoPro. The

Fo, 2Fo � Fc, and Fo � Fc maps were computed by Fourier

reconstruction using the FOUR method using the refined .par

file and .FOUR file as inputs, with default resolution limits and

the FFT method, yielding maps on a 92 � 92 � 80 grid; these

maps were interpolated to a 64 � 64 � 64 grid using CCP4

maprot (Stein et al., 1994). The total static crystalline charge

density was computed using the VMoPro STAT method, with

a 10 Å selection for grid limits, grid-cube dimensions in frac-

tional coordinates, the origin at (0,0,0), a maximum coordinate

value of 0.9844 in each dimension, a 10 Å margin around the

grid for contributing atoms, and 64 � 64 � 64 grid points.

MoPro charge densities were scaled to yield a total charge of

64 electrons in the unit cell.

2.3. Quantum crystallographic models

A custom implementation of the original Hirshfeld atom

refinement method (Jayatilaka & Dittrich, 2008) was used to

obtain quantum crystallographic models. Quantum charge

density calculations were performed using atomic coordinates

from each of three different models: the SHELX refined

spherical atom structure; the neutron crystal structure of

Swaminathan et al. (1984); and the multipole model of

Birkedal et al. (2004). An expanded unit cell with 16 atoms was

generated using the Computational Crystallography Toolbox

(cctbx) (Grosse-Kunstleve et al., 2002) by applying P�4421m

symmetry to the five-atom asymmetric unit. Ab initio density

functional theory calculations were performed using VASP,

Version 5.3.3 (Kresse & Furthmüller, 1996). Instead of pseu-

dopotentials, the PAW method was used, with PAW_PBE

parameters (Kresse & Joubert, 1999). The electronic structure

was computed using 43 = 64 Monkhorst-Pack k points. Partial

occupancies were calculated using Fermi smearing at the

experimental temperature of 123 K. As there are fewer than

20 atoms in the expanded urea unit cell, LREAL = .FALSE.

was used to evaluate projection operators in reciprocal space,

as recommended in the VASP documentation. The valence

charge density v(x) was calculated for the expanded P1 unit

cell. In addition, using the same VASP PAW method as for the

molecular calculation, 16 crystalline core charge densities ci(x)

and 16 crystalline free-atom (‘promolecule’) charge densities

fi xð Þ were obtained for each individual atom i.

To achieve the desired model accuracy, all VASP charge

densities were calculated on a 128 � 128 � 128 grid spanning

the unit cell. For crystallographic refinement, the densities

were decimated to a 64 � 64 � 64 grid. The decimated total

static charge density calculated in VASP is provided in the

supporting information, along with the difference between the

VASP and MoPro multipole static charge density.

X-ray structure factors were calculated using both new and

existing tools in Lunus software (Wall, 2009), which was

originally designed for analysis and modeling of diffuse X-ray

scattering data (Wall et al., 1997a,b, 2014). The effect of ADPs

was modeled using a Stockholder method (Bruning & Feil,

1992; Hirshfeld, 1977b). The total valence density v(x) was

partitioned into atomic contributions using the equation

vi xð Þ ¼ qi xð Þv xð Þ: ð1Þ

Hirshfeld partitioning (Hirshfeld, 1977b) was used with

weights qi xð Þ defined using the free-atom charge density fi xð Þ

qi xð Þ ¼
fi xð ÞP

i fi xð Þ
: ð2Þ

Similar to Bruning & Feil (1992), ADPs were modeled by

treating each partitioned atom charge density

ai xð Þ ¼ ci xð Þ þ vi xð Þ as a rigid distribution, displaced along

with the atom. However, in contrast to Bruning & Feil (1992),

instead of using a multipole expansion, the charge density

ai uvwð Þ was sampled on a rectilinear grid spanning the unit

cell, indexed by uvw. This method is similar to that of Jayati-

laka & Dittrich (2008), who used a radial-angular Becke grid

for sampling. Here a rectilinear grid is chosen, as it corre-

sponds precisely both to the VASP results and to the discrete

sampling by the Bragg peaks in the crystallographic experi-

ment. The partitioned atom structure factors were defined as

Ai hklð Þ ¼ DFT ai uvwð Þ
� �

, where DFT denotes a discrete

Fourier transform. The DFTwas computed using a fast Fourier

transform (FFT) algorithm (Press et al., 1999).

In the original Hirshfeld refinement method (Jayatilaka &

Dittrich, 2008), the value A0i hklð Þ of Ai hklð Þ after a coordinate

shift x0 was obtained by multiplying Ai hklð Þ by a phase factor.

Although multiplication by a phase factor is appropriate for

arbitrary translations of a continuous distribution or an atom-

centered grid, it is not appropriate for translations by frac-
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tional grid points on a fixed rectilinear grid such as is used

here. The correct transformation instead requires a resampling

of the shifted distribution ai uvwð Þ on the original grid

(Appendix). The structure factors are obtained by trans-

forming x0 to the grid coordinates u0v0w0, decomposing these

coordinates into integer (u0v0w0) and fractional (u1v1w1) parts

such that 0 � u1<1, 0 � v1<1, and 0 � w1<1, and using the

following equation to calculate A0i hklð Þ

A0i hklð Þ ¼ Ai hklð Þe
�2�ihu0

N1 e
�2�ikv0

N2 e
�2�ilw0

N3

�

�
ð1� u1Þð1� v1Þð1� w1Þ þ e

�2�ih
N1 u1ð1� v1Þð1� w1Þ

þ e
�2�ik

N2 ð1� u1Þv1ð1� w1Þ þ e
�2�il

N3 ð1� u1Þð1� v1Þw1

þ e
�2�ih

N1 e
�2�ik

N2 u1v1 1� w1ð Þ þ e
�2�ih

N1 e
�2�il

N3 u1 1� v1ð Þw1

þ e
�2�ik

N2 e
�2�il

N3 ð1� u1Þv1w1 þ e
�2�ih

N1 e
�2�ik

N2 e
�2�il

N3 u1v1w1

�
:

ð3Þ

The unit-cell structure factor Fc hklð Þ was then calculated as

Fc hklð Þ ¼
X

i
A0i hklð Þe�2�2shkl �Ui�shkl ; ð4Þ

where e�2�2shkl �Ui�shkl is the Debye–Waller factor for the matrix

Ui of ADPs for atom i, and shkl is the scattering vector

corresponding to Miller indices hkl.

2.4. Quantum model refinement

Quantum refinements were performed starting with the

spherical atom (S), multipole (M) (Birkedal et al., 2004), and

neutron crystallography (N) (Swaminathan et al., 1984) atomic

coordinates and ADPs. Model refinement was performed by

minimizing the goodness-of-fit (GooF) statistic

GooF ¼

P
hkl Io hklð Þ � Ic hklð Þð Þ

2=�2
I hklð Þ

NDF

� �1=2

; ð5Þ

where Ic hklð Þ ¼ Fc hklð Þ
�� ��2, Io hklð Þ and �I hklð Þ are the values

and errors of the observed intensities, and the number of

degrees of freedom NDF = 965 is the number of data points

(= 992 non-negative intensity values in the merged data set),

minus the number of free parameters in the fit (= 27, see

below). A value of the GooF for each set of coordinates and

ADPs was obtained by minimizing it with respect to an arbi-

trary scale factor between the calculated and observed

reflection amplitudes. Each matrix Ui was decomposed into

eigenvalues and eigenvectors, and three Euler angles were

computed from the eigenvectors, to obtain a set of indepen-

dent parameters for efficient optimization. Optimization with

respect to atom positions and eigenvalues and Euler angles

from U matrices was performed in python using the

scipy.optimize.minimize Powell method, using default settings.

Due to the use of the Powell method, error bars were not

obtained for the fitted parameter values. Eigenvalues were

constrained to be positive. Symmetry of the atomic coordi-

nates and ADPs was enforced explicitly using the following

equations: X ¼ 0 and U23 ¼ 0 for C, O atoms; Y ¼ X þ 0:5
for all atoms; and U22 ¼ U11 and U13 ¼ U23 for all atoms.

Enforcement of symmetry reduced the number of free para-

meters from 9 to 4 for the C, O atoms and to 6 for the N, H1,

and H2 atoms. There were a total of 27 free parameters in the

refinement, including the scale factor between the data and

model (the same number as for spherical atom refinement, but

without geometry restraints).

The mean unit cell charge densities � were calculated using

Fourier reconstruction as � uvwð Þ ¼ DFT F hklð Þ½ �. The

experimental Fo, 2Fo � Fc and Fo � Fc maps were calculated

by applying the model phases to the observations. Values of

Fc hklð Þ
�� �� were used in place of missing values of Fo hklð Þ

�� ��.
Only complete grids were used for FFT calculations on the

quantum models; reflections were not truncated using a

resolution cutoff. The Fo, Fc, 2Fo � Fc, and Fo � Fc maps

obtained using the multipole model as an input structure are

provided in the supporting information.

2.5. Agreement factors

The agreement of all models with the diffraction data was

assessed using several standard statistics: GooF, wR2F, wR2I,

RF, and RSR. The GooF [equation (5)] was used as the

refinement target. The weighted R-squared factor for ampli-

tudes, wR2F, was calculated as

wR2F ¼

P
hkl Fo hklð Þ

�� ��� Fc hklð Þ
�� ��� �2

=�2
F hklð ÞP

hkl Fo hklð Þ
�� ��2=�2

F hklð Þ

" #1=2

; ð6Þ

where Fo hklð Þ
�� �� and �F hklð Þ are the experimental reflection

amplitudes and errors, and Fc hklð Þ is calculated using equation

(4). The weighted R-squared factor for intensities, wR2I, was

calculated as

wR2I ¼

P
hkl Io hklð Þ � Ic hklð Þð Þ

2=�2
I hklð ÞP

hkl Io hklð Þ=�2
I hklð Þ

� �1=2

; ð7Þ

the R factor for amplitudes, RF, was calculated as

RF ¼

P
hkl Fo hklð Þ
�� ��� Fc hklð Þ

�� ���� ��P
hkl Fo hklð Þ
�� �� ; ð8Þ

the real-space R-factor, RSR, was calculated as

RSR ¼

P
uvw �o uvwð Þ � �c uvwð Þ
�� ��P

uvw �o uvwð Þ þ �c uvwð Þ
�� �� ; ð9Þ

where �o is the experimental Fo map. Calculated and observed

values were scaled to minimize the RMSD prior to using

equations (5)–(9), and both �o and �c were offset to have zero

mean prior to using equation (9). To enable fair comparison,

all agreement factors were calculated using Lunus software

tools. Values reported in primary references were very similar

to those computed using Lunus.

3. Results

The agreement factors for all quantum crystallographic

models are the same (in % units): wR2F (target) = 0.9, wR2I =

1.8, RF = 2.3, RSR = 2.1 and GooF = 1.7 (Table 1). These are

slightly better than the multipole model, which has values 0.2–
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0.3% higher for each. The quantum and multipole models

agree much better with the data than the spherical atom model

(Table 1).

Three-dimensional visualizations of the 2Fo � Fc and Fo �

Fc maps for the spherical atom, quantum-M, and multipole

models are shown in Fig. 1. The spherical atom and multipole

2Fo � Fc maps appear to be more similar to each other than

they are to the quantum model. This appearance is supported

quantitatively using a RSR statistic calculated between each

pair of 2Fo � Fc real-space maps, using an appropriately

modified equation (9). A value of 4.9% was obtained between

the spherical atom and multipole models. By comparison, the

RSR values between the quantum

model and either the spherical

atom (8.2%) or the multipole

model (7.4%) were much greater.

These values are all higher than the

RSR of any of the models with the

data (Table 1).

Visualization of contours in a

two-dimensional section including

the C O bond reveals that the

quantum and multipole 2Fo � Fc

maps are very different (Figs. 2a

and b). (Much of this difference

might be an artifact in the multi-

pole map calculation, as mentioned

below.) Compared with the multi-

pole model (Fig. 2b), the quantum-

M model is smoother (Fig. 2a). The multipole model shows

ripples surrounding core atoms and peaks away from atoms,

including between bonded heavy atoms. The quantum-M

model has some peaks away from the atom cores (Fig. 2a), but

these are lower in magnitude compared with the multipole

model. The quantum-M and multipole model Fo � Fc differ-

ence maps are broadly similar (Figs. 2c and d), with the larger

deviations from the data in the multipole model along the

C O axis, consistent with the slightly higher values of

agreement factors for this model (Table 1).
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Figure 1
Comparison of 2Fo � Fc and Fo � Fc maps for (a) spherical atom, (b) Quantum-M, and (c) multipole
models. Level charge density surfaces in 2Fo � Fc maps are rendered using a blue wireframe at a level of
1-sigma. Level surfaces in Fo � Fc maps are shown in green (positive electron density, negative charge)
and red (negative electron density, positive charge) wireframes at 3-sigma. The figure was created using
COOT (Emsley et al., 2010).

Figure 2
Comparison of two-dimensional contours in the reconstructed mean unit
cell charge density for the quantum-M (left), and multipole (right) models
in the y = 0 section. (a)–(b) 2Fo � Fc maps in 0.05 e Å�1 contours, to a
maximum of 3 e Å�1. (c)–(d) Fo � Fc difference maps in 0.05 e Å�1

contours. Negative electron density contours in each panel are colored
red. The view is along the same direction as that in Fig. 4, in the plane of
the C O bond. The orientation is such that x increases along the
horizontal, and z increases along the vertical. The image was created
using mapslicer in the CCP4 suite (CCP4, 1994).

Figure 3
Two-dimensional contours in the static total charge densities derived
from the multipole model atom coordinates (Birkedal et al., 2004) (the
section and orientation is the same as in Fig. 2). (a) Theoretical density
computed using VASP. (b) Multipole charge density refinement in
MoPro. (c) Density in (b) subtracted from density in (a). (d) Difference
density computed by subtracting the theoretical density using quantum-M
refined atom coordinates from the density in (a) [the view of the total
density using the quantum-M structure is indistinguishable from (a)].
Contours in all panels are in 0.05 e Å�1 intervals, to a maximum of
3 e Å�1. Negative electron density contours in panels (c) and (d) are
colored red. The image was created using mapslicer in the CCP4 suite
(CCP4, 1994).



To investigate further the differences between the 2Fo � Fc

maps of the quantum-M and multipole models, we compared

the static total charge densities calculated using either VASP

or MoPro. Both charge densities correspond to the multipole

geometry (Birkedal et al., 2004). There are visible differences

(Figs. 3a and b); however, the differences are much smaller

than in the 2Fo � Fc maps (Figs. 2a and b), and they coincide

with atoms and bonds. The comparison suggests that the

ripples in the 2Fo � Fc map from the multipole model are an

artifact of the FOUR method implementation in VMoPro (e.g.

a truncation of reflections beyond 0.347 Å resolution).

Subtracting the static charge densities from VASP and

MoPro reveals substantial differences in the charge distribu-

tion along the C O bond (Fig. 3c). These differences show a

similar pattern of peaks and troughs as in the Fo � Fc map for

the multipole model (Fig. 2d); by comparison, the Fo� Fc map

of the quantum-M model shows smaller differences along the

C O bond (Fig. 2c). Combined, Figs. 2 and 3 indicate that the

multipole static charge density contains deviations from the

data in the C O bond that are decreased in the quantum-M

model.

The VASP and MoPro calculations were further compared

using a Bader analysis of the net atom charges (Tang et al.,

2009; Table 2). The theoretical VASP charges are similar for

the spherical atom, multipole and neutron structures. The

main difference between these and the multipole model

charges is for the C atom, which has a value of 4.06–4.08

electrons from the theoretical density, and 4.57 electrons from

the multipole model density. This substantial 0.5 electron

difference is compensated by smaller differences in the

charges on the other atoms, which are between 0.06 and 0.09

electrons smaller in the multipole model.

The atomic coordinates of the quantum-M, quantum-N,

neutron and multipole models are all very similar (Table 3).

The differences between these models and either the spherical

atom or quantum-S model are small for the heavy atoms, but

are larger for the H atoms. The differences lead to a

substantial deviation in the N—H1 bond for the spherical

atom and quantum-S structure compared with the neutron

structure (Table 4): the bond length is 1.006 Å in the neutron

structure compared with 0.911 Å in the spherical atom and

0.810 Å in the quantum-S structure. The differences also lead

to decreases in the C—N—H1 and C—N—H2 bond angles for

both the spherical atom and quantum-S structures compared

with the neutron structure (Table 5): the angles in the sphe-

rical atom model are about 2� smaller, and the angles in the

quantum-S model are about 4� smaller than in the neutron

structure. There is a corresponding increase in the H1—N—

H2 angle for each compared with the neutron structure: 4� for

the spherical atom and 8� for the quantum-S structure. The

angle deviations for the quantum-S model are visible in the

stick diagram in Fig. 3(a); the effect is smaller but still

perceptible for the spherical atom model (not shown).

The similarity of ADPs was assessed using the S statistic,

which describes the deviation of the three-dimensional posi-

tional distribution of the atoms defined by the ADPs (Whitten

& Spackman, 2006). The ADPs for the heavy atoms in the

quantum models are very similar to the neutron models (Table

6; Fig. 4): the value of S for the C atom ranges from 0.04 to
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Table 2
Atom charges based on Bader analysis of total static charge densities.

VASP calculations correspond to the spherical atom (S), multipole (M), and
neutron (N) structures. The MoPro calculation corresponds to the multipole
(M) structure. Units are negative charge in electrons.

C O N H1 H2

VASP (S) 4.08 9.26 8.33 0.51 0.50
VASP (M) 4.06 9.26 8.31 0.51 0.53
VASP (N) 4.06 9.27 8.31 0.51 0.53
MoPro (M) 4.57 9.20 8.22 0.46 0.44

Table 3
Coordinates for atoms in the asymmetric unit.

Model labels in column 2 are as in Table 1, with the addition of the neutron
model (Swaminathan et al., 1984). Hydrogen model parameters for the
multipole model were copied from the neutron model (Birkedal et al., 2004).
Units are fractions of unit-cell dimensions.

X Y Z

C Sphere 0 0.5 0.3281
Quant-S 0 0.5 0.3279
Quant-M 0 0.5 0.3281
Quant-N 0 0.5 0.3277
Neutron 0 0.5 0.3280
Multipole 0 0.5 0.3282

O Sphere 0 0.5 0.5964
Quant-S 0 0.5 0.5967
Quant-M 0 0.5 0.5966
Quant-N 0 0.5 0.5963
Neutron 0 0.5 0.5962
Multipole 0 0.5 0.5963

N Sphere 0.1450 0.6450 0.1783
Quant-S 0.1452 0.6452 0.1782
Quant-M 0.1446 0.6446 0.1796
Quant-N 0.1447 0.6447 0.1785
Neutron 0.1447 0.6447 0.1785
Multipole 0.1447 0.6447 0.1790

H1 Sphere 0.2438 0.7438 0.2793
Quant-S 0.2316 0.7316 0.2722
Quant-M 0.2571 0.7571 0.2837
Quant-N 0.2571 0.7571 0.2838
Neutron 0.2557 0.7557 0.2841
Multipole 0.2557 0.7557 0.2841

H2 Sphere 0.1382 0.6382 �0.0363
Quant-S 0.1324 0.6324 �0.0371
Quant-M 0.1432 0.6432 �0.0343
Quant-N 0.1432 0.6432 �0.0344
Neutron 0.1431 0.6431 �0.0348
Multipole 0.1431 0.6431 �0.0348

Table 4
Bond lengths for alternative models.

Model labels are as in Table 1. Units are Å.

C O N—O N—H1 N—H2

Sphere 1.257 2.268 0.911 1.006
Quant-S 1.259 2.271 0.810 1.013
Quant-M 1.258 2.263 1.011 1.001
Quant-N 1.258 2.266 1.012 0.996
Neutron 1.257 2.266 1.006 1.000
Multipole 1.257 2.265 1.005 1.002



0.06%; the value for the O atom from 0.13 to 0.14%; and the

value for the N atom from 0.27 to 0.32%. The similarities are

comparable for the multipole model. The ADPs for the H

atoms in the quantum models are also similar to the neutron

crystal structure, but to a lesser degree than the heavy atoms:

the value of S for H1 varies from 1.61 to 2.25%; and the value

for H2 varies from 2.34 to 3.46%. A high-level quantum

theoretical calculation of vibrations of urea to obtain ADPs

(Madsen et al., 2013) yielded a comparable similarity for the

heavy atoms (S = 0.12, 0.16, and 1.1% for C, O, and N,

respectively) and a higher similarity for the H atoms (S = 0.13

and 0.05% for H1 and H2, respectively). However, the simi-

larities in Madsen et al. (2013) were computed after applying

an overall scale factor with respect to the experimental ADPs;

the similarities are considerably lower without applying the

scale factor (S = 1.36, 0.9, 1.7, 0.5, and 0.65% for C, O, N, H1,

and H2, respectively, using the B3LYP/6-31G(d,p) method).

The similarity of the spherical atom heavy atom ADPs to the

neutron structure is high (S = 0.04, 0.13, and 0.21% for C, O,

and N), and the similarity for the H atoms is low, as expected

for a spherical atom model (S = 25.65 and 5.91%). The

multipole model hydrogen parameters were copied from the

neutron structure and therefore are identical (Birkedal et al.,

2004).

To assess the convergence of the quantum refinement, as

was done in previous HAR implementations (Capelli et al.,

2014; Jayatilaka & Dittrich, 2008), the electronic structure

calculation was iteratively applied to each of the quantum

models. In the iteration, the refined atomic coordinates were

used to re-compute all charge densities using VASP, and the

model was re-refined against the data using the new densities.

The quantum-M and quantum-N models were essentially

unchanged in the second iteration: the initial static charge

densities were very similar to those for the first iteration, as

shown for the quantum-M model in Fig. 3(d); the agreement

factors remained the same as in Table 1; all of the fractional

atomic coordinates changed by less than 5 � 10�3, with

maximal changes of 1 � 10-3 for heavy atom coordinates; and

the similarity statistic for the ADPs was 0.06% or lower for all

atoms between the first and second iterations. In contrast, the

quantum-S model showed divergent behavior: the agreement

factors were slightly larger (by 0.1–0.2%) for the second

iteration; hydrogen fractional coordinates changed by as much

as 0.05 (a 0.2 Å shift of the x- and y-position of the H1 atom);

and the similarity statistic for the ADPs was as high as 2.6%

(H1 atom), which is comparable to the value computed

between the quantum models and the neutron model (Table

6).

4. Discussion

The agreement of the quantum crystallographic models of

urea with ultra-high-resolution data compares favorably to the
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Table 6
Values of ADPs for atoms in the asymmetric unit.

Labels in column 2 are as in Table 2. Units are Å2. U11 = U22 and U13 = U23 by
symmetry. The similarity statistic (S) with respect to the ADPs of the neutron
model is computed following Whitten & Spackman (2006), in % units.
Hydrogen model parameters for the multipole model were copied from the
neutron model (Birkedal et al., 2004).

U11 = U22 U33 U12 U13 = U23 S

C Sphere 0.0150 0.0070 0.0000 0.0000 0.04
Quant-S 0.0141 0.0061 0.0001 0.0000 0.05
Quant-M 0.0141 0.0061 0.0001 0.0000 0.04
Quant-N 0.0141 0.0060 0.0001 0.0000 0.06
Neutron 0.0147 0.0065 0.0001 0.0000 0.00
Multipole 0.0152 0.0068 �0.0004 0.0000 0.03

O Sphere 0.0199 0.0066 0.0020 0.0000 0.13
Quant-S 0.0194 0.0059 0.0019 0.0000 0.14
Quant-M 0.0194 0.0060 0.0020 0.0000 0.14
Quant-N 0.0194 0.0061 0.0020 0.0000 0.13
Neutron 0.0197 0.0063 0.0001 0.0000 0.00
Multipole 0.0196 0.0067 0.0016 0.0000 0.10

N Sphere 0.0293 0.0096 �0.0155 0.0001 0.21
Quant-S 0.0285 0.0087 �0.0158 0.0000 0.32
Quant-M 0.0285 0.0085 �0.0156 0.0001 0.29
Quant-N 0.0286 0.0087 �0.0156 0.0001 0.27
Neutron 0.0286 0.0095 �0.0147 0.0002 0.00
Multipole 0.0293 0.0096 �0.0157 0.0000 0.23

H1 Sphere 0.0295 0.0468 �0.0127 �0.0184 25.65
Quant-S 0.0550 0.0259 �0.0392 �0.0019 1.61
Quant-M 0.0495 0.0168 �0.0295 0.0019 2.13
Quant-N 0.0490 0.0172 �0.0296 0.0022 2.25
Neutron 0.0440 0.0216 �0.0223 �0.0031 0.00
Multipole 0.0440 0.0216 �0.0223 �0.0031 0.00

H2 Sphere 0.0415 0.0206 0.0099 �0.0024 5.91
Quant-S 0.0380 0.0227 �0.0191 0.0015 2.34
Quant-M 0.0409 0.0270 �0.0187 �0.0013 3.43
Quant-N 0.0410 0.0272 �0.0186 �0.0012 3.46
Neutron 0.0430 0.0141 �0.0159 0.0020 0.00
Multipole 0.0430 0.0141 �0.0159 0.0020 0.00

Table 5
Bond angles for alternative models.

Model labels are as in Table 1. Units are degrees.

O—C—N N—C—N C—N—H1 C—N—H2 H1—N—H2

Sphere 121.54 116.91 117.28 118.42 124.30
Quant-S 121.49 117.04 115.68 115.82 128.50
Quant-M 121.40 117.21 119.87 120.81 119.32
Quant-N 121.49 117.01 119.30 121.02 119.68
Neutron 121.54 116.92 118.99 120.82 120.20
Multipole 121.50 117.01 119.15 120.78 120.07

Figure 4
Displacement ellipsoids at 50% probability for (a) Quantum-S, (b)
Quantum-M, and (c) neutron diffraction models. In each structure, the O
atom is red, the C dark grey, the N blue, and the H1 and H2 light grey,
with the H2 at the bottom of the molecule. The Quantum-N model is not
shown as it is indistinguishable from the Quantum-M model; similarly, the
multipole model is not shown as it is indistinguishable from the neutron.
The latter is due to the fact that the hydrogen parameters of the multipole
model were copied from the neutron model (Birkedal et al., 2004). The
image was created using Mercury (Macrae et al., 2008).



multipole model. Both the 2Fo � Fc map and the total static

charge density are substantially different between the

quantum and multipole models, however. The differences in

2Fo � Fc appear largely to be due to an artifact in the multi-

pole map, as they contain ripples that do not coincide with

atom positions or bonds (Figs. 2a and b). The differences in the

static charge density, however, appear to be real, with notable

differences both in the electronic structure of the C O bond

(Fig. 3c) and in the 0.5-electron higher negative charge asso-

ciated with the C atom for the multipole model (Table 2). The

difference in the C atom charge is consistent with the multi-

pole charge density study of Birkedal et al. (2004), which

reported a 0.7–0.8 electron larger negative charge for the C

atom in the multipole model compared with theoretical charge

density calculations.

Whereas Birkedal et al. (2004) concluded the difference

between their multipole model of urea and the theoretical

charge density was due to inaccuracies in the quantum elec-

tronic structure calculation, this study suggests that the

difference might instead be due to inaccuracies in the multi-

pole model. The quantum charge densities were obtained

using quantum theory and are consistent with the experi-

mental data. The multipole model, although also consistent

with the experimental data, is more weakly tied to the

underlying theory, and relies on the fitting of many para-

meters. The possibility of inaccuracies in the multipole model

is supported by a controlled study using synthetic data (De

Vries et al., 2000) which found that the charge density of urea

could not be determined uniquely using multipole refinement;

however, this support is tempered by the fact that the

synthetic data did not extend to a resolution as high as the

data in Birkedal et al. (2004).

The present results indicate that it would be worthwhile

investigating whether HAR might produce more reliable

interaction density models than are currently obtained using

multipole methods. Compared with multipole refinement,

HAR uses fewer parameters and relies on quantum theory for

the increased expressiveness needed to model the aspherical

component of the charge density. In addition, in HAR, the

same quantum electronic structure method used for the crystal

phase calculation can be used for the gas phase. Thus, whereas

calculating the multipole interaction density involves

subtracting two densities that were obtained using substan-

tially different methods, the HAR interaction density can be

obtained by subtracting densities that are more comparable.

The thermal ellipsoids in the quantum models are both

quantitatively (Table 6) and qualitatively (Fig. 4) similar to the

neutron crystal structure. This was even the case for the

quantum-S model, despite the lack of convergence seen in a

second iteration of refinement and deviations in the geometry

with respect to the neutron model (Tables 4 and 5). This

finding is consistent with studies in which the neutron crys-

tallographic temperature factors of urea (Jayatilaka &

Dittrich, 2008) and other systems (Capelli et al., 2014; Woińska

et al., 2014) were found to be reproduced reasonably well

using HAR. In particular, the previous urea study (Jayatilaka

& Dittrich, 2008) used BLYP density functional theory with a

cc-pVTZ basis and surrounding charge clusters to mimic

periodic boundary conditions, and used the same starting

structure as the present quantum-M refinement (Birkedal et

al., 2004). The following ADP values were obtained for H

atoms (Jayatilaka & Dittrich, 2008) (U11, U33, U12, and U13 in

Å2 units): (0.0550, 0.0170, �0.0350, 0) for H1, and (0.0450,

0.0260, �0.0190, �0.0020) for H2. These values are similar to

those found here (Table 6); in addition, values for heavy atoms

differed by less than 0.001 Å2 compared with those found

here. The similarity statistics S computed with respect to the

ADPs from the quantum-M model are (in % units): 0.01, 0.03,

0.06, 0.26, and 0.08 for the C, N, O, H1, and H2 atoms,

respectively. The similarity of the ADPs here with those in

Jayatilaka & Dittrich (2008), in addition to the consistency of

the quantum refined ADPs in this study using different

starting structures, indicates that HAR can yield estimates of

ADPs that are robust to differences in starting structures and

DFT methods.

The results for the quantum-M and quantum-N models

indicate the potential advantages of quantum crystallography

for accurate charge density studies. The lack of convergence

and geometry deviations of the quantum-S model, however,

indicate that challenges remain for the general applicability of

these methods. The deviations of the quantum-S model can be

traced back to deviations in the spherical atom model:

although the heavy atoms are consistent with the neutron

structure, the deviation in the hydrogen positions is more

substantial (Table 3), leading to corresponding deviations in

geometry (Tables 4 and 5). These deviations are increased

rather than decreased in the quantum-S model, which

prevents the quantum refinement from converging on

successive iterations.

Because it is not currently feasible to obtain neutron crystal

structures for all systems of interest, the generalization of the

quantum crystallography methods developed here to routine

X-ray crystallographic structure determination will require

improved modeling of hydrogen positions in the starting

structure. The successful application of iterative electronic

structure calculations in HAR applications to ammonia and

Gly–l-Ala using spherical atoms models like those used here

as input structures (Capelli et al., 2014) indicates that a

spherical atom model is adequate for at least some molecular

crystals. It would be interesting to determine whether iterative

HAR using the implementation of Capelli et al. (2014)

converges using the present spherical atom model of urea as

an input (as mentioned above, the study of Jayatilaka &

Dittrich, 2008, made use of the same model as the quantum-M

refinement here). It is possible that hydrogen positions in

spherical atom models would be sufficiently improved using

methods that leverage information in structure databases

(Bąk et al., 2011; Bendeif & Jelsch, 2007; Dadda et al., 2012;

Dittrich et al., 2005, 2009), which can place H atoms to within

O(10�2) Å of the positions in neutron crystal structures.

There are many ways HAR may be extended, targeting, e.g.,

more accurate models of structure variation than ADPs, and

larger systems. For larger systems, it will be especially impor-

tant to assess the applicability of fast, approximate quantum
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electronic structure calculations (Mniszewski et al., 2015) to

quantum crystallography. Increasing the speed of calculations

would enable the wider adaptation of HAR by adapting

existing small-molecule crystallography workflows, and would

provide a complementary quantum crystallographic alter-

native to multipole refinement (Jelsch et al., 2000) for

obtaining high-resolution charge density models of molecular

crystals, including macromolecular crystals.

APPENDIX A
Transformation of the structure factors upon
translation of the charge density

Here the transformation is illustrated using the one-dimen-

sional case; the extension to three dimensions in equation (3)

is straightforward. The structure factors are given by the

discrete Fourier transform (DFT) of a periodic charge density

� uð Þ sampled at N fixed grid points u, with � uþ Nð Þ ¼ � uð Þ.

Let the charge density � uð Þ correspond to the following

continuous step-wise distribution

� xð Þ ¼
XN�1

u¼0

� uð Þ 	 x� uð Þ � 	 x� u� 1ð Þ½ �; ð10Þ

where the Heaviside distribution 	 xð Þ ¼ 1 for x 	 0 and

	 xð Þ ¼ 0 otherwise. Translation of � xð Þ by a shift �x yields a

new charge density

��x xð Þ ¼ � x��xð Þ

¼
X

u

� uð Þ 	 x��x� uð Þ � 	 x��x� u� 1ð Þ½ �:

ð11Þ

Discrete sampling of this shifted charge density on the original

fixed grid at integer u yields

��xðuÞ ¼

Z uþ1

u

dx�ðx��xÞ

¼

Z uþ1

u

dx
X

u0

�ðu0Þ½	ðx��x� u0Þ

� 	ðx��x� u0 � 1Þ�:

ð12Þ

Decomposing the shift �x ¼ u0 þ u1 into an integer compo-

nent u0 plus a positive fractional component 0 � u1 < 1 yields

��x uð Þ ¼
X

u0

� u0ð Þ

Zuþ1

u

dx
�
	 x� u0 � u0 � u1ð Þ

� 	 x� u0 � u0 � u1 � 1ð Þ
�
; ð13Þ

which is only nonzero for the terms u0 ¼ u� u0 and

u0 ¼ u� u0 � 1. Performing the integrals for these terms

yields

��x uð Þ ¼ � u� u0ð Þ 1� u1ð Þ þ � u� u0 � 1ð Þu1: ð14Þ

Define the structure factors A hð Þ ¼ DFT � uð Þ½ � and

A�x hð Þ ¼ DFT ��x uð Þ
� �

. A�x hð Þ is obtained from A hð Þ by

applying the DFT shift theorem to equation (14)

A�x hð Þ ¼ e
�2�ihu0

N A hð Þ 1� u1ð Þ þ e
�2�ih

N u1

h i
; ð15Þ

which is the one-dimensional version of equation (3). Equa-

tion (15) is exact, and demonstrates that A�x hð Þ 6¼ e
�2�ih�x

N A hð Þ

if �x includes a nonzero fractional shift u1.
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