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The tremendous interest in enzymes as biocatalysts has led to extensive work in

enzyme engineering, as well as associated methodology development. Here, a

new framework for computer-aided directed evolution of enzymes (CADEE) is

presented which allows a drastic reduction in the time necessary to prepare and

analyze in silico semi-automated directed evolution of enzymes. A pedagogical

example of the application of CADEE to a real biological system is also

presented in order to illustrate the CADEE workflow.

1. Introduction

In recent years there has been an explosion of interest in

enzymes as biocatalysts for a wide range of processes from

chemical synthesis to generating new biofuels (Reetz, 2013;

Nestl et al., 2014; Bommarius, 2015; Faber et al., 2015; Zhang,

2015). In particular, the excellent chemoselectivity, regios-

electivity and enantioselectivity of enzymes, as well as their

ability to work under mild reaction conditions, are the main

factors that make enzymes competitive catalysts even on an

industrial scale (Huisman & Collier, 2013). However, the same

features that make enzymes such powerful catalysts in vivo

can be contrary to the needs of industrial catalysts. For

example, the majority of natural proteins have evolved to

perform at the low substrate concentrations and catalyst loads

found in physiological conditions; in contrast, economically

feasible chemical processes require high loads to be able to

achieve reasonable space–time yields (Tufvesson et al., 2013).

Fortunately, recent advances in protein-engineering approa-

ches have provided great scope for enzyme adaptation to

match process requirements, rather than tuning processes to

the limitations of the catalyst, as was performed as recently as

ten to fifteen years ago (Bornscheuer et al., 2012). As a result

of this, the number of industrially applicable enzymes avail-

able is steadily increasing (Huisman & Collier, 2013; Choi et

al., 2015; Narancic et al., 2015). However, despite these

advances, there still remain many open challenges in the field

(some of which are reviewed in detail in, for example,

Bommarius, 2015), and computation in particular has been

increasingly employed as a tool to accelerate progress in

enzyme-(re)design efforts (Kiss et al., 2013; Kries et al., 2013;

Damborský & Brezovský, 2014; Frushicheva et al., 2014;

Świderek, Tuñón, Moliner et al., 2015).

Historically, protein-engineering efforts have focused on

rational design approaches, which have made significant

contributions to the field (for reviews, see, for example,

Steiner & Schwab, 2012; Tiwari et al., 2012). These are,

however, limited by the complexity of enzymes and the large
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amount of information required to make reliable predictions.

Although effort in rational design still continues, the

achievements of these methods are often limited and require

further optimization (Steiner & Schwab, 2012; Tiwari et al.,

2012; Kiss et al., 2013; Kries et al., 2013, Frushicheva et al.,

2014). This optimization is typically achieved by the use of

methods that have literally revolutionized biocatalysis, namely

strategies that allow the guided laboratory evolution of

enzymes (so-called ‘directed evolution’ approaches). These

involve various gene diversification and screening or selection

strategies (Packer & Liu, 2015). Directed evolution is a

particularly powerful tool for biocatalysis, as smart combina-

tions of diversification methods and screening strategies

increasingly allow the production of catalytically superior

enzyme variants that are simply not predictable through

rational design approaches (Arnold & Volkov, 1999; Jäckel et

al., 2008; Currin et al., 2015).

The greatest challenge facing directed evolution approaches

is the sheer vastness of the sequence space that needs

screening. That is, even a simple 300-amino-acid protein can

have 30020 possible permutations of amino-acid substitutions.

For comparison, traditional microtitre plate screens are typi-

cally limited to a throughput of�104 clones per round (Packer

& Liu, 2015). Here, there have fortunately been significant

advances in both screening and selection methods involving

fluorescence-activated sorting (FACS; e.g. cell surface display

or in vitro compartmentalization), which make it now possible

to achieve throughput limits of 108–1010 (Packer & Liu, 2015).

However, even though advanced screening and selection

methods have substantially decreased the screening effort, the

sequence space of most enzymes is still far too large to be

sufficiently covered by directed evolution, making such studies

something of a ‘shot in the dark’. Additionally, depending on

the starting points used, directed evolution experiments can

easily become stuck at local minima in sequence space

(Romero & Arnold, 2009; Gumulya et al., 2012).

To finally achieve more broadly applicable and practicable

protein-engineering strategies, directed evolution needs to be

combined with computational tools and/or structural infor-

mation (Davids et al., 2013). By creating ‘small but smart’

libraries, these semi-rational approaches have led to

impressively redesigned enzymes for industrial approaches by

reducing the screening efforts involved to economically

feasible levels (Bornscheuer et al., 2012). A prominent

example of this is the case of an amine transaminase being

re-engineered through 11 rounds of semi-rational directed

evolution to match the needs of the industrial process for

sitagliptin manufacture (Savile et al., 2010). This was achieved

by first predicting positions for saturation mutagenesis to

improve the substrate scope using homology modelling. Once

a feasibly high activity had been achieved towards the target

substrate, random substitutions were introduced that were

then recombined based on statistically analyzed sequence–

activity relationships (ProSAR; Fox et al., 2007). Through this

support from rational methods, it was possible to substantially

reduce the amount of screening effort required for the

directed evolution to be successful. The final variant, which

bears 27 substitutions (Fig. 1), has impressively improved

tailored catalytic properties, and eventually replaced the

rhodium-catalyzed amination step in the classical process for

sitagliptin manufacture.

In addition, computational modelling and simulations have

demonstrated themselves to be increasingly powerful tools in

computational enzyme design. The contributions of theory

range from the de novo design of enzymes with novel catalytic

properties (Kiss et al., 2013; Kries et al., 2013), through struc-

tural bioinformatics and machine-learning tools for hotspot

prediction (Fox et al., 2007; Bendl et al., 2016) and attempts

towards in silico directed evolution (Verma et al., 2012), to

the use of molecular-dynamics simulations and quantum-

mechanical calculations to partially rationalize the design

process (Privett et al., 2012; Jiménez-Osés et al., 2014; Noey et

al., 2015; Osuna et al., 2015; Wijma et al., 2015; Romero-Rivera

et al., 2016). These examples demonstrate the role of theory by

drastically reducing the screening effort required in directed

evolution studies, and thus maximizing the likelihood of the

successful engineering of enzymes. Furthermore, theory can

make valuable contributions by providing insight into why

some evolutionary trajectories hit functional dead-ends on

which further optimization is not possible (Voigt et al., 2000;

Privett et al., 2012; Hallen et al., 2013). The accumulated

knowledge can then be applied to guide future directed

evolution experiments and to pinpoint properties that are not

observable by experiments alone.
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Figure 1
A prominent example of semi-rational directed evolution of an (R)-
selective amine transaminase for sitagliptin manufacture (Savile et al.,
2010). Shown here is the structure of the final variant after 11 rounds of
evolution (PDB entry 5fr9; Cuetos et al., 2016). Achieving this industrially
applicable enzyme required 27 amino-acid substitutions, the positions of
which are highlighted here in blue in both chains of the structure. This
figure illustrates how diversely distributed across an enzyme functionally
important residues can be, and therefore why it can be so hard to predict
appropriate amino-acid substitutions using only rational design
approaches. Chain A is coloured light grey and chain B green, and the
covalent cofactor–inhibitor complex of both subunits is shown in dark
grey using a ball-and-stick representation for better clarity. This and all
figures showing crystal structures were created using the PyMOL
Molecular Graphics System (Version 1.8, Schrödinger LLC).



While several possible theoretical approaches exist that one

could use as a baseline with which to perform in silico directed

evolution experiments (Verma et al., 2012), recent studies have

highlighted the power of the empirical valence-bond (EVB)

approach in particular as an important tool in the computa-

tional design of new enzymes (Roca et al., 2009; Frushicheva

et al., 2010; Fuxreiter & Mones, 2014). This approach is a

valence-bond (VB)-based classical approach that uses VB

theory to describe chemical reactivity in a quantum-mechan-

ical framework and, as it is inherently a classical approach, it

carries the advantage of being sufficiently fast to simulate the

large numbers of amino-acid substitutions necessary for in

silico screening. At the same time, as this approach uses

rigorously parameterized classical force fields, it provides a

tremendous amount of physical information and thus allows

the modelling of bond-making and bond-breaking processes in

a physically meaningful way. This makes EVB in particular

powerful for performing in silico directed evolution, and we

therefore present here our new toolbox CADEE, a simulation

package/framework that allows (mostly) automated

computer-aided directed evolution of enzymes. We note that

while other approaches that allow in silico directed evolution

already exist, most are focused mainly on predicting mutation

hotspots using sequence information rather than quantita-

tively assessing the effect of different amino-acid substitutions

on the corresponding activation free energies for the chemical

step of catalysis (Verma et al., 2012; Damborský & Brezovský,

2014). In addition, there have been elegant studies that

demonstrate the possibility of screening mutational effects on

the chemistry in silico using computational approaches

(Hediger et al., 2012; Wijma et al., 2014); however, owing to the

higher computational cost associated with these approaches,

they have been limited to at best several hundred amino-acid

substitutions, whereas, as we demonstrate here, CADEE can

screen the quantitative effect of at least several thousand

amino-acid substitutions with reasonable computational cost

(as well as being easily scaled according to the computational

resources available).

We have implemented CADEE as a framework around a

specially modified version of the Q simulation package

(Marelius et al., 1998). The fact that Q is used as our main

simulation engine allows our framework to exploit the full

functional capabilities of this simulation package, as well as

providing accessibility to a broad range of force fields and

solvent models (see http://www.icm.uu.se/cbbi/aqvist-lab/q for

further details). In addition, the initial search time can in

principle be radically reduced by combining CADEE with

pre-screening using a range of structural bioinformatics

approaches that allow the prediction of mutation hotspots,

which can then be targeted for subsequent in silico muta-

genesis using CADEE.

Finally, we also present an application of the EVB approach

to a model system, specifically a proton-transfer reaction

catalyzed by the enzyme triosephosphate isomerase (TIM; EC

5.3.1.1). This enzyme is found in nearly every organism, as it is

essential for glycolysis (Wierenga et al., 2010). We chose this

system as our showcase both based on the extensive experi-

mental data available from studies on multiple organisms (see,

for example, among many other studies, Straus et al., 1985;

Nickbarg et al., 1988; Blacklow & Knowles, 1990; Sampson &

Knowles, 1992; Malabanan et al., 2011; Zhai et al., 2015;

Richard et al., 2016) and also because of the chemical

simplicity of the process that we are modelling, which in turn

reduces the corresponding computational complexity. We

emphasize, however, that our purpose in this study is not to

redesign TIM, as this is already a very proficient enzyme

(Albery & Knowles, 1976), but rather to use it as a pedagogical

example to illustrate the CADEE workflow owing to the

simplicity of the reaction involved. That is, the ability of the

EVB approach to reliably model and predict mutational (and

other) effects in a range of biomolecular systems has been well

established elsewhere (Warshel et al., 2006; Frushicheva et al.,

2011), and therefore here we mainly want to illustrate the

automation of our in silico directed evolution approach. Note,

in addition, that usage of CADEE requires a well character-

ized and parameterized model system as a starting point, as

well as extensive conformational sampling, and the accuracy

of CADEE will therefore be limited by how rigorously the

user has parameterized the system (as is the case with any

simulation study). As the present case is only intended to

serve as a pedagogical example, the timescales on which we

have performed the simulations shown here could be too short

to be able to reliably redesign TIM or any other enzyme, in

particular when it comes to larger structural changes; however,

they do demonstrate how CADEE can be used, as well as

providing, by extrapolation, benchmarks of the computational

resources that would be required to perform effective

screening on a ‘real-world’ system. Overall, we believe that

CADEE fills a niche in computational enzyme-design studies,

as it allows quantitative guided directed evolution studies,

based on a rational understanding of the systems involved,

importantly taking into account the electrostatic environment,

while providing the ability to rank the proposed constructs on

the basis of predicted energetics.

2. Experimental

2.1. The empirical valence-bond approach

In order to perform effective screening of predicted acti-

vation barriers for chemical reactions in a large number of

enzyme active sites, it is crucial to use an approach that is on

the one hand fast enough to be able to perform the compu-

tations in a cost-effective way, while not taking too hard a hit

on the corresponding quantitative accuracy of the calculations.

Here, clearly, while there have been very promising attempts

at enzyme design using high-level quantum-mechanical

approaches (Röthlisberger et al., 2008; Hediger et al., 2012;

Kiss et al., 2013; Pratter et al., 2013), these approaches are far

too computationally expensive for the screening of tens of

thousands of enzyme variants. While one could, in principle,

switch to semi-empirical QM/MM approaches (Cui & Elstner,

2014; Mlýnský et al., 2014) instead, which would allow the

screening of far larger numbers of substitutions, here one
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quickly faces problems with the limited accuracy of the

available approaches (Cui & Elstner, 2014; Mlýnský et al.,

2014; Thiel, 2014). To obtain (in our opinion) the best balance

between these two limitations, our underlying methodology of

choice for CADEE is the empirical valence-bond (EVB)

approach (Warshel & Weiss, 1980; Hwang et al., 1988),

although we note that this is mainly for computational

convenience and the underlying philosophy of CADEE is

easily extendable to any preferred computational approach

with sufficiently high speed and accuracy to be able to perform

the extensive sampling needed for efficient computational

enzyme design.

In brief, the EVB approach is a classical approach based on

force-field descriptions of different reaction states, which at

the same time provides a quantum-mechanical description of

chemical reactivity within a valence-bond framework

(Warshel & Weiss, 1980; Hwang et al., 1988). This allows EVB

to harness both the speed of classical, force-field-based

approaches, while at the same time carrying a tremendous

amount of chemical and thermodynamic information, allowing

a physically meaningful description of bond-making and bond-

breaking processes. In practice, the EVB approach takes into

account the resonance, or diabatic, states, which correspond to

distinct valence-bond structures describing reactant, product

and any intermediate states. The potential energy of any

diabatic state (H11 and H22) is described as in (1) for the ith

state, where R and Q represent the atomic coordinates and

charges of the reacting atoms (‘solute’), respectively, and r and

q represent the atomic coordinates and charges of the

surrounding environment (‘solvent’), which is usually either

vacuum, solvent molecules or protein:

H11 ¼ "i ¼ �
i
gas þ Ui

intraðR;QÞ þ Ui
interðR;Q; r; qÞ

þ Ui
solventðr; qÞ: ð1Þ

The first term in (1), �i
gas, is the gas-phase energy of the ith

diabatic state, while Ui
intra(R, Q), Ui

inter(R, Q, r, q) and

Ui
solvent(r, q) represent the intramolecular potential of the

solute system (relative to its minimum), the interaction

between the reacting atoms and the surrounding solvent

atoms and the potential energy of the solvent, respectively.

The off-diagonal elements Hij can be described as exponential

coupling functions of the distance between the reacting atoms

(2),

Hij ¼ A expð�aj�RijÞ: ð2Þ

Finally, the adiabatic ground-state energy (Eg), as well as its

corresponding eigenvector (Cg), are obtained from the lowest

eigenvalue of the EVB Hamiltonian by solving the secular

equation HEVBCg = EgCg. The relevant activation free ener-

gies, �G‡, can then be evaluated from this by adiabatically

changing the system from one diabatic state to another. In the

simplest case, which involves the two-state example discussed

above, this can be achieved using a ‘mapping potential’, "m, of

the form

"m ¼ ð1� �mÞ"1 þ �m"2 ð0 � �m � 1Þ; ð3Þ

where �m is changed from 0 to 1 in n + 1 fixed increments

�m = 0/n, 1/n, 2/n, . . . , m/n), with the system being forced to

fluctuate near the transition state (TS) by means of potentials

with one or more intermediate values of �m. The free energy.

�Gm, associated with changing �m from 0 to m/n can then be

simply evaluated using the well known free-energy perturba-

tion/umbrella sampling (FEP/US) procedure, as outlined in

detail in, for example, Warshel (1991) and Warshel et al.

(2006). Finally, the free-energy functionals of the different

diabatic states can be obtained by means of FEP/US using

�Gðx0Þ ¼ �Gm � �
�1 lnh�ðx� x0Þ � expf��½EgðxÞ � "mðxÞ�gi"m

:

ð4Þ

Here, "m is the mapping potential of (3) which keeps x in the

region of x0. If the changes in "m are sufficiently gradual, this

will result in a free-energy functional, �G(x0), which is

obtained with several values of m overlapping over a range of

x0. Connecting the full set of �Gi(x0) will yield the complete

free-energy curve for the reaction (note that a similar

construct can also be used to obtain the free-energy functional

for each individual diabatic state; see Warshel, 1991). The

origin of the catalytic effect can then be related to the EVB

result by approximating the activation free energy using the

modified Marcus equation (Warshel, 1991; Liu & Warshel,

2007),

�Gz ¼ wþ
½ð�G0Þ

0
þ ��2

4�
�H12ðxÞ þ

H12ðR0Þ

½ð�G0Þ
0
þ ��
� �: ð5Þ

Here, w is the so-called ‘work term’ describing the free

energy of bringing the reactant pair to the interaction distance,

R0, at the reactant state. �G0 corresponds to the reaction free

energy, � to the reorganization energy and � to the nuclear

quantum-mechanical correction. H12ðxÞ and H12ðR0Þ corre-

spond to the average values of H12 at the transition and

reactant states, respectively. Finally, w is related to the

potential of mean force (PMF) of bringing the reacting groups

together, and when this PMF is close to zero the work term is

similar to the effect of bringing the reacting groups into a
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Figure 2
Schematic representation of the relationship between the different EVB
diabatic states ("1 and "2) in a simple two-state reaction, the
corresponding adiabatic reorganization energy (�) and the resulting
activation barriers (�G‡) in water (left) and in an enzyme (right). Both �
and �G‡ are significantly smaller in the enzyme, i.e. the enzyme would be
a catalyst for this hypothetical reaction (Warshel et al., 2006).



reacting ‘cage’, which is discussed in detail by, for example,

Warshel et al. (2006). Note that � can also be directly obtained

from the EVB diabatic free energies, and it can also be esti-

mated (Kamerlin & Warshel, 2010) by using the relationship

� ¼
1

2
ðh�"i2 � h�"i1Þ; ð6Þ

where h�"i denotes the average difference between "1 and "2

from trajectories using either the potential of "1 or "2. In any

case, the relationship between the diabatic states "1 and "2,

the activation energy Eg and the reorganization energy � in

solution and in an enzyme active site can be defined sche-

matically as shown in Fig. 2, from which it can be seen that

both �G‡ and � are expected to be significantly smaller in the

enzyme environment than for the corresponding reaction in

solution.

As the adiabatic free-energy surface obtained using the

EVB approach is dependent on the position of the two VB

parabolas relative to each other (which is determined by the

EVB parameters � and Hij as described above), it is therefore

necessary in an EVB framework to first identify an appro-

priate reference state to which to fit the EVB parabola. Once

calibrated, these EVB parameters can then be used

(unchanged) when moving from the reference state to other

reaction environments, such as the active site of an enzyme or

other catalyst, in order to capture the effect of changing the

environment on the calculated energetics. Here, the appro-

priate reference state can be, for example, either the corre-

sponding uncatalyzed reaction in aqueous solution (if

appropriate experimental or computational information is

available about the energetics of this process) or, alternately, if

the mechanism of the reaction is already understood, it can

also for instance be the energetics of the reaction in the wild-

type (WT) enzyme relative to a series of mutants. In the

present study, the reaction of interest is a simple proton-

transfer reaction, the uncatalyzed energetics of which can be

easily extrapolated from a combination of experimental

studies on analogous systems and by simple pKa considera-

tions (see x2.4.2; Richard, 1984; Åqvist & Fothergill, 1996).

The uncatalyzed solution reaction therefore provides an

excellent benchmark against which to study the energetics of

the corresponding reaction in the TIM active site, and this was

therefore used as the reference reaction for the calibration of

the EVB parameters used in this work (see x2.4.2).

Also, as an additional technical note, a challenge with any

simulation study is how to select an appropriate reaction

coordinate. In the case of chemical reactivity, geometric

reaction coordinates are often used to describe reaction

progress. While such reaction coordinates may easily be used

for simple systems such as modelling reactions occurring in

vacuum or in the condensed phase, clearly it is challenging to

describe enzymatic chemistry, which can involve significant

rearrangement of not just reacting atoms but also the

surrounding enzyme as the reaction progresses, using a simple

reaction coordinate. Here, we benefit from not using a stan-

dard geometric reaction coordinate; rather, the reaction

coordinate used in our EVB calculations is the ‘energy gap’

(x = "1 � "2) between the different diabatic states (Warshel,

1991), which allows us to project the full multidimensional

space of the enzymatic system onto a one-dimensional reac-

tion coordinate. In doing so, it allows us to account for both

the system reorganization and also the solute response to the

solvent polarization, which is important when it comes to the

screening of mutations, since a protein will respond to change

in the local electrostatic environment. We note that it has been

argued elsewhere that it would be impossible to correctly

quantify the catalytic effect of different amino-acid substitu-

tions without capturing these reorganization effects (see also

Frushicheva et al., 2014; Fuxreiter & Mones, 2014). To

summarize, therefore, EVB is a very powerful approach for

the computational screening of large

numbers of enzyme variants because it

is fast and efficient, allowing the exten-

sive sampling necessary to obtain

converging free-energy calculations,

while capturing the reorganization

energies (which would be simply too

computationally expensive using ab

initio quantum-mechanical approa-

ches). In addition, as it is based on

rigorously parameterized force fields,

the EVB approach carries sufficient

chemical information to describe

chemical reactivity in a physically

meaningful way.

Finally, and of particular importance

to CADEE, the ability of well para-

meterized EVB force fields to repro-

duce the catalytic effect of broad ranges

of wild-type and mutant enzymes has

been well documented and thus the

EVB approach provides a powerful tool
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Figure 3
A comparison of calculated (using EVB, �G‡

calc) and experimentally observed (�G‡
exp) activation

free energies for the reactions catalyzed by dihydrofolate reductase (DHFR), lysozyme (Lys),
aldose reductase (AR), chorismate mutase (CM), trypsin (Try), a bacterial arylsulfatase (PAS),
haloalkane dehalogenase (DhlA), triosephosphate isomerase (TIM), a bacterial phosphonate
monoester hydrolase (RlPMH), acetylcholine esterase (AchE), orotidine monophosphate
decarboxylase (ODC), carbonic anhydrase (CA), F1-ATPase (ATP) and ketosteroid isomerase
(KSI). This figure was prepared based on data presented in Warshel et al. (2006), Kamerlin et al.
(2010), Luo et al. (2012) and Barrozo et al. (2015), and references cited therein.



for computational enzyme design (Warshel et al., 2006;

Frushicheva et al., 2011; see Fig. 3 for concrete examples of this

for different enzymes). As an aside, we would like to point out

that the fact that EVB is a semi-empirical approach could be a

concern for some users of high-level ab initio approaches.

While we do agree that high-level approaches could in prin-

ciple provide more precise results, the high cost of such

methodologies at present prevents their application to massive

computational screening, where it is not only necessary to

compute the energetics of the reaction occurring in the active

site of the wild-type enzyme and the energetics of experi-

mentally observed amino-acid substitutions, but then also to

perform the same calculations for thousands of in silico amino-

acid substitutions. This renders the usage of high-level ab initio

approaches computationally very, if not even prohibitively,

expensive, at least for the time being, although this will

hopefully change with the constant advances in both computer

power and methodologies.

Finally, previous attempts at enzyme design using the EVB

approach have either coupled the EVB calculations to

empirical screening approaches based, for example, on

consideration of residue charge contributions to calculated

activation barriers (Roca et al., 2009; Frushicheva et al., 2010;

Labas et al., 2013) or have screened comparably limited

numbers of explicit amino-acid substitutions using EVB (Roca

et al., 2009; Frushicheva et al., 2011). The key contribution of

the present work is to provide a semi-automated framework

within which to perform large ensembles of EVB calculations

of many different enzyme variants simultaneously, thus greatly

simplifying the computational design process.

2.2. The CADEE framework

For simplicity, CADEE is a Python 2.7 application that

interfaces with external programs such as SCWRL4 (Krivov et

al., 2009) as well as local analysis scripts in order to auto-

matically generate EVB inputs for a large number of enzyme

variants and to perform the associated EVB calculations with

Q and subsequent analysis. The CADEE interface and asso-

ciated analysis scripts are all available for download from

Github at http://www.github.com/kamerlinlab/cadee. The

actual molecular-dynamics equilibration and subsequent EVB

free-energy calculations are performed using the Q simulation

package (Marelius et al., 1998) as described in x2.3. Q is free

for academic users, and information on how to obtain a license

is provided at http://www.icm.uu.se/cbbi/aqvist-lab/q. Any user

holding a Q license through the main developers is welcome

to compile Q or contact the corresponding author for

the compiled executable (see http://www.icm.uu.se/cbbi/

aqvist-lab/q for more information).

As described in x2.1, efficient use of CADEE requires a well

calibrated reference state, ideally benchmarked against the

effect of a number of experimentally characterized amino-acid

substitutions, following the standard EVB workflow (see, for

example, Warshel et al., 2006; Kamerlin & Warshel, 2011;

Amrein et al., 2015; Bauer et al., 2016). This is the main limiting

factor in the CADEE setup, as the quality of the CADEE runs

will only be as good as the quality of the EVB force field used

to perform the simulations, and therefore the rigorous para-

meterization of the EVB potentials involved is the most

important step (and thus the greatest bottleneck) in the

CADEE process. Once the user has parameterized an

appropriate EVB force field using standard parameterization

approaches compatible with the protein force field used, it is

possible to use this as a baseline to produce an array of

simulation inputs for simulating a user-defined range of

enzyme variants. Structurally, therefore, CADEE consists of

three major parts. The first of these is responsible for the

generation of input files for all enzyme variants, as well as the

relevant preparations for the simulations such as generating

topology files, solvation of the system and any other input files

necessary to prepare the simulation packages (simpacks). The

second part of CADEE involves using Q (x2.3) and an mpi4py

interface (Dalcin et al., 2005) in order to organize and execute

all available simpacks in parallel. The final part involves the

analysis and presentation of the CADEE results to the user via

a graphical analysis interface that allows rapid and straight-

forward selection of variants for subsequent rounds of in silico

directed evolution (see Supplementary Fig. S1 for a screenshot

of the analysis interface). We note also that while we have

implemented CADEE to be mainly performed using

command-line execution, we note that an exhaustive graphical

user interface has recently been independently developed for

Q (Isaksen et al., 2015), which could aid the user further in
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Figure 4
CADEE workflow. Basic input files are supplied to CADEE (1) and
initial screening mutagenesis such as a computational alanine scan is
performed (2). Automated analysis of the results is then performed and
the user chooses which mutation hotspots should be mutated to which
library (3). The next round of in silico evolution is then started (4) and
automatically analyzed (5). Depending on the user input, (6) another
round of evolution is performed (3–6) or the process is stopped (7) if the
results are considered satisfactory.



simulation preparation and analysis. The basic workflow of

CADEE is shown in Fig. 4.

We note as an aside that during the initial simulation setup

stage, CADEE interfaces with SCWRL4 (Krivov et al., 2009)

to perform automated mutagenesis. We chose SCWRL4

because it is able to automatically resolve steric clashes upon

substitution of an amino acid, because it is freely available for

academic users and because it is very fast. However, as an

alternative, amino-acid side chains can also be deleted (e.g.

computational alanine scanning). The simulation input,

including topology and other necessary files, is packed and

subjected to our Q wrapper. In the next section, we will

explain how the simulations are prepared and run on the

available computational resources.

2.3. Interaction of CADEE with the Q simulation package

Our main workhorse for performing the CADEE simula-

tions is the Q simulation package, which was developed at

Uppsala University by Åqvist and coworkers (Marelius et al.,

1998). In its current release version, v.5.0, Q is capable of

performing standard molecular-dynamics (MD) simulations as

well as free-energy perturbation (FEP), empirical valence-

bond (EVB) and linear interaction energy (LIE) calculations.

A key benefit of using Q for performing the EVB simulations

is the availability of a wide range of force fields to choose from

(see http://www.icm.uu.se/cbbi/aqvist-lab/q), as well as the

implementation of Warshel’s local reaction field (LRF)

approach (Lee & Warshel, 1992) to accurately represent

electrostatic effects in enzymatic systems using truncations

with stochastic boundary conditions, which greatly reduces

simulation time.

The code base of Q is written in Fortran90. In order to

increase portability to other approaches, rather than modi-

fying Q directly, we created a Python framework that allows us

to run ensemble simulations without overwhelming the file

system with excessive input/output (I/O) requests (the code

can be found at http://www.github.com/kamerlinlab/cadee).

For this, we implemented an mpi4py-based wrapper (Dalcin et

al., 2005), which controls job I/O, schedules simpacks and then

runs the simulations using Q. This wrapper is written in simple

and straightforward Python. After an allocation becomes

available, one simpack after another is processed. After a

simpack is completed, the next simpack is loaded, unpacked

and computed (see Fig. 5). When all simulations are finished,

the analysis is performed and the user can initiate display of

the results. The user in turn can then select new amino-acid

substitutions to be tested on the selected protein (e.g. a site-

saturated mutagenesis on an interesting residue), or they can

choose to stop and save the results at this stage.

2.4. Model system: triosephosphate isomerase

We chose the enzyme triosephosphate isomerase (TIM)

from Saccharomyces cerevisiae as our model system owing to

the availability of a high-resolution crystal structure of a TIM–

DHAP complex (1.2 Å resolu-

tion; PDB entry 1ney; Jogl et al.,

2003; Fig. 6a) in the Protein Data

Bank (Berman et al., 2000). We

note as an aside, however, that

lower resolution crystal struc-

tures can also be successfully

applied as templates for EVB

simulations (see, among other

examples, Trobro & Åqvist,

2006), but in such cases the

simulation times should be

increased to compensate for the

uncertainty in the atomic coordi-

nates. Similarly, greater confor-

mational sampling is necessary

for more flexible or thermally

unstable systems.

TIM is a homodimer in

most characterized enzymes (a

dimer of dimers was found for

enzymes from thermophiles),

with the active sites at the dimer

interface (Fig. 6a). It catalyzes a

simple reversible isomerization

of dihydroxyacetone phosphate

(DHAP) and (R)-glyceraldehyde

3-phosphate (GAP) (Fig. 6b).

TIM is found in nearly every
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Figure 5
CADEE ensemble-simulation flowchart. When CADEE is initialized, it first locates all simpacks available
in the initialization directory. It then distributes them on the available resources and runs each step of a
simpack using Q. After completion of the simpack, the next simpack is executed. Individual simpacks are
independent of each other and are executed in parallel, provided that multiple cores are available on the
system/allocation.



organism, as it is essential for glycolysis (Wierenga et al.,

2010). The overall chemical reaction, a 3,2-proton shift,

proceeds via two enediolate intermediates (Wierenga et al.,

2010; Richard, 2012) and involves the catalytic residues

Glu165 and His95 as acid/base catalysts (S. cerevisiae enzyme

residue numbering, UniProt ID P00942; DHAP C-atom

numbering as in Supplementary Fig. S2). In the (rate-limiting)

first reaction step of the isomerization of DHAP to GAP,

Glu165 deprotonates C3 of DHAP to form the 2-enediolate,

which is then isomerized by a proton transfer from O3 to O2.

Finally, C2 is protonated by Glu165 to form the aldose isomer

GAP. For computational simplicity, in this work we have

focused our computational effort only on the initial proton

transfer from the C3 atom of DHAP to the Glu165 side chain,

as the purpose of these calculations are purely pedagogical in

order to illustrate how CADEE works.

The structure used as the starting point for our simulations

(PDB entry 1ney; Jogl et al., 2003) contains three amino-acid

substitutions, which were initially introduced to enable

fluorescence probing experiments (Sampson & Knowles,

1992). However, these amino-acid substitutions were demon-

strated experimentally to neither change the kinetic properties

of the enzyme nor alter its structural fold (Rozovsky et al.,

2001), and therefore this structure was used as the starting

point for all simulations in this work. For the purpose of our

simulations, we retained the W90Y and W157F substitutions

present in the crystal structure, but changed residue 168 back

from 50-fluorotryptophan to the canonical tryptophan; this

double mutant will be referred to as our ‘wild-type’ (WT)

system in the following discussion, as it forms the baseline for

all subsequent CADEE simulations. All water molecules

outside the simulation sphere (20 Å around C1 in the bound

DHAP in chain A, see below) were removed and the proto-

nation states of the histidine side chains were evaluated using

the MolProbity server (Chen et al., 2010). The protonation

states of all other ionizable residues within 17 Å of the sphere

centre were determined by their pKa values in solution and by

visual inspection (see Supplementary Table S1). All residues

outside the 17 Å sphere were

kept uncharged, as is standard

procedure for such simulations

(Labas et al., 2013; Amrein et al.,

2015; Lameira et al., 2015; Isaksen

et al., 2016).

Amino-acid substitutions were

introduced into the WT TIM

structure with CADEE, either

with the internal alanine-scan-

ning method or via the use of

SCWRL4 (Krivov et al., 2009)

using the standard settings of the

software and preventing the

atoms of the EVB region from

being altered by SCWRL4. All

other conformational changes

suggested by SCWRL4 were

applied and both the WT and the

modified enzymes were solvated

as described above. The modified

enzymes were then equilibrated

as described for the WT enzyme,

as described in xx2.4.1 and 2.4.2.

2.4.1. Molecular-dynamics
simulations. All simulations

were performed using the Q

simulation package (v. 5.06) with

the OPLS-AA force field

(Jorgensen et al., 1983). OPLS-

AA compatible parameters for

the DHAP ligand and the

enediolate intermediate were

obtained using MacroModel 9.1,

force field version 2011 (release

2013-1: Schrödinger, 2013), and

the corresponding partial charges

were calculated in the gas phase
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Figure 6
(a) Left, an overview of the structure of triosephosphate isomerase from S. cerevisiae (PDB entry 1ney; Jogl
et al., 2003) in complex with DHAP (displayed in ball-and-stick representation and coloured dark grey).
Right, a close-up view of the active site, with highlighted key catalytic residues His95 and Glu165 and the
substrate DHAP. Chain A is coloured green and chain B light grey. (b) The proposed mechanism for the
isomerization catalysed by TIM. DHAP and GAP are acronyms for dihydroxyacetone phosphate and (R)-
glyceraldehyde 3-phosphate, respectively. This mechanism is based on Wierenga et al. (2010) and Richard
(2012).



at the HF/6-31G* level of theory, using the standard RESP

procedure and Gaussian09 rev. D.01 (Cieplak et al., 1995;

Frisch et al., 2009).

In order to prepare TIM for our EVB simulations, the

simulation system was first solvated in a spherical water

droplet of TIP3P water molecules (Jorgensen et al., 1983) with

a radius of 20 Å, centred on the C1 atom of the DHAP

substrate (see Supplementary Fig. S2 for C-atom numbering in

DHAP). The droplet was described by spherical boundary

conditions, using the surface-constrained all-atom solvent

SCAAS model (King & Warshel, 1989) as implemented in Q

(Marelius et al., 1998). For computational simplicity, as with

our previous work (Amrein et al., 2015; Barrozo et al., 2015;

Ben-David et al., 2015), we used a multi-layer model in which

all atoms within 17 Å of the simulation centre were fully

mobile, all atoms between 17 and 20 Å of the simulation

centre were restrained using a 10 kcal mol�1 Å�2 harmonic

restraint and atoms outside 20 Å were restrained by a

harmonic force constant of 200 kcal mol�1 Å�2. The SHAKE

algorithm (Ryckaert et al., 1977) was used to constrain H

atoms in the solvent. A 10 Å cutoff was used for calculating

nonbonded interactions between all atoms except for those in

the EVB region (the catalytic glutamate residue and the

substrate), for which all interactions were explicitly calculated

up to 99 Å (i.e. essentially no cutoff was applied). All long-

range electrostatics beyond this cutoff were treated using

the local reaction field (LRF) method (Lee & Warshel,

1992).

Once the system setup was complete, the systems were

heated gradually from 0.01 to 300 K over the course of 90 ps of

simulation time, starting with a 200 kcal mol�1 Å�2 harmonic

restraint on all protein atoms and 20 kcal mol�1 Å�2 on all

water atoms in the simulation sphere, and then gradually

decreasing this from 0 kcal mol�1 Å�2 as the temperature was

increased. The temperature was regulated using the

Berendsen thermostat (Berendsen et al., 1984; 100 fs bath

coupling). A 1 fs time step was used and the reaction coor-

dinate was set to � = 0.5 for all simulations to start the

subsequent EVB calculations of the reaction step close to the

transition state. For each of four individual replicas we

performed an 8 ns molecular-dynamics simulation, taking a

snapshot every 1 ns, which was used as a starting point for an

EVB simulation (see x2.4.2). Note that in order to calibrate

our EVB parameters to model the TIM-catalyzed proton-

transfer reaction, we also performed a corresponding simu-

lation of the uncatalyzed proton transfer between DHAP and

butanoate in aqueous solution, as described in x2.4.2.

2.4.2. Empirical valence-bond calculations. As mentioned

in x1, only the first step of the TIM mechanism from DHAP

was modelled in this study and was described in terms of two

valence-bond states as depicted in Supplementary Fig. S2. All

EVB calculations were performed utilizing the standard EVB

free-energy perturbation/umbrella sampling (EVB-FEP/US)

procedure as described in x2.1 and in Hwang et al. (1988) and

Warshel (1991). As shown in Supplementary Fig. S2, the EVB

(reacting) region consisted of the side chain of Glu165 (TIM)

or the carboxylate group of butanoate (aqueous solution) and

the DHAP molecule. The entire system was described using

the same force field, however, and the only difference between

atoms defined as EVB and non-EVB atoms in our simulations

were the application of different cutoffs, as mentioned above,

as well as the fact that Morse rather than harmonic potentials

were used to describe the bonds that were broken or formed

during the reaction. All EVB parameters used in the present

work can be found in the Supporting Information for this

article, and the overall methodology has been described in

detail in our previous studies (Amrein et al., 2015; Barrozo et

al., 2015). The background reaction in aqueous solution was

parameterized to reproduce an activation free energy, �G‡,

of 25.2 kcal mol�1, and a reaction free energy, �G0, of

17.8 kcal mol�1, following Åqvist & Fothergill (1996), and the

EVB simulations were performed using the same simulation

settings as the initial equilibration runs.

In order to optimize the simulation time, we were interested

in examining whether we could reproduce experimental

values with rather short EVB runs, as it has recently been

suggested that shorter simulations can have better prediction

capability for the effects of amino-acid substitutions than

longer ones (Wijma et al., 2014). We therefore took snapshots

every 1 ns of the 8 ns long MD simulation, and ran an EVB

simulation of 520 ps in length, distributed over 26 EVB-FEP/

US windows of 20 ps each (� = 0, 0.05, 0.075, 0.1, 0.125, 0.15,

0.2, 0.25, 0,30, 0.35, 0.40, 0.425, 0.45, 0.55, 0.575, 0.6, 0.65, 0.70,

0.75, 0.80, 0.85, 0.875, 0.90, 0.925, 0.95, 1); additionally, for the

mapping of the data of each snapshot, we used the data of the

preceding 1 ns MD simulation (where � = 0.5) to achieve an

increased sampling close to the transition state. The EVB

snapshots of the first 2 ns of MD simulation were discarded as

they are taken during the initial equilibration of the system.

Therefore, from within 8 ns of MD simulation six EVB

snapshots per replica (24 in total, from four replicas) were

used to calculate the mean values presented in x3. Each

simulation was repeated four times with four different sets of

initial velocities (random seeds), leading to a total of 12.48 ns

of EVB simulation time per system.

Finally, all simulations of the uncatalyzed reaction in

aqueous solution were performed in exactly the same way as

for the TIM-catalyzed reaction, although a slightly different

setup was used for simulating this reaction. That is, in this case,

after stepwise heating the system up over the course of 260 ps,

we performed 1 ns of equilibration at the transition state and

then ran ten individual trajectories from the transition state,

using 200 ps of simulation time per frame (leading to 10.2 ns of

simulation time per trajectory and 102 ns of simulation time in

total). The individual trajectories were generated by taking

the end point of the initial equilibration run and performing

an additional 1 ns of equilibration with a new random seed

before starting the EVB simulation. These longer simulations

were necessary as more sampling is required for the uncata-

lyzed reaction, where the reacting fragments can explore a

larger conformational space, compared with the enzymatic

reaction, where the fragments are restricted to the active-site

cavity. As with the enzymatic reaction, a weak harmonic

restraint was applied to all reacting atoms (in this case

research papers

58 Beat Anton Amrein et al. � CADEE IUCrJ (2017). 4, 50–64



1 kcal mol�1 Å�2) to prevent the reacting fragments from

drifting too far from the reaction centre.

3. Results and discussion

In this section, we will present a pedagogical example of the

application of CADEE to triosephosphate isomerase (TIM).

As mentioned before, clearly the initial parameterization is

the most important part of any CADEE run and, as shown in

Fig. 3, when well parameterized the EVB has an excellent

track record of reliably reproducing catalytic effects in a broad

range of biological systems (including enzymes with far poorer

catalytic proficiency than TIM). In the present work, as we are

only using proton transfer in TIM as a pedagogical example of

the usage of CADEE, our aim was not to obtain perfect EVB

potentials to describe this reaction, but rather to have a

reasonable model to use with which to illustrate the CADEE

workflow. For CADEE simulations to be physically mean-

ingful, however, the starting point of any CADEE run should

be rigorous validation of the EVB parameter set, which is best

performed by benchmarking the parameter set against

experimentally characterized mutations. Historically, TIM has

been a very well studied system, with extensive biochemical

data available in the literature. A comparison between our

calculated and experimental results (using 24 short EVB

simulations of 520 ps in length each, generated from four

independent replicas, as described in x2.4.2) is shown in Fig. 7

and Supplementary Fig. S3, and the corresponding raw data

are shown in Supplementary Table S2.

From this data, it can be seen that in most cases we can

reproduce the trends in calculated activation free energies

reasonably well and obtain calculated values within a

maximum of 2 kcal mol�1 of the corresponding experimental

activation free energies. Note that in these examples no

catalytically crucial residues or their direct neighbours have

been targeted, as one would expect such amino-acid substi-

tutions to pose a particular challenge for predictions not only

for CADEE but for all other methods as well (see Supple-

mentary Fig. S3 for further discussion). Taking this into

account, we find the predictions reasonable (when also

considering current computational capabilities; Lind & Himo,

2013; Kaiyawet et al., 2015; Lameira et al., 2015; Świderek,

Tuñón, Martı́ et al., 2015) and note that of course the EVB
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Figure 7
Experimental (kcat) and calculated activation free energies (�G‡) for the
deprotonation of DHAP by diverse S. cerevisiae TIM variants. Effects of
amino-acid substitutions with experimental data from TIM enzymes of
different organisms (chicken and Trypanosoma brucei brucei) were also
calculated for the yeast enzyme but, as expected, gave less agreement (see
Supplementary Fig. S3), illustrating that mutational effects cannot be
easily transferred between enzymes with only around 50% sequence
identity. Note also that substitutions in the chicken enzyme shown in
Supplementary Fig. S3 involve His95, which is catalytically relevant in the
subsequent reaction step. The experimental kcat values were obtained at
25�C (Zhai et al., 2015) and were used to estimate the �G‡ of the rate-
limiting step. The corresponding data can be found in Supplementary
Table S2.

Figure 8
Results of the initial alanine scan. Activation energies (�G‡) are given as
median values, with error bars displaying the standard deviation over 24
individual EVB simulations. The corresponding raw data are provided in
Supplementary Table S3.



potentials could have been further refined to give better

agreement with experiment (as shown for other systems in

Fig. 3), but the data shown in Fig. 7 are adequate for the

purposes of illustrating the CADEE workflow.

Having verified that our EVB potential can reasonably

reproduce known substitutions, we started by performing an

alanine scan of the 48 non-catalytically crucial positions

around the active site (see Supplementary Table S3). The

results of this scan are shown in Fig. 8 and, based on this data,

we selected the following three positions as ‘hotspots’ for

further separate site-saturation mutagenesis: 93, 164 and 172

(Fig. 9). These particular positions were chosen because the

introduction of an alanine there gave the lowest activation

energy compared with the other positions; however, as can be

seen from this figure, multiple residues are potential candi-

dates for further mutagenesis, and therefore we recommend

combining the computational alanine scanning performed

using EVB with bioinformatics approaches based on protein

sequence identity to select the best mutagenesis ‘hotspots’.

Additionally, although at a first glance predictions with a

standard deviation of around 2 kcal mol�1 (corresponding to

around two orders of magnitude in kcat) might look uncertain,

laboratory high-throughput screening or selection methods

(Packer & Liu, 2015) almost never allow direct conclusions on

the kinetic properties of tested variants and, additionally, the

standard deviations there are comparably large as well.

Therefore, CADEE is likely to provide valuable guidance for

predicting mutations for laboratory testing (for a more thor-

ough cost–benefit analysis, see below).

From this figure (and also from Figs. 8 and 10), it can be

seen that there is a quite broad spectrum of predictions from

CADEE, which in some cases also suggest fairly radical

reductions of the activation free energy relative to the wild-

type enzyme. A weakness of CADEE is the risk of obtaining

the ‘right answer’ for the wrong reason. That is, specifically, it

is possible to have disrupted the active site and/or thus also

destabilized the ground state when introducing an in silico

amino-acid substitution, in this way calculating an artificially

low activation free energy that is not physically meaningful

(this is not a unique problem to EVB simulations, but is a

problem for all current approaches that aim to model the

effect of amino-acid substitutions on reaction chemistry

through in silico mutagenesis). Therefore, if it appears to be

‘too good to be true’ it most likely is, and predictions of very

radical reductions in activation free energy should probably be

discarded or at least very carefully examined for simulation

artefacts (such as major active-site perturbations) before

proceeding to the next round of mutagenesis. Also, some

changes might impact a different step of the reaction

mechanism, which lies beyond the scope of the present study,

but which, given a proper parameterization and sufficient

computational resources, can also be examined with CADEE.

Clearly, as in any laboratory directed-evolution experiment,

this procedure can be repeated as many times as necessary,

and further rounds of evolution are clearly going to be

required in real-life scenarios when working with enzymes

with lower catalytic proficiencies. This can therefore be

continued as long as the user desires to further refine the

results, including intermediate iterations of experimental

validation, which can be brought into the cycle at any point.

For illustrative purposes, therefore, we performed a final

round of in silico mutagenesis, in which we tested modifying

three positions simultaneously. Specifically, and following the

data shown in Fig. 9, we again performed substitutions at

positions 93, 164 and 172, this time modifying Leu93 to Ala,

Gly and His, Tyr174 to Ser, Cys, Ala, His, Glu and Pro, and

Thr172 to Leu, Trp, Asp, Arg and Ser simultaneously. These

were chosen on the basis of their individual effect on the

calculated activation barriers as found in the separate

site-saturation mutagenesis experiments. Each of these

substitutions individually lowered the predicted activation

energy, and we wanted to rule out synergistic effects of these

research papers

60 Beat Anton Amrein et al. � CADEE IUCrJ (2017). 4, 50–64

Figure 9
Results of the separate single-site saturation mutagenesis experiments at
positions 93, 164 and 172. Activation energies (�G‡) are given as mean
values, with error bars showing the standard deviation over 24 individual
EVB simulations. The corresponding raw data are provided in
Supplementary Table S4.



replacements. The resulting data, which are shown in Fig. 10,

imply that mutating the positions 93, 164 and 172 simulta-

neously has a cooperative effect, as double and triple mutants

were predicted to have lower activation barriers than all other

variants of the separate site-saturation round. At this point in

a real evolution study, and after visual inspection of the

trajectories, one could experimentally evaluate selected

predicted mutants and decide based on the outcome of

experimental testing on how to continue in the next iteration.

We demonstrate, therefore, that when sufficient computa-

tional resources are available it is possible to perform

large-scale combinatorial mutagenesis and also longer EVB

simulations to obtain better sampling. We strongly recom-

mend that when selecting final substitutions at every round,

these are subjected to longer EVB runs to make sure that the

results are not an artefact caused by the limited simulation

time, thus also allowing the selected side-chain rotamers in the

modified proteins more simulation time to properly equili-

brate during the additional simulation time in order to reduce

the risk that they represent catalytically inactive conforma-

tions. In the present case the relatively short runs could

reproduce the experimental results reasonably well. However,

we are looking at only a simple proton-transfer reaction;

clearly the more complex the reaction the longer the runs

necessary.

Following from this, CADEE has been deliberately

constructed in such a way as to be scalable to the computa-

tional needs available. All equilibration and EVB runs shown

in Figs. 7, 8, 9 and 10 were performed using a total of 225 000

core hours on the HPC2N Abisko cluster in Umeå (https://

www.hpc2n.umu.se/resources/abisko), using nodes consisting

of four AMD Opteron 6238 12-core 2.6 GHz processors per

node. To provide a better estimate of the computational

resources that a comprehensive CADEE run would need in a

‘real-world example’, we assume a system of 200 residues, in

which all residues are to be substituted with alanine. We

assume that after this initial scan ten positions will be picked

and all 20 natural amino acids will be tested individually.

Finally, for up to five of these positions, the user selects three

residues that then will be scanned combinatorially. This setup
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Figure 10
Results of the combinatorial saturation mutagenesis at positions 93, 164 and 172 grouped into columns based on the substitution at position 93 and
further arranged into groups by substitutions at position 164. Activation energies (�G‡) are given as the mean, with error bars showing the standard
deviation over individual 24 EVB simulations. The corresponding raw data are provided in Supplementary Tables S5–S8.



would cost 520 000 core hours on a computer similar to the

HPC2N Abisko cluster (AMD Opteron 6238 12-core 2.6 GHz

processors). Compared with what it would cost to create the

libraries in a laboratory and to screen them to achieve a full

coverage of all these variants, CADEE is relatively cheap. In

addition, to save computational time, we are only subjecting

the most likely rate-limiting step of the reaction pathway

shown in Fig. 6(b) to CADEE simulations. This can be iden-

tified either on the basis of available experimental studies or

by using EVB or other computational tools to perform an

initial screen of the full reaction pathway. We recommend,

however, that the user performs EVB simulations of the full

reaction pathway for the final variants in order to ensure that

the mutations have not changed the rate-limiting step, making

one step energetically favourable while negatively impacting

another. Finally, as successfully shown for laboratory directed

evolution (Verma et al., 2012), CADEE can of course also be

combined with computational tools for creating smarter

libraries, to help predicting mutational hotspots or with

machine-learning techniques to suggest additional variants

from the results obtained thus far to further reduce the cost by

simply screening libraries of reduced size. From this, it can be

seen that CADEE is an excellent simple tool to perform

(mostly) automated in silico directed evolution as a screening

tool to aid laboratory design studies.

4. Summary and outlook

Recent years have seen an explosion of interest in computa-

tional enzyme design, using both empirical screening and

machine-learning approaches to predict the effect of indivi-

dual amino-acid substitutions on the function and stability of

an enzyme, as well as the development of new approaches for

de novo enzyme design and in silico evolution (Verma et al.,

2012; Kiss et al., 2013; Kries et al., 2013; Damborský &

Brezovský, 2014; Frushicheva et al., 2014; Świderek, Tuñón,

Moliner et al., 2015). It has been shown elsewhere that the

empirical valence-bond approach is a powerful aid in enzyme-

design efforts, owing to the ability of a well parameterized

EVB potential to predict the effect of different amino-acid

substitutions on the catalytic activity of an enzyme (Warshel et

al., 2006; Frushicheva et al., 2011). However, at present the

process of setting up and analysing such simulations can be

onerous, in particular when the intention is to screen for the

effect of hundreds or thousands of amino-acid substitutions,

which is necessary in a large-scale enzyme-design study.

In the present work, we introduce a new computational

tool, CADEE, which allows user-controlled in silico directed

evolution of enzymes. We apply CADEE to a very simple

model system, triosephosphate isomerase, as a pedagogical

example of how CADEE can be applied in a computational

enzyme-design study. We demonstrate that for this simple

system we are easily able to screen the effect of 128 amino-

acid substitutions in 9.5 d using 512 processor cores of AMD

Opteron 6238 clocked at 2.6 GHz (or 120 000 core hours). If

Intel architecture is used instead, for example Xeon E5-2660

clocked at 2.2 GHz, the calculation time would decrease to

6.5 d using the same number of cores (80 000 core hours). We

selected these resources for benchmarking purposes, as we

believe this is a level of computer power that should be

available to most research teams. In addition, CADEE has

been constructed so that it can be up-scaled or down-scaled

according to user needs and resources. Finally, while in its

current implementation CADEE has been designed to

perform empirical valence-bond calculations, clearly the

principle of CADEE can be applied to any computational

approach for modelling enzyme activity that provides suffi-

cient accuracy with acceptable computational cost to the user.

We believe, therefore, that CADEE will provide a valuable

resource to users interested in performing in silico directed

evolution as well as a useful aid to laboratory evolution

studies.

5. Related literature

The following reference is cited in the Supporting Information

for this article: Zhai et al. (2013).
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