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These are exciting times for the enzyme engineer. The emergence of the bioeconomy has

defined new challenges to extend the chemistry of natural enzymes and to engineer new

properties necessary for industrial-scale chemicals production. When incorporated into

existing synthetic manufacturing routes, biocatalysts can drive improvements in product

stereochemistry, chemical diversity, enantiopurity and functionality, as well as process

sustainability. This emphasizes the overall benefits of using enzyme catalysts in industrial

manufacture. As we transition from a petrochemical to a more sustainable, green

bioeconomy we must ensure that our ability to design and engineer biocatalysts does not

become a bottleneck in the industrialization of biology. This is a grand challenge for the

enzyme engineer and one that needs to be addressed with some urgency.

So how do we speed up enzyme engineering to provide much-needed new biocatalysts

for the bioeconomy and biotechnological applications? Traditional ‘rational’ protein

engineering has been bedevilled with problems stemming, in the main, from the

complexity of dynamic protein structures and often a lack of in-depth understanding of

the ‘catalytic effect’. Informed by structure, early days witnessed attempts to redesign

enzyme specificity towards new (often chemically related) substrates, but with mixed

success. Typically slow and painstaking rounds of optimization were needed to reach

target functions (e.g. substrate specificity, product enantiopurity) or process properties

(e.g. temperature stability, solvent compatibility). This has led to the emergence of

improved experimental methods for directed evolution of enzymes in biocatalyst engi-

neering workflows (Toogood & Scrutton, 2013; Currin et al., 2015). The fundamental

challenge however remains, i.e. the need to explore a vast amount of sequence space to

optimize a biocatalyst towards the target property or function. The burden of ‘the

numbers game’ can be lessened – but only to some extent – by employing semi-random

approaches in gene library synthesis, or through the use of SMART libraries, rather than

relying on the more traditional approaches of random mutagenesis or recombination.

Advances in high-throughput screening (e.g. using fluorescence-activated cell sorting,

phage display or in vitro compartmentalization) can meet the need to screen large

numbers of variants. This is especially powerful when coupled to new methods of library

generation where it is possible to control the extent and nature of substitutions in a gene

library using synthetic biology methods (Currin et al., 2015).

Notwithstanding the above, experimental workflows for enzyme engineering and

directed evolution have placed great demands on person time and laboratory resources,

even with laboratory automation. This is clearly not sustainable when new biocatalysts

are urgently needed to support the industrialization of biology. The field is crying out for

more predictive design based on an iterative Design, Build, Test, Learn (D/B/T/L)

strategy that involves a cyclic process of developing an initial enzyme prototype, testing

the prototype, analyzing its performance and learning what works/what does not work,

prior to moving on in an informed way to the next round of the cycle. The de novo

enzyme design field has been leading the way in generating prototype protein scaffolds to

generate new catalysts using in silico approaches. Missing, however, has been a rapid

‘Test’ computational platform to embed in enzyme engineering workflows that allows one

to rapidly (i.e. at low computational cost) assess in silico the outcome of multiple amino

acid substitutions prior to building and testing a limited set of these variants in the ‘wet-

lab’.

In this issue of IUCrJ, Kamerlin and co-workers (Amrein et al., 2017) now describe a

computational framework for the computer-aided directed evolution of enzymes

(CADEE) that can rapidly screen the quantitative effects of thousands of amino-acid
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substitutions on catalytic function and at relatively low

computational cost. Their method uses the empirical valence-

bond (EVB) approach (Warshel & Weiss, 1980; Hwang et al.,

1988) to predict activation barriers for chemical reactions

across many enzyme variants generated by in silico

mutagenesis. By avoiding high-level quantum-mechanical

approaches (which are computationally very expensive), or

semi-empirical QM/MM approaches (which are of limited

accuracy), Kamerlin and coworkers argue that the EVB

approach (which is a valence-bond classical approach) is ideal

for assessing rapidly and with quantitative accuracy the effects

of multiple amino-acid substitutions. The EVB approach

therefore enables rapid in silico analysis of thousands of

computationally generated enzyme variants with reasonable

computational cost.

The CADEE framework is available as a Python 2.7

application and is available for download to the wider

community. Although EVB approaches have been used

previously in limited screening studies, CADEE for the first

time provides a semi-automated framework for performing

large numbers of EVB calculations, as would be typical for in

silico directed evolution experiments. As with all computa-

tional approaches there are caveats: the authors emphasize

that ‘CADEE requires a well calibrated reference state, ideally

benchmarked against the effect of a number of experimentally

characterized amino acid substitutions’. This is needed to

generate a high-quality EVB force field to perform in silico

simulations requiring rigorous parameterization of EVB

potentials.

CADEE is a welcome computational platform tool that

should be embedded into Design, Build, Test, Learn (D/B/T/L)

pipelines/strategies for enzyme engineering (see Fig. 1). In

offering a framework for semi-automated in silico directed

evolution of enzymes CADEE should contribute to the need

for speeding up design and in silico testing of enzyme variants

and the streamlining of ‘wet lab’ resources required to

generate next generation biocatalysts. As such CADEE is an

important computational tool for the enzyme engineer. It adds

to the predictable and rapid enzyme redesign toolbox, which is

fundamentally important to growth of the bioeconomy.
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Figure 1
CADEE and Design, Build, Test, Learn iterative cycles. CADEE and
other predictive computational tools in the enzyme engineering ‘dry lab’
lessens burden on resources and experimental effort in the design, build,
test and learn cycles of the ’wet lab’.
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