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Liquids, glasses and other amorphous matter lack long-range order, which

makes them notoriously difficult to study. Local atomic order is partially

revealed by measuring the distribution of pairwise atomic distances, but this

measurement is insensitive to orientational order and unable to provide a

complete picture of diverse amorphous phenomena, such as supercooling and

the glass transition. Fluctuation scattering with electrons and X-rays is able

provide this orientational sensitivity, but it is difficult to obtain clear structural

interpretations of fluctuation data. Here we show that the interpretation of

fluctuation diffraction data can be simplified by converting it into a real-space

angular distribution function. We calculate this function from simulated

diffraction of amorphous nickel, generated with a classical molecular dynamics

simulation of the quenching of a high temperature liquid state. We compare the

results of the amorphous case to the initial liquid state and to the ideal f.c.c.

lattice structure of nickel. We show that the extracted angular distributions are

rich in information about orientational order and bond angles. The diffraction

fluctuations are potentially measurable with electron sources and also with the

brightest X-ray sources, like X-ray free-electron lasers.

1. Introduction

Phases of matter that lack long-range order, such as liquids,

glasses and other amorphous phases, derive their physical

properties from short-range (<5 Å) and medium-range order

(5–20 Å) (Elliott, 1991). However, at these length scales there

is a daunting amount of structural variability and we are far

from a full understanding of the macroscopic phenomena that

arise from local order like the glass transition (Mauro, 2014).

While short-range order is often a direct product of chemical

bonds, like the well coordinated polyhedra of oxide glasses

(Elliott, 1991), the medium-range order that is prevalent in

chalcogenides (Salmon et al., 2005) and metallic glasses

(Sheng et al., 2006; Wu et al., 2015) is far more complex.

Medium-range order is key to the optical, chemical and

thermodynamic properties of glass-forming materials (Mauro,

2014) and the possibility of engineering them (Martin et al.,

2002; Mauro, 2014), which has made understanding topolo-

gical order and its extraordinary diversity one of the

outstanding challenges in condensed matter and materials

science.

Studies of amorphous phases rely heavily on measurements

of the pair-distribution function (PDF) (Elliott, 1983; Fischer

et al., 2006), which is related to the probability of finding an

atom at a distance r from a given reference atom. The popu-

larity of the PDF is due largely to its accessibility via X-ray,

neutron or electron diffraction. It is used to validate structural

models like molecular dynamics (MD) models (Car & Parri-

nello, 1985) and as an input to reverse Monte-Carlo techni-
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ques (Fischer et al., 2006). However, the pair distribution lacks

information about orientational order and is frequently

insufficient to experimentally measure hidden topological

order predicted by MD simulations (Wu et al., 2015). The

deficiency of the PDF is partially addressed by complimentary

techniques like nuclear magnetic resonance and Raman scat-

tering (Elliott, 1983) that can be matched to structural models

to infer information about short-range order, like bond angles.

Further insight can also be gained by measuring the PDF with

elemental specificity with anomalous X-ray diffraction

(Elliott, 1983) or with neutrons via isotropic substitution

(Fischer et al., 2006).

Promisingly, fluctuation electron microscopy is developing

into a powerful probe of medium-range order (Treacy et al.,

2005). It was used to find nanometre-sized polycrystalline

regions in amorphous silicon that were previously undetected

in PDF measurements (Treacy & Borisenko, 2012). Fluctua-

tion diffraction microscopy has also been developed for

X-rays at 100 nm resolution (Fan et al., 2005) and it has been

shown that coherent X-ray diffraction is sensitive to local

rotational symmetries in disordered materials (Wochner et al.,

2009). Femtosecond X-ray free-electron lasers have been used

to study supercooled water (Sellberg et al., 2014) and could be

extended to orientational order if X-ray fluctuation diffraction

can be pushed to atomic resolution. However, fluctuation

measurements typically take the form of statistical or corre-

lation measures of scattered intensity that, aside from rota-

tional symmetries, are difficult to interpret structurally.

Detailed numerical forward models of the structure and the

diffraction are usually required (Treacy et al., 2005). This

stands in stark contrast to the PDF which has a direct, inver-

tible relationship to the mean diffraction signal. A similar

invertible relationship to real-space statistical distributions

has been lacking for fluctuation diffraction measurements.

Alongside the development of fluctuation microscopy,

diffraction fluctuations have been proposed as a route to the

structures of biological molecules, like proteins, without the

need for crystallization (Kam, 1977). The idea is to measure

the diffraction from multiple identical copies of the molecule

in liquid suspension and perform a correlation analysis. It can

be shown that information about the orientations and

separations of individual molecules is lost in the analysis,

leaving information that depends only on the internal atomic

structure of the molecule. For some time this research was

hampered by an inability to measure proteins faster than their

rotational diffusion, thereby washing out the diffraction fluc-

tuations and this was solved by freezing samples (Kam et al.,

1981). Nevertheless, it did not become an established tech-

nique with synchrotron sources, most likely because the beam

intensity required for sufficient signal-to-noise exceeded

radiation dose limits. However, there has been an exciting

resurgence within the X-ray free-electron laser community

(Saldin et al., 2009; Starodub et al., 2012) because femtosecond

pulses can take snapshot measurements effectively freezing

the molecules in place and outrunning radiation damage

processes. This allows potential applications to proteins in

solution at room temperature and liquid samples that have

rapid decoherence times. Structure determination methods

were developed at first for molecules with rotational symme-

tries (Saldin et al., 2011; Starodub et al., 2012) and more

recently for an arbitrary three-dimensional structure (Dona-

telli et al., 2015).

Underlying fluctuation diffraction methods for biomole-

cules is a well developed theoretical analysis of intensity

correlations in a spherical geometry. Our work here is to show

that the same theory can be reapplied and extended in the

context of amorphous systems (e.g. liquids and glasses) to

make fluctuation diffraction data easier to interpret. Here we

show how the fluctuations in kinematic far-field diffraction can

be mapped into a three- and four-atom correlation function

�ðr; r0; �Þ that depends on two pairwise distances and one

relative angle (as illustrated in Fig. 1). It is given by

�ðr; r0; �Þ �

Z Z
Na g�ðrÞg�ðr0Þ
� �

�
� cos � �

r � r0

jrjjr0j

� �
d�d�0;

ð1Þ

where the average hi� is taken over the ensemble of possible

sample configurations, g�ðrÞ is a three-dimensional two-atom

correlation function for a particular sample state �, and Na is

the mean number of atoms illuminated per measurement.

�ðr; r0; �Þ is sensitive to orientation in short- and medium-

range order that is absent in the PDF and at small values of r

and r0 the angular dependence of �ðr; r0; �Þ is determined by

bond angles.

�ðr; r0; �Þ is also related to higher order correlation func-

tions from statistical physics as follows,

�ðr; r0; �Þ ¼ ~ggð2Þðr; r0; �Þ þ ~ggð3Þðr; r0; �Þ

þ ~ggð3Þðr; r0; �� �Þ þ ~ggð4Þðr; r0; �Þ; ð2Þ

where ~ggð3Þðr; r0; �Þ and ~ggð4Þðr; r0; �Þ can be derived (see

Appendix A) from the respective n-body correlation function

gðnÞðr1; r2; :::; rnÞ by integrating out the degrees of freedom that

the measurement is insensitive to, such as the absolute posi-

tion of each atomic pair and the absolute orientation of the

sample. They are given by

~ggð2Þðr; r0; �Þ ¼

Z
~ggð2Þðr; r0Þ� cos � �

r � r0

jrjjr0j

� �
d�d�0; ð3Þ

research papers

IUCrJ (2017). 4, 24–36 Andrew V. Martin � Orientational order of liquids and glasses 25

Figure 1
Atom combinations that contribute to the real-space correlation function
�ðr; r0; �Þ with three atoms (a) and four atoms (b). The four-atom
contributions are insensitive to the separation between the two pairs of
atoms.



~ggð3Þðr; r0; �Þ ¼

Z
gð3Þðr1; r; r0Þd�d�0dr1 ð4Þ

and

~ggð4Þðr; r0; �Þ ¼

Z
gð4Þðr1; r; r3; r0Þd�d�0dr1dr3; ð5Þ

where r1 and r3 are coordinates of the reference atoms in each

pair that are integrated out, and � and �0 are angular coor-

dinates that specify the absolute orientation of the three- or

four-atom group. The n-body correlation function

gðnÞðr1; r2; :::; rnÞ can be described by an average over atomic

configurations using delta functions:

gðnÞðr1; r2; . . . ; rnÞ ¼

1

�n

DXNa

i1¼1

X
i2 6¼i1

. . .
X

in 6¼i1;...;in�1

�ðr1 � ri1
Þ�ðr2 � ri2

Þ . . . �ðrn � rin
Þ

E
; ð6Þ

where rix
is the position vector for atom ix, Na is the number of

atoms contained in a sample volume V, �ðrÞ is the delta

function and � is the number density (� ¼ Na=V). The tilde

symbol over the two-body term ~ggð2Þðr; r0; �Þ is to indicate that

this is not equivalent to the PDF (see Appendix A), but it is

effectively one-dimensional because it is only non-zero when

r ¼ r0 and � ¼ 0 or �.

The function �ðr; r0; �Þ contains information about orien-

tational order through the angular dependence �, which is

related to internal angles in three- and four-atom correlations

as shown in Fig. 1. We use the term orientational order here to

refer to non-uniform angular structure in �ðr; r0; �Þ. This

usage is analogous to the association between the term ‘local

order’ and the presence of peaks in the PDF. We thus use the

term ‘orientational order’ in broader sense than the term

‘bond orientational order’ (Steinhardt et al., 1983), which was

defined with respect to specific angular metrics for quantifying

local structure. The relationship between �ðr; r0; �Þ and bond

orientational order is of interest for future study.

We note that the theory of local rotational symmetries

present in the fluctuation X-ray diffraction of disordered

systems developed by Altarelli et al. (2010) overlaps with the

work presented here. The key difference is that they conduct

the majority of their analysis in Fourier space and focus on

symmetry, whereas here we have identified a transformation

to real space that makes a direct connection to statistical

physics. The connection with statistical physics has been made

in the theory of fluctuation electron microscopy (Gibson et al.,

2000) involving correlation functions of the same order as in

equation (2). There a forward model of diffraction is

presented that is specific to their experimental geometry and

they did not identify the inverse relationship that we present

here.

2. Methods

2.1. Derivation of H(r, r000, h)

�ðr; r0; �Þ is obtained from fluctuation diffraction by first

calculating the angular correlations of diffraction patterns

averaged over an ensemble of different states of the sample.

We assume the sample can take an atomic configuration �
from a statistical ensemble of possible configurations. We

follow the practice developed for pair-distribution analysis

(Fischer et al., 2006) and rescale the diffracted intensity to

isolate the structural information. It is convenient to work

with g�ðq; �ðqÞ; �Þ [the Fourier transform of g�ðrÞ], which is

obtained by rescaling the kinematic diffracted intensity

g�½q; �ðqÞ; �� ¼
I½q; �ðqÞ; ��

�0�0Naj
�ff ðqÞj2

�
1

�0

� �ðqÞ; ð7Þ

where f ðqÞ is the mean atomic scattering factor, Na is the

number of atoms in the beam, �0 depends on experimental

parameters (see Appendix B) and �0 is the mean number

density of the sample. We assume these parameters are

known. The coordinate q is the magnitude of the scattering

vector, � is an azimuthal angle around the beam axis and �ðqÞ
is a polar angle with respect to the beam axis (Saldin et al.,

2009). The last term, �ðqÞ, represents low-angle scattering from

the mean density which in practice is not measured, but which

we include here for completeness. The function g�ðqÞ is the

Fourier transform of a three-dimensional pair correlation

function g�ðrÞ for the sample in state �.

We construct an angular cross-correlation in a similar

fashion to existing fluctuation diffraction methods (Kam, 1977;

Wochner et al., 2009; Saldin et al., 2009) and take the average

over N� measurements of the sample in different structural

states �:

Cðq; q0;��Þ ¼
1

N�

XN�

�¼1

Z
g�½q; �ðqÞ; ��g�½q0; �ðq0Þ; �þ���d�:

ð8Þ

where � is summed over the number of measurements (and,

therefore, sample states) and N� is the number of samples that

are measured.

Here we make a key assumption that there is no correlation

between the orientation of the sample state and the beam axis.

The average of Cðq; q0;��Þ over an ensemble of sample

configurations leads to the loss of information about absolute

orientation as the number of measurements N� increases. This

assumption lets us use a powerful result from the fluctuation

diffraction theory for biomolecules that establishes a rela-

tionship between Cðq; q0;��Þ and a series of mutual intensity

matrices in a spherical harmonic representation (Saldin et al.,

2009) as follows

Cðq; q0;��Þ ¼
X

l

1

4�
Pl

q � q0

jqjjq0j

� �
hB�

l ðq; q0Þi�; ð9Þ

where PlðxÞ is a Legendre polynomial, hi� represents an

ensemble average and B�
l ðq; q0Þ is related to a spherical

harmonic expansion coefficients I�lmðq
0Þ of g�ðqÞ [the Fourier

transform of g�ðrÞ] by

B�
l ðq; q0Þ ¼

X
jmj�l

I�;�lm ðqÞI
�
lmðq

0
Þ; ð10Þ

and the spherical harmonic expansion of g�ðqÞ is written
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g�ðqÞ ¼
X
l¼0

X
m�jlj

I�lmðqÞYlmð�; �Þ; ð11Þ

where Ylmð�; �Þ is a spherical harmonic function. Equation (9)

is a linear system of equations that can be inverted with

standard methods to obtain hB�
l ðq; q0Þi�, as is done in solution-

based biomolecule scattering methods (Saldin et al., 2009).

In the fluctuation diffraction theory for biomolecules (Kam,

1977; Saldin et al., 2009), multiple molecules with identical

structure are illuminated and the spherical harmonic expan-

sion defined for the diffracted intensity of a single molecule. In

that context, the extracted matrices Blðq; q0Þ are used to

recover a real-space image of the particle or molecule via

phase retrieval, either by first recovering a three-dimensional

Fourier intensity (Saldin et al., 2009) or by using them directly

as constraints for the image recovery algorithm (Donatelli et

al., 2015). In the context of disordered phases of matter,

however, every measured state of the sample has a different

atomic structure and an imaging analysis is not appropriate.

Instead, we diverge from the biomolecular fluctuation

diffraction methods by converting the mutual intensity

matrices into �ðr; r0; �Þ via a series of linear transformations

and thereby extracting statistical information about short- and

medium-range order.

First we use a spherical Bessel transform to map Blðq; q0Þ

into a function of two real space variables r and r0. We write

the transform as an operator ŜSqr that is given by

ŜSqr f ðqÞ½ � ¼ 4�

Z qmax

0

f ðqÞjlð2�qrÞq2dq: ð12Þ

Applying the transform twice, we obtain real-space matrices

given by

hB�
l ðr; r0Þi� � ð�1ÞlŜSq0r0 ŜSqr hB

�
l ðq; q0Þi�

� �n o
¼
X
jmj�l

�
I��lm ðrÞI

�
lmðr
0
Þ
�
�
; ð13Þ

where I�lmðrÞ are the spherical harmonic coefficients of g�ðrÞ.

Writing out I�lmðrÞ explicitly as a projection of g�ðrÞ onto the

spherical harmonic basis Ylmð�; �Þ, we can evaluate

hB�
l ðr; r0Þi� ¼

Z Z �
g�ðrÞg�ðr0Þ

�
�

X
m

Ylmð�; �ÞY
�
lmð�

0; �0Þd�rd�r 0

¼

Z Z �
g�ðrÞg�ðr0Þ

�
�
Pl

r � r0

jrjjr0

� �
2l þ 1

4�
d�rd�r 0 ; ð14Þ

where we have used the following relation to derive the

second line

X
m

Ylmð�; �ÞY
�
lmð�

0; �0Þ ¼ Pl

r � r0

jrjjr0j

� �
2l þ 1

4�
: ð15Þ

We can construct the following weighted sum to recover

�ðr; r0; �Þ:

�ðr; r0; �Þ � 2�Na

X
l

Pl cos �ð Þ
�
B�

l ðr; r0Þ
�
�

¼

Z Z
Na

�
g�ðrÞg�ðr0Þ

�
�
� cos � �

r � r0

jrjjr0j

� �
d�rd�r0 ;

ð16Þ

where we have used a known relation for Legendre poly-

nomials:

1
2

X
l

ð2l þ 1ÞPlðxÞPlðyÞ ¼ �ðx� yÞ: ð17Þ

The inclusion of the Na term in equation (16) corrects for the

fact that diffraction fluctuations scale as Na
1/2, not Na, and

makes �ðr; r0; �Þ independent of the number of atoms in the

sample.

In practice, to recover �ðr; r0; �Þ from diffraction measure-

ments IðqÞ, we need to perform the following steps: (i)

calculate the angular correlation of each diffraction pattern

and average them [equation (8)]; (ii) invert a system of linear

equations to recover hB�
l ðq; q0Þi� [equation (9)]; (iii) map

hB�
l ðq; q0Þi� into real space by numerically applying the

spherical Bessel transform for both q and q0 variables at each

value of l [equation (13)]; and (iv) sum the resulting real-space

functions weighted by the Legendre polynomials [equation

(16)].

It turns out that ignoring the l ¼ 0 contribution to equation

(16), produces �ðr; r0; �Þ � gðrÞgðrÞ, which provides a clearer

representation of the angular information as shown in Fig.

3. As a by-product of ignoring l ¼ 0 we do not need to

explicitly subtract the 1=�0 term when rescaling the intensity

using equation (7).

2.2. Angular symmetries of H(r, r000, h)

�ðr; r0; �Þ has angular symmetries which make it unique

only in the range 0<�<�=2. Averaging over absolute orien-

tation has the effect of making �ðr; r0; �Þ an even function of �,
i.e. �ðr; r0;��Þ ¼ �ðr; r0; �Þ. Mathematically, this is because

angular information is captured by �ðr; r0; �Þ via a dot product

between the displacement vectors between atomic pairs, r � r0,

which is proportional to cos �, which is an even function of �.
A second angular symmetry arises because g�ðrÞ is centro-

symmetric, i.e. g�ð�rÞ ¼ g�rÞ. We can write g�ðrÞ in terms of

displacement vectors R�
ij between atoms i and j in sample

configuration �,

g�ðrÞ ¼
1

�

X
i

X
j6¼i

�ðr� R�
ijÞ: ð18Þ

In the above sum, every pair of non-identical atoms contri-

butes two terms with displacement vectors R12 and R21, which

leads to centrosymmetry. A consequence of this symmetry is

that �ðr; r0; �� �Þ ¼ �ðr; r0; �Þ.
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3. Simulations

3.1. Simulation of the extraction of H(r, r000, h)

We extracted �ðr; r; �Þ from simulated kinematic diffraction

data from nickel in amorphous, liquid and crystalline states.

Amorphous nickel is a metallic glass with known medium-

range order that can be simulated with classical MD simula-

tions by rapidly quenching from a liquid state. As a by-

product, we also generate high-temperature liquid states

(3000 K).

The MD simulations were performed with the LAMMPS

package (Plimpton, 1995), using the embedded-atom potential

and the parameters from Lu & Szpunar (1997). The supercell

size was 11	 11	 11 f.c.c. unit cells with lattice parameter

3.52 Å, which contains 5324 atoms. Atoms were randomly

displaced from equilibrium positions up to a maximum

distance of 0.17 Å, then the system was equilibrated at 3000 K

for 40000 time steps using the isothermal-isobaric ensemble

(NPT). Each time step was 2.5 fs. The system was then cooled

at a rate of 248 K ps�1 to 300 K and then run for a further

40 000 time steps at 300 K. One thousand different amorphous

configurations were generated by the same procedure. The

liquid states were recorded after the first 40 000 time steps at

3000 K. The PDFs generated by the simulation are shown in

Fig. 2 (bottom right) and the bond angle distribution is given

by the dashed lines for the distance r ¼ 2:5 Å shown in Fig. 3

(bottom left). Coordination statistics for the amorphous state

are: 25.7% 12-fold coordinated, 52.5% 13-fold coordinated

and 17.8% 14-fold coordinated. These were calculated

including neighbours within the first

minimum of the PDF located at 3 Å.

For a simple illustration of the prin-

ciple, we have used small sample

volumes (<40 Å) and not modelled

noise on the diffraction patterns. The

experimental implications of noise and

larger sample volumes are discussed in

Section 4.3.

X-ray kinematic diffraction simula-

tions were performed for each liquid

and amorphous sample configuration at

a wavelength of 0.5 Å and a maximum

scattering amplitude of 1.38 Å�1.

Atomic scattering factors were taken

from Waasmaier & Kirfel (1995). Atoms

within a 40 Å diameter sphere were

used in the diffraction calculation,

ensuring adequate sampling on a 128 	

128 q-space grid. This was purely for

computational convenience, as larger

sample volumes and finer grid sizes do

not change the final result, but are

slower to calculate and require aver-

aging over more configurations to

converge. No absorption was modelled.

The inversion of equation (9) was

performed with singular value decom-

position (SVD) using a maximum l value of 40. The elements

of the matrix to be inverted are given by

Mlk ¼
1

4�
Pl sin �ðqÞ sin �ðq0Þ þ cos �ðqÞ cos �ðq0Þ þ cosð��kÞ
� �

;

ð19Þ

where ��k is a discrete sample of the internal angle between

two pixel coordinates q and q0, and �ðqÞ is a polar angle that

depends on the magnitude of a pixel coordinate vector [see

equation (9) for further details on the geometry]. A separate

matrix inversion is thus required for each value of q and q0. We

use 402 angular sampling points (k points). Friedel symmetry

was applied by setting IlmðqÞ ¼ 0 for odd values of l, and

excluding these from the SVD analysis greatly improved

numerical stability. The condition number of the inversion is

around 10 when jq� q0j 
 0, and worsens as jq� q0j

increases. A cutoff was applied to exclude all singular values

below 5% of the largest singular value. The discrete spherical

Bessel transform (DSBT) (Lanusse et al., 2012) was used to

map the Blðq; q0Þ matrices to real space [equation (13)]. The

DSBT has a boundary condition that requires IlmðqmaxÞ ¼ 0. In

our simulations, qmax is set to the value measured at the edge

of the detector and a Gaussian filter was applied to each

diffraction pattern with a width of qmax=4 to ensure the

boundary condition was met, thereby minimizing numerical

errors for a reduction in the effective resolution by a factor of

4. The reduced resolution is likely to contribute to the

unphysical non-zero correlation below 2.5 Å shown in Fig. 2.
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Figure 2
When evaluated at � ¼ 0, �ðr; r0; �Þ provides information about radial correlations. The top row
shows the �ðr; r0; � ¼ 0Þ extracted from diffraction simulations of liquid Ni at 3000 K (left),
amorphous Ni at 300 K (middle) and an f.c.c. Ni crystal (right). On the bottom left we plot the r ¼ r0

diagonal which contains peak structure that is similar qualitatively to the pair distribution function
(bottom right). All line plots have been normalized to have a maximum value of 1 to aid
comparison. The information less than 2.5 Å is a numerical artifact related to the finite resolution of
the simulation.



The �ðr; r0; �Þ extracted from our simulation displays a peak

structure that is dominated by two- and three-atom correla-

tions. Two-atom correlations are prominent along the line

r ¼ r0 and � ¼ 0 as shown in Fig. 2, which displays peaks in the

same positions as the pair-distribution function for all three

phases of the sample. Three-atom correlations appear when

we plot the �ðr; r0; �Þ as a function of �, revealing the orien-

tational order. The majority of angular peaks shown in the top

row of Fig. 3 correspond well to ~ggð3Þðr; r0; �Þ calculated directly

from the atomic structures, as shown in the bottom row of

Fig. 3.

4. Prospects for experiment

4.1. Electrons

Measurements of �ðr; r; �Þ should be possible via fluctua-

tion electron diffraction. Cross-correlation functions similar to

equation (8) have already been measured with electrons

(Gibson et al., 2010) and could be converted into a measure-

ment of �ðr; r; �Þ using the methods described here. For

electrons, multiple scattering will place limits on sample

thickness of around 100–200 nm and further work is needed to

establish these limits more precisely. Effects of multiple scat-

tering can be corrected in PDF analysis (Anstis et al., 1988)

and it may be possible to extend these techniques to diffrac-

tion fluctuation measurements. Beam profile effects are

another known issue (Gibson et al., 2000) that are important if

there is non-uniform illumination on length scales below the

correlation length of the sample. A further issue is induced

sample dynamics that have been invoked to account for the

observation of lower than expected contrast in electron

intensity correlation measurements (Rezikyan et al., 2015).

4.2. X-rays

An advantage for X-rays over electrons is that the kine-

matic diffraction approximation has greater validity. However,

it is more difficult to focus X-ray beams and diffraction fluc-

tuations diminish unfavourably relative to the total scattering

as the number of illuminated atoms increases. The best

nanofocus X-ray beams are 15 nm or better in diameter, but

more commonly they are greater than 25 nm (Sakdinawat &

Attwood, 2010), which is at least an order of magnitude larger

than the length scales of short- and medium-range order in

amorphous matter. Since shot noise increases with the total

scattering with the illuminated volume, we would expect that

larger illuminated sample volumes require more diffraction

measurements for convergence. Shot noise is investigated in

detail in the next section.

It is known from fluctuation diffraction of biomolecules that

the contribution of random correlations of the diffraction

from different molecules produce a noise in the intensity

correlation that scales linearly with the number of molecules.
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Figure 3
The angular dependence of �ðr; r0; �Þ for three different radial shells: r ¼ r0 ¼ 2:5 Å (top left), r ¼ r0 ¼ 4:3 Å (top middle) and r ¼ r0 ¼ 6:6 Å (top
right). The peak positions show good agreement with the sum ~ggð3Þðr; r0; �Þ þ ~ggð3Þðr; r0; �� �Þ shown by the solid lines in the second row that are calculated
directly from the simulated atomic structures. The dashed lines in the second row show the asymmetric correlation ~ggð3Þðr; r0; �Þ for reference. All
~ggð3Þðr; r0; �Þ plots have been normalized to a maximum value of unity. The lattice diagrams are examples of the atoms from the f.c.c. lattice (in red) that
contribute to peaks in ~ggð3Þðr; r0; �Þ. To aid comparison, the plots have been offset and �ðr; r0; �Þ has been scaled by a factor of 7	 10�5 for the crystalline
case and by factor of 5 for the liquid case.



As the signal from the autocorrelation of diffraction from each

molecule also scales linearly, the ratio of signal to this source

of noise is independent of the number of molecules and bigger

than one. An equivalent result is expected to hold for amor-

phous materials with respect to the number of atoms. Hence,

we anticipate that noise from uncorrelated atoms will not be as

important as shot noise for the feasibility of fluctuation X-ray

experiments of amorphous materials.

One key difference between measuring amorphous mate-

rials and biomolecules is that biomolecules are typically

delivered to the beam in a liquid environment, which gener-

ates background scattering that increases noise. It has been

estimated to overcome background scattering that around 1013

photons per pulse would be required to image protein struc-

tures (Kirian et al., 2011; Kirian, 2012), which is just beyond

the reach of current XFEL facilities (Emma et al., 2010).

However, this issue is not present if we are studying the liquid

itself or an amorphous solid, which can be placed in an X-ray

beam effectively in isolation from other scattering material. In

both experiments there are stray background signals from the

X-ray beamline, but methods to reduce these to single photon

level are under development for single molecule imaging

(Aquila et al., 2015), which if necessary could be used to for

fluctuation diffraction measurements.

These measurements do not require greater beam coher-

ence than typical small-angle X-ray scattering measurements,

because the structural correlation length of the sample does

not typically extend beyond 2 nm. Although high beam

coherence has been a feature of fluctuation X-ray measure-

ments at 100 nm length scales, it becomes less critical as the

structural features under investigation become smaller.

4.3. Investigation of the effects of noise

We have investigated the number of patterns required with

a statistical model, which is based on an observation from

simulation that the diffraction fluctuations scale with Na
1/2.

This simulation and the statistical model are detailed in

Appendix B. We can use these statistical properties of the

diffraction to derive the number of diffraction patterns

required to measure the diffraction fluctuations as a function

of experimental parameters. It turns out that the required

number of patterns is independent of Na, because both the

diffraction fluctuations and shot noise have the same depen-

dence on this parameter. The required number of patterns is

sensitive to flux and therefore to the focal spot size. In fact, we

found that the number of patterns N� required to measure the

diffracted intensity correlation has the following relationship

to the beam area A, the number of incident photons Nph and

the mean atomic scattering factor f :

N� / A2N�2
ph f

�4
: ð20Þ

The quadratic and quartic powers indicate that small changes

in beam parameters or sample composition can have a big

impact on the required number of patterns and place practical

limits on the accuracy of the measurement. It will be more

challenging to measure lighter elements as f 
 Z. High

repetition rate X-ray sources (>100 Hz) like X-ray lasers can
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Figure 4
(a) The effect of noise on a cross-section of the intensity correlation function C(q = 0.5 Å�1, q0, �) varying the number of patterns. Noise is clearly visible
for N� ¼ 102, but is suppressed by N� ¼ 104 except for a large peak at � ¼ 0 which arises from the self-correlation of the shot noise with itself. (b) A line
plot of q = q0 = 0.5 Å�1 which shows that the peak at � ¼ 0 varies with the noise level. This peak can be removed with a centrosymmetric filter that
replaces information in the vicinity of � = 0� with the information near � = 180�. (c) After applying the centrosymmetric filter, the N� ¼ 104 result agrees
well with the noise-free simulation for the full range of �.



produce of the order of 107–108 measurements in a 24 h

period, so we regard this as the upper limit on the number of

patterns available in a single experiment. Assuming parameter

values available at the Linac Coherent Light Source (Emma et

al., 2010) (100 nm diameter beam and 1012 incident photons at

1.5 Å wavelength), we estimate that the correlation function

from equation (8) for amorphous nickel could be measured

with a signal-to-noise ratio (SNR) of 5 by collecting 105

diffraction patterns, which requires less than 20 min of data

collection at 100 Hz.

We have verified these estimates for the required number of

patterns with a numerical implementation of the statistical

model. To avoid intensive MD simulations, we took the

diffraction pattern calculated for a small sample volume (40 Å

diameter; 2900 atoms), then scaled the mean scattering signal

(as a function of q) by the number of atoms and scaled the

fluctuations by the square root of the number of atoms, then

combined both to create a new diffraction pattern. Shot noise

was then calculated for the scaled diffraction pattern. The new

pattern will have the correct ratio between shot noise and the

interference terms between atoms with correlated positions. It

does not model the noise from atoms with uncorrelated

positions, which is a smaller effect than shot noise. To limit the

number of MD simulations required, we randomly selected a

sample state from 1000 different MD results and randomly

rotated each selected structure. We fixed the experimental

parameters at 100 nm diameter spot size, 1012 incident photons

and 8:6	 107 illuminated atoms. The number of atoms was

calculated for a 100 nm sample thickness and a number

density of 85.9 atoms nm�3 which was taken from the MD

simulation. Fig. 4(a) shows cross-sections of Cðq; q0; �Þ as N� is

varied. We see that the correlation function converges to the

noise free calculation by 104 patterns, except for the self-

correlation of the shot noise that generates a large peak when

q ¼ q0 and � = 0�, as shown in Fig. 4(b). This peak can be

removed by applying centrosymmetry to replace the data near

� = 0� with the data measured around

� = 180�, which is appropriate if we

ignore absorption. In our previous

simulations centrosymmetry was

already applied during the reconstruc-

tion of �ðq; q0; �Þ. After filtering the

noise peak, the N� ¼ 104 simulation

agrees well with the noise-free simula-

tion over the full range of � as shown in

Fig. 4(c). The numerically computed

signal-to-noise estimates shown in Fig. 5

agree well with the analytic estimates, as

the conservative limit of SNR = 5 has

not yet been reached at most scattering

angles for N� ¼ 104.

Fig. 6 shows how the radial informa-

tion contained in �ðr; r0; �Þ converges as

the number of patterns increases. At

N� ¼ 102 noise artefacts are apparent

over the full range of r values, but

disappear as the number of patterns

increases to 104, which shows good

agreement with the noise-free simula-

tion. Interestingly, even at N� ¼ 102

when shot noise exceeds the fluctuation

signal for all scattering angles (the SNR

of the intensity correlation is equal or

below one), �ðr; r0; �Þ is still reasonably
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Figure 6
(a) The effect of noise on �ðr; r0; � ¼ 0Þ for amorphous nickel varying the number of patterns. The
centrosymmetric filter has been applied to the intensity correlations. For N� ¼ 102, noise manifests
in the reconstruction, but N� ¼ 104 agrees well with the noise-free simulation. b The r ¼ r0 diagonal
shows that N� ¼ 102 agrees with the noise-free simulation at the first-nearest-neighbour peak
(2.5 Å), but disagrees elsewhere.

Figure 5
The numerically calculated SNR as function of the number of patterns.
The signal is the standard deviation of the noise-free calculation and the
noise level is calculated from the difference between the variance of each
noisy simulation and that of the noise-free simulation. The increase of the
SNR is proportional to N�

1/2, as predicted by the theory in Appendix B.



accurate in the strong first- and second-nearest-neighbour

peaks as shown in Fig. 6(b). This may be because the extrac-

tion of �ðr; r0; �Þ effectively applies an angular bandwidth

limit and also because the calculation of the Blðq; q0Þ matrices

is regularized. In other words, the diffraction fluctuations have

a correlation on the detector that spans many pixels (i.e.

oversampling) which are exploited in the conversion to real

space to suppress noise. The angular distributions shown in

Fig. 7 indicate that N� ¼ 102 noise changes the angular peak

structure of �ðr; r0; �Þ beyond the first-nearest neighbours, but

these effects are largely gone by N� ¼ 104.

Although we have taken indicative parameters from an

XFEL for our noise analysis, it would be very interesting to

explore whether these measurements can be made at nano-

focus synchrotron beams, which are more accessible than

XFELs. The number of X-rays available at a synchrotron

source per second is comparable to the number in a single

XFEL pulse. However, the efficiency of the X-ray focusing

optics will be critical to delivering a high number of incident

photons per measurement. For a continuous source, equation

(20) shows that is it more advantageous to increase exposure

time to reduce the number of measurements required.

However, the maximum possible exposure time will be limited

by other factors like radiation damage and instrument stabi-

lity.

5. Conclusion

We have shown that kinematic diffraction fluctuations can be

mapped into a real-space correlation function that provides

distributions of bond angles and orientational order. The

correlations should be measurable with electrons for samples

thin enough to avoid multiple scattering and with X-rays

provided sufficiently high intensity and data rates can be

achieved to overcome noise. Our analysis of the latter issue

indicates that measurements of orientational order in metallic

glasses, like nickel, should be within reach of current XFEL

facilities and possibly nanofocus synchrotron beams by taking

of the order of 104–105 measurements. Our noise model

predicts that lighter elements such as carbon or oxygen will be

be harder to measure and may require at least two orders of

magnitude more measurements. The situation improves for

organic molecules as then it is the number of molecules not the

number of atoms that is relevant, as is known from the existing

theory for the fluctuation diffraction of biomolecules.

There are a wide range of current applications for pair

distribution analysis that can potentially be extended to the

orientational analysis proposed here. Aside from glasses and

amorphous solids, ultrafast X-ray or electron sources could be

used to probe orientational order in liquid or gas phases (e.g.

airborne particulate matter (Loh et al., 2012)) because the

ultrafast pulses outrun the translational and rotational motion

of the sample. Ultrafast pulses could extend time-resolved

small-angle or wide-angle X-ray scattering to orientational

order. Real-space correlations could be used to add a new

dimension to solution-scattering methods for biological

structure, which were a key inspiration for our work. Further

applications can be envisioned to heterogeneous biological

systems such as unfolded or partially folded conformational

ensembles (Lipfert & Doniach, 2007) and also to study the

dynamics of these systems.

APPENDIX A
Relationship between H(r, r000, h) and correlation
functions

In this appendix, we describe how �ðr; r0; �Þ can be written in

terms of correlation functions from statistical physics.

The nth-order atomic correlation function can be written as

a formal count over the atoms in the sample using delta

functions

gðnÞðr1; r2; . . . ; rnÞ ¼

1

�n

XNa

i1¼1

X
i2 6¼i1

. . .
X

in 6¼i1;...;in�1

�ðr1 � ri1
Þ�ðr2 � ri2

Þ . . . �ðrn � rin
Þ

* +
;

ð21Þ

where rix
is the position vector for atom ix, Na is the number of

atoms contained in a sample volume V, �ðrÞ is the delta

function and � is the number density (� ¼ Na=V). The

ensemble average is denoted by hi.

Kinematic scattering is sensitive to a reduced form of

gð2Þðr1; r2Þ, because the absolute position of each atom pair is

not measured, only the relative distance. We can express this
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Figure 7
Angular distributions for amorphous nickel varying the number of patterns. The centrosymmetric filter has been applied to the intensity correlations. For
N� ¼ 102, noise significantly the alters the peak structure beyond the first-nearest-neighbour distance (>2.5 Å). For N� ¼ 104, there is good agreement
with the noise-free calculation. The plots have been offset to aid comparison.



by explicitly integrating out the unmeasured degrees of

freedom. First we make a change of coordinates to place one

atom at the origin (the reference atom), so that ri1
¼ 0 and ri2

is the relative displacement between the two atoms, which for

clarity we denote ri12
. We then integrate out r1 as follows

gð2ÞðrÞ �
1

V

Z
gð2Þðr1; rÞdr1

¼
1

V�2

DXNa

i1¼1

X
i2 6¼i1

h Z
�ðr1Þdr1

i
�ðr� ri12

Þ

E

¼
1

V�2

DXNa

i1¼1

X
i2 6¼i1

�ðr� ri12
Þ

E
ð22Þ

To evaluate �ðr; r0; �Þ we need to consider a two-body

correlation function for a single instance of the sample gð2Þ;�ðrÞ

which has the same form as equation (21) but is not averaged

over the ensemble. We then evaluate

Na gð2;�ÞðrÞgð2;�Þðr0Þ
� �

¼
Na

�4V2

DXNa

i1¼1

X
i2 6¼i1

XN

i3¼1

X
i4 6¼i3

�ðr�ri12
Þ�ðr0�ri34

Þ

E
:

ð23Þ

Equation (23) resembles the fourth-order correlation function

gð4Þ with two reference atoms and two coordinates have been

integrated out (the absolute position and the relative displa-

cement between the two pairs), except that the limits of the

sums over atoms include cases where atoms are identical,

whereas equation (21) does not. In fact, the terms where two

pairs of indices are equal (e.g. i1 ¼ i3 and i2 ¼ i4) generate

two-body correlations and terms where one pair of indices are

equal generate three-body terms. Explicitly writing out the

sums over identical atoms we find

Nahg
ð2;�ÞðrÞgð2;�Þðr0Þi

¼
1

�3V

DXNa

i1¼1

X
i2 6¼i1

�ðr� ri12
Þ�ðr0 � ri12

Þ þ �ðr� ri12
Þ�ðr0 þ ri12

Þ

E

þ
1

�3V

DXNa

i1¼1

X
i2 6¼i1

X
i3 6¼i1;i2

�ðr� ri12
Þ�ðr0 � ri13

Þ

þ �ðr� ri12
Þ�ðr0 þ ri13

Þ

E

þ
Na

�4V2

DXNa

i1¼1

X
i2 6¼i1

X
i3¼i1;i2

X
i4 6¼i1;i2;i3

�ðr� ri12
Þ�ðr0 � ri34

Þ

E

¼ ~ggð2Þðr; r0Þ þ
1

V

Z
½gð3Þðr1; r; r0Þ þ gð3Þðr1; r;�r0Þ�dr1

þ Na

1

V2

Z Z
gð4Þðr1; r; r3; r0Þdr1dr3

¼ ~ggð2Þðr; r0Þ þ gð3Þðr; r0Þ þ gð3Þðr;�r0Þ þ gð4Þðr; r0Þ: ð24Þ

where we have defined

~ggð2Þðr; r0Þ ¼
1

�3V

DXN

i1¼1

X
i2 6¼i1

�
�ðr� ri12

Þ�ðr0 � ri12
Þ

þ �ðr� ri12
Þ�ðr0 þ ri12

Þ
�E
; ð25Þ

gð3Þðr; r0Þ �
1

V

Z
gð3Þðr1; r; r0Þdr1 ð26Þ

and

gð4Þðr; r0Þ ¼
Na

V2

Z Z
gð4Þðr1; r; r3; r0Þdr1dr3: ð27Þ

We substitute this result into the expression for �ðr; r0; �Þ and

perform the angular integrations to obtain

�ðr; r0; �Þ ¼ ~ggð2Þðr; r0; �Þ þ ~ggð3Þðr; r0; �Þ

þ ~ggð3Þðr; r; �� �Þ þ ~ggð4Þðr; r0; �Þ: ð28Þ

where

~ggð2Þðr; r0; �Þ ¼

Z
~ggð2Þðr; r0Þ�ðcos � � n � n0Þd�d�0; ð29Þ

~ggð3Þðr; r0; �Þ ¼

Z
gð3Þðr; r0Þd�d�0 ð30Þ

and

~ggð4Þðr; r0; �Þ ¼

Z
gð4Þðr; r0Þd�d�0; ð31Þ

where we have defined n ¼ r=jrj. The angular integrations can

be performed by representing the delta functions in spherical

coordinates. We choose relative coordinates for the second

pair (ri13
or ri34

) such that the first atom pair ri12
lies along the

zenith direction. We then integrate over absolute orientation

by integrating over the orientation of the first pair d� and by

integrating the relative azimuthal angle of the second pair d�0.
For example, the angular integration of a three-body corre-

lation term, gð3Þðr; r0Þ, is given by

~ggð3Þðr; r0; �0Þ

¼

Z
gð3Þðr; r0Þd�d�0

¼
1

�3V

DXNa

i1¼1

X
i2 6¼i1

X
i3 6¼i1;i2

Z
�ðr� ri12

Þ�ðr0 � ri13
Þd�d�0

E

¼
1

�3V

DXNa

i1¼1

X
i2 6¼i1

X
i3 6¼i1;i2

1

r2
�ðr� ri12

Þ

Z
1

sin �
�ð�Þ�ð�Þd�

	
1

r02 sin �0
�ðr0 � ri13

Þ�ð�0 � �i123
Þ

Z
�ð�0Þd�0

E

¼
1

�3V

DXNa

i1¼1

X
i2 6¼i1

X
i3 6¼i1;i2

1

r2r02 sin �0
�ðr�ri12

Þ�ðr0�ri13
Þ�ð�0��i123

Þ

E
ð32Þ
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APPENDIX B
Estimation of the required number of X-ray diffraction
patterns

X-ray fluctuation diffraction has been demonstrated on

100 nm length scales, but to push to atomic length scales, we

must understand how experimental parameters affect the size

of the diffraction fluctuations and the feasibility of measuring

them. Here we will use statistical arguments to determine the

required number of patterns as a function of the other rele-

vant experimental parameters. The arguments presented here

are similar to those developed for the fluctuation diffraction of

biomolecules (Kirian, 2012).

The intensity at a pixel can be modelled by

IðqÞ ¼ I0ðqÞ þ If ðqÞ þ �ðqÞ: ð33Þ

where I0ðqÞ is the angular average of the intensity and If ðqÞ is

fluctuation of the diffraction signal from the mean. The term

�ðqÞ is a random variable that accounts for shot noise, which

has a mean of zero. The standard deviation of �ðqÞ is equal to

the square root of the intensity:

	ð�Þ ¼ ½I0ðqÞ�
1=2
¼ ½�0Naf

2
ðqÞ�1=2

ð34Þ

where f ðqÞ is the mean atomic structure factor and �0 depends

on experimental parameters:

�0 ¼
Nph

A
r2

ed�q; ð35Þ

where Nph is the number of incident photons per measure-

ment, A is the beam area, re is the classical electron radius and

d�q is the solid angle of subtended by a pixel.

We assume that I0ðqÞ can be measured accurately and

subtracted prior to calculating the correlation function

[equation (8)]. Evaluating an intensity correlation between a

pixel at q ¼ ½q; �ðqÞ; �� and a pixel at q0 ¼ ½q0; �ðq0Þ; �þ���
by summing over sample states � to obtain

X
�

Z
I�ðqÞI�ðq

0
Þd� ¼

X
�

Z
If ;�ðqÞIf ;�ðq

0
Þd�

þ 2
X
�

Z
If ;�ðqÞ��ðq

0
Þd�

þ
X
�

Z
��ðqÞ��ðq

0Þd�: ð36Þ

The term If ðqÞIf ðq
0Þ contains contributions from both corre-

lated pairs, which we want to measure, and uncorrelated

atomic pairs that are effectively an additional source of noise.

Both If ðqÞ�ðq
0Þ and �ðqÞ�ðq0Þ are additional sources of noise. It

turns out that �ðqÞ�ðq0Þ is the dominant source of noise and to

simplify this argument, this is the only source of noise we treat

here. This is consistent with the analysis of Kirian et al. (2011)

and we provide some further comment about other noise

sources below.

We need to estimate the magnitude of the interference

between correlated atom pairs and how it scales with the

number of atoms. This was calculated directly from an MD

simulation of amorphous nickel with 41	 41	 41 unit cells.

For q ¼ 0:25 Å�1, we used the simulated atomic structure to

directly evaluate the diagonal terms of the matrices Blðq; qÞ

(as defined in the Methods section) and estimated

hIf I 0f i ¼
P20

l¼1 Blðq; qÞ. We changed the number of atoms by

selecting a spherical volume with a radius in the range

30–60 Å, which changed the number of atoms from 8517 up to

32457. Fig. 8 shows that ½hIf ðqÞIf ðqÞi�
1=2 scales as the square

root of the number of atoms Na
1/2, while I0ðqÞ scales with

Na. Dividing ½hIf ðqÞIf ðq
0Þi�

1=2 by Na gives the contribution to

If ðqÞ per atom [denoted If aðqÞ], which we can use to estimate

the fluctuation signal for larger numbers of atoms than it is

practical to simulate.

We then have that

hIf I0f i ¼ Na�
2
0I2

f aðqÞ 	ð��0Þ ¼ Na�0jf ðqÞj
2; ð37Þ

where 	ð��0Þ is the standard deviation of the noise term. We

note that If ðqÞ is correlated over an angular and radial range

that is determined by the correlation length of the sample,

whereas � is uncorrelated between pixels. It is thus important

to rebin the diffraction pattern before taking the correlation to

maximize If ðqÞ and reduce noise. Denoting the number of

pixels in the bin by Mb, we find that hIf I 0f i scales as M2
b, while

	ð��0Þ scales as Mb. The correlation calculation also involves

an integration over M� angular bins that will further reduce

noise. Finally the sum of the correlation over diffraction

measurements N� must be taken into account. When all of

these operations are combined, we obtain the following

expressions for the signal and the dominant error term:

signal ¼ M2
bM�N�hIf I0f i and noise ¼ ðN�M�Þ

1=2
Mb	ð��

0
Þ:

ð38Þ

We can then define a SNR, R, given by

R ¼
signal

noise
¼

MbðM�Þ
1=2
ðN�Þ

1=2�0I2
f aðqÞ

jf ðqÞj2
; ð39Þ
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Figure 8
The scaling of I0 and If for nickel. The lines y ¼ bNa and y ¼ c

ffiffiffiffiffiffi
Na

p
are

given to indicate the scaling, where the parameters b and c are fixed so
that the plots are equal to the simulations at Na ¼ 8517 (corresponding to
a radius of 30 Å).



which, after using equation (7) to replace �0, we rearrange in

terms of the number of patterns,

N� ¼
R2jf ðqÞj4

M2
bM�I4

f aðqÞ

A2

N2
phr4

ed�2
q

: ð40Þ

Take the example of a 2000	 2000 pixel detector positioned

to measure 1 Å resolution at the detector edge. We choose an

angular bin width of 2�=40, so M� ¼ 40. The q-width of a pixel

is around 100 nm�1, and we choose a radial bin of 40 pixels

(sufficient to measure correlations between atom pairs up to

2.5 nm apart). Therefore, at 4 Å resolution which corresponds

to 250 pixels distance from the beam center, a bin would

contain close to 1560 pixels (¼ Mb). For our simulation of

amorphous nickel, If aðqÞ ¼ 1640 and jf ðqÞj2 ¼ 500 at 4 Å

resolution. We choose beam parameters with values achiev-

able at the Linac Coherent Light Source (LCLS) (Emma et al.,

2010): A ¼ 100	 100 nm2 and Nph ¼ 1012. For a wavelength

of 1.5 Å, the solid angle of a pixel is d�q ¼ 8:1	 10�7. To

achieve R ¼ 5 we find that N� ¼ 2:8	 104, which to be

conservative we round up to 105.

We note a few consequences of equation (40). The beam

area A and the number of photons Nph are squared, which

suggests that both of these parameters are critical for

measuring the fluctuations in a feasible number of measure-

ments. Interestingly equation (40) is independent of the

number of atoms, which is because the noise and signal have

the same dependence on this parameter. The number of

patterns required is sensitive to elemental composition

because jf ðqÞj4I�4
f a ðqÞ / 1=f

4
ðqÞ. This means that lighter

elements will be harder to measure, i.e. carbon would require

around two orders of magnitude more measurements than

nickel. The situation is more favourable for molecules, like

proteins targeted by solution scattering methods, where If ðqÞ

is proportional to the square of the scattering factor of the

whole molecule, because all of the atoms within a rigid

molecule are correlated.

We return now to make a few remarks about the noise

generated by random correlations between local environ-

ments centred on different atoms. In the case of fluctuation

diffraction of biomolecules the equivalent noise source is

correlations between the diffraction of different molecules,

and it well known that the signal-to-noise for this case is

independent of the number of molecules and the beam

intensity. It was suggested by Kirian et al. (2011) that this

result may carry over to densely packed systems by taking a

local arrangement of atoms as analogous to a molecule. Some

care must be taken because in a densely packed system local

structures are interconnected, whilst molecules are distinct

objects. Nevertheless, this is confirmed by our simulations on

volumes a few times the width of the sample’s structural

correlation length. Larger sample volumes only increase the

proportion of distinct local structures for which the assump-

tions of the biomolecule noise analysis are valid.

Our analysis has assumed a uniform beam profile, which is

partially justified for X-ray beams because the spatial varia-

tion in the beam is typically on larger length scales that the

correlation length of amorphous materials (>2 nm). The

overall intensity distribution can affect our signal-to-noise

analysis. For example, some X-ray beams have broad ‘tails’

that, although weak, can spread over a large area and account

for a significant fraction of the total photons. Thus, an exten-

sion of our noise analysis to non-uniform beam profiles will be

very important for X-ray experiments and forms part of

ongoing work. Our current understanding is that the signal-to-

noise varies with the ratio of the variance of the beam intensity

to the mean beam intensity, which means the bright focus of

the beam is expected to make a much greater contribution to

intensity correlation measurements than the beam tails.

Finally, we note that rebinning the data to an effective pixel

size induces an effective traverse coherence length. When

matched to the structural coherence length of the sample it

effectively suppresses the noise from the interference between

uncorrelated atoms larger than this length in addition to shot

noise. Essentially, the interference from uncorrelated atoms

produces fringes much finer than a pixel width, which have

close to zero contribution to the integrated pixel intensity.
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