
research papers

IUCrJ (2017). 4, 741–750 https://doi.org/10.1107/S2052252517012398 741

IUCrJ
ISSN 2052-2525

PHYSICSjFELS

Received 12 June 2017

Accepted 27 August 2017

Edited by T. Ishikawa, Harima Institute, Japan

Keywords: orientation determination; structure

heterogeneity; single-particle scattering;

nanoparticles; core–shell architecture; XFELs.

Supporting information: this article has

supporting information at www.iucrj.org

Merging single-shot XFEL diffraction data from
inorganic nanoparticles: a new approach to size and
orientation determination

Xuanxuan Li,a,b John C. H. Spence,c Brenda G. Hogued* and Haiguang Liua*

aComplex Systems Division, Beijing Computational Science Research Center, 8 East Xibeiwang Road, Haidian, Beijing

100193, People’s Republic of China, bDepartment of Engineering Physics, Tsinghua University, 30 ShuangQing Rd,

Haidian, Beijing 100084, People’s Republic of China, cDepartment of Physics, Arizona State University, Box 871504,

Tempe, AZ 85287, USA, and dBiodesign Institute, Biodesign Center for Immunotherapy, Vaccines and Virotherapy,

Biodesign Center for Applied Structural Discovery, School of Life Sciences, Arizona State University, Tempe, AZ 85287,

USA. *Correspondence e-mail: brenda.hogue@asu.edu, hgliu@csrc.ac.cn

X-ray free-electron lasers (XFELs) provide new opportunities for structure

determination of biomolecules, viruses and nanomaterials. With unprecedented

peak brilliance and ultra-short pulse duration, XFELs can tolerate higher X-ray

doses by exploiting the femtosecond-scale exposure time, and can thus go

beyond the resolution limits achieved with conventional X-ray diffraction

imaging techniques. Using XFELs, it is possible to collect scattering information

from single particles at high resolution, however particle heterogeneity and

unknown orientations complicate data merging in three-dimensional space.

Using the Linac Coherent Light Source (LCLS), synthetic inorganic

nanocrystals with a core–shell architecture were used as a model system for

proof-of-principle coherent diffractive single-particle imaging experiments. To

deal with the heterogeneity of the core–shell particles, new computational

methods have been developed to extract the particle size and orientation from

the scattering data to assist data merging. The size distribution agrees with that

obtained by electron microscopy and the merged data support a model with a

core–shell architecture.

1. Introduction

The realization of the ‘diffraction-before-destruction’ experi-

mental approach at X-ray free electron laser (XFEL) facilities,

such as the Linac Coherent Light Source (LCLS) at SLAC

National Laboratory (Menlo Park, California, USA), makes it

possible to outrun radiation damage (Chapman et al., 2006)

using ultrashort X-ray pulses (Emma et al., 2010). As fully

coherent X-rays, XFEL pulses are unprecedentedly bright,

promising scattering measurements at high resolution from

noncrystalline samples such as macromolecular complexes or

viruses [for a review of the LCLS design and applications, see

Bostedt et al. (2016)]. Coherent diffraction imaging (CDI) of

single particles (with one particle per shot) will eventually

enable the determination of biomolecular structures without

the need to grow crystals (Miao et al., 2015; Gallagher-Jones et

al., 2016). The reconstruction of a three-dimensional real-

space density map based on a set of scattering patterns from

many randomly oriented and structurally similar particles

remains a field of active research, including the development

of algorithms for accurate determination of particle orienta-

tion to allow the merging of data sets into a three-dimensional

diffraction volume, followed by solution of the phase problem

and reconstruction to a real-space electron-density map.
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From the perspective of data analysis, the orientation

determination and the treatment of sample heterogeneity are

two challenging problems for XFEL single-particle imaging. It

is understood from recent cryo-electron microscopy (cryo-

EM) studies that the ability of algorithms to distinguish small

changes in particle orientation from small changes in structure

(from projection data) is crucial for the formation of mol-

ecular movies from an ensemble, and is hence a problem of the

greatest importance in structural biology. Heterogeneity of

synthetic nanoparticles arises mainly from variations in

particle size. In the case of virus particle scattering studies,

even for identical icosahedral virus particles, whose structure

is defined by the outer capsid protein and the inner DNA/

RNA molecules, the lack of apparent homogeneity most likely

arises from variations in the thickness of the hydration shell,

or from precipitates condensing on the virus surface, or from

variations in the packing of the genome. The orientation

recovery must be done in the presence of beam shot-noise and

instrument limitations, such as background scattering from

apertures, shot-to-shot intensity variations, detector read-out

noise, nonlinear detector response and other unidentified

noise sources. Several algorithms have been proposed for

orientation determination for single-particle scattering data.

Common arc (or common line) methods (Shneerson et al.,

2008; Bortel & Tegze, 2011) rely on finding the intersecting

lines between scattering patterns, due to the fact that all

patterns must pass through the origin of reciprocal space. The

expansion, maximization and compression (EMC) algorithm

simultaneously improves an estimate of orientations and the

merged intensity (Loh & Elser, 2009). The manifold embed-

ding method maps each scattering pattern onto the SO(3)

rotation space, based on the assumption that similar patterns,

represented by a vector in higher dimensions, lie close toge-

ther, and their orientation can be ordered because they must

fall on a path which is a closed loop for a full rotation

(Ourmazd et al., 2010; Hosseinizadeh et al., 2014). This method

has recently been used to obtain the first experimental

conformational movie of an icosahedral virus and determi-

nation of its reaction coordinate during extrusion of a viral

genome (Hosseinizadeh et al., 2017). The EMC algorithm has

been applied to recover orientations from experimental data,

leading to a three-dimensional reconstruction of the mimivirus

data collected at LCLS (Ekeberg et al., 2015). Some of these

algorithms can be further adapted to address the problems of

sample heterogeneity. There are successful cases demon-

strating the application of these algorithms in handling

heterogeneous sample data, where Kassemeyer et al. (2013)

used the geodesic and in-plane rotations algorithm (GIPRAL)

to select the CDI data that correspond to the same sized

particles. Detailed discussions of these approaches were

recently reviewed (Liu & Spence, 2016). In the related field of

single-particle cryo-EM, where real-space images solve the

phase problem and the Friedel symmetry is not imposed, the

maximum likelihood method with Bayesian statistics (Scheres,

2012) has been used to iteratively classify images with

different conformations by sorting them according to both

orientation and a limited number of conformational classes.

The manifold embedding method has also been used to

demonstrate its potential for mapping cryo-EM images into

conformational space (Dashti et al., 2014). These approaches

can possibly be applied to classify and merge XFEL single-

particle scattering data from samples of unknown orientation

in the presence of sample heterogeneity.

Synthetic nanoparticles have been used in X-ray coherent

imaging research for proof-of-principle experiments. The

reconstructions of nanoparticles have been successfully

produced from coherent X-ray imaging data, using either

Bragg scattering for small crystals or low-angle scattering for

single particles (Robinson et al., 2001; Williams et al., 2003;

Kassemeyer et al., 2013). The full potential of the LCLS for

single-particle imaging is still under investigation (Aquila et

al., 2015). In the work described here, inorganic core–shell

nanocrystals consisting of a palladium (Pd) outer shell and a

gold (Au) core were used as a surrogate model for single virus

particle experiments at LCLS. These inorganic particles, with

their sharp crystallographic external facets (reminiscent of the

facets of icosahedral viruses) and a different internal

symmetry, provide an ideal test sample for developing

methods that can later be generalized for application to virus

structural biology. Detailed descriptions of the sample and the

data have been reported previously, along with preliminary

analysis results (Li et al., 2017). In that work, a subset of the

experimental data composed of the 32 scattering patterns

from particles that had one flat face normal to the incident

X-ray direction was analyzed, and the particle size information

was found to be consistent with scanning tunneling electron

microscopy (STEM) results.

The general case with arbitrary orientation relative to the

incident beam is described here with a new method that

utilizes prior information on the particles to develop a refer-

ence-based analysis approach. To tackle the particle size

heterogeneity challenge, an angular intensity profile was

defined to improve the model comparison accuracy by redu-

cing the influence of particle size variations. As a result, the

orientations of 10 878 out of 54 405 scattering patterns [20%,

compared with 0.4% in Li et al. (2017)] were recovered at a

reasonable confidence level. The size distribution obtained

from the X-ray data is consistent with the results from electron

microscope imaging. The orientation distribution indicates a

bias towards the orientations that produce stronger scattering

features. The majority of the scattering patterns and merged

data suggest that a model with a core–shell heterogeneous

structure is favoured over other alternatives.

2. Methods

2.1. Samples

Au–Pd core–shell nanocrystals were prepared at the

National Tsinghua University using procedures described

previously (Yang et al., 2011; Li et al., 2017). The synthetic

particles exhibit a cube-shaped palladium shell and a regular

octahedral gold core, with a mean size (length of the cube

edge) of 52 nm (Fig. 1).
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2.2. Experimental setup

Experimental details are as described by Li et al. (2017).

Briefly, the nanoparticles were suspended in water and

delivered to the XFEL beam on the Coherent X-ray Imaging

(CXI) beamline at the LCLS using the nanofocus chamber

(Liang et al., 2015). The X-ray energy was set to 6.0 keV (� =

2.06 Å). The XFEL pulse duration was �60 fs with a repeti-

tion rate of 120 Hz. The gas dynamic virtual nozzle (GDVN)

system was used for injection (Weierstall et al., 2012). Settling

of the sample in the syringe during injection was prevented by

using a slowly rotating temperature-controlled syringe holder

(Lomb et al., 2012). The Cornell–SLAC Pixel Array Detector

(CSPAD) was positioned 565 mm from the sample in the far

field. The CSPAD panels were arranged in a geometry effec-

tively covering an area of 1748 � 1748 pixels, with a pixel size

of 110 � 110 mm. However, the actual useful region of the

detector was effectively reduced to an annulus bounded by

two circles with radii of 75 and 150 pixels. The signal within 75

pixels could not be measured due to the hole in the CSPAD

arrangement, while the signal beyond 150 pixels is weak and

mixed with background scattering intensity. The region of

interest (the annulus) corresponds to momentum transfer

vectors of modulus q within the range 0.44 � q � 0.89 nm�1

(resolution d = 2�/q = 14.27 to 7.06 nm). The Ewald sphere is

approximately flat in this resolution range, so Friedel’s law is

applicable to the two-dimensional scattering patterns. The

Cheetah program was used for hit-finding (Barty et al., 2014).

2.3. Data analysis

Mapping the scattering intensity recorded on a two-

dimensional detector into a three-dimensional diffraction

volume is a critical step towards determining the three-

dimensional electron density of objects in real space. Using the

GDVN injection system, the sample orientations cannot be

controlled or measured directly. Therefore, the orientation

information must be recovered from the diffraction patterns

using computational algorithms. Heterogeneity of samples,

including size variation or conformational changes, increases

the difficulty in determining particle orientations. In the

analysis of this data set, prior information about the sample

particles was utilized to disentangle the unknown orientations

and sample heterogeneity, with the assumption that size

variation is the dominant component causing heterogeneity.

2.3.1. Orientation determination. The nanoparticles exhibit

differences in size, composition of the core and outer shell,

and certain defects at the surface of the particles, but for our

analysis we assumed that the overall size variation is the most

pronounced effect. Based on images obtained from electron

microscopy, we first constructed a reference model with a

cubic palladium shell and an octahedral gold core (Fig. 1). The

corresponding Fourier transform was computed from this

reference model to simulate the scattering intensity function

in reciprocal space. Here, we focused mainly on the results

obtained using this reference model to investigate the orien-

tation distribution and size variation of the nanoparticles that

were intercepted by XFEL pulses. Given the computed

intensities in the three-dimensional diffraction volume, two-

dimensional slices corresponding to the Ewald surface cutting

through reciprocal space were extracted to simulate patterns

with orientations that sampled the SO(3) space. Each

experimental pattern was then compared with the simulated

reference patterns and a similarity score was assigned using

the Pearson correlation coefficient (denoted Pcc hereafter).

Considering that the intensity correlation at the pixel level is

very sensitive to variations in particle size, each two-dimen-

sional scattering pattern was converted to a one-dimensional

angular intensity profile, which was used to calculate the Pcc

between the experimental data and the reference patterns.

The most probable orientation can then be identified by

locating the reference pattern with the highest Pcc value to the

corresponding experimental pattern.

Each two-dimensional pattern was divided into 100 equally

spaced sectors (pie slice, see Fig. 2) around the scattering

center (i.e. the origin of Fourier space). The mean value of the

intensities was then calculated within each sector for valid

pixels (defined according to the experimental detector setup),

Ið Þ ¼

PNð Þ
n¼1 IðnÞ

Nð Þ
; ð1Þ

where N( ) is the number of valid measurements (after

masking out dead pixels, water streak scattering and detector

gaps) in the sectors defined by [ , + � ] and [180 + , 180 +
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Figure 1
Information for the core–shell nanoparticle. (a) Schematic drawing of an
Au–Pd core–shell nanoparticle. The green cube indicates the outer shell
of the particle composed of palladium (atomic number 46), while the red
core is composed of gold (atomic number 79). (b) Size distribution of
nanoparticles obtained from electron microscope imaging. The sizes
range from 48.1 to 58.0 nm, with a mean value of 52.0 nm.

Figure 2
Angular profile conversion. The average intensity profile as a function of
azimuth angle (right) is extracted from the raw pattern (left) (two sectors
are plotted to show the region of integration at angle  ).



 + � ] (due to Friedel symmetry); here � = 1.8�. I(n) is the

nth intensity value. I( ) is the average intensity in the two

sectors. The same mask that removes invalid pixels in the

experimental data was applied to each reference pattern

before the profile calculation. As a result, each pattern was

converted to an average intensity profile as a function of the

azimuth angle  (Fig. 2).

The Pearson correlation coefficient Pcc between the

experimental and reference profiles is therefore calculated as:

Pcc ¼P100
i¼1 Iexp  ið Þ � Iexp  ð Þ
� �

Iref  ið Þ � Iref  ð Þ
� �

P100
i¼1 Iexp  ið Þ � Iexp  ð Þ
� �2P100

i¼1 Iref  ið Þ � Iref  ð Þ
� �2

n o1=2
:

ð2Þ

Although averaging the intensity during the angular profile

conversion results in information reduction compared with the

raw data, this approach is robust against the size variation of

the particles and computationally efficient. To balance the

contributions of the high- and low-intensity values to the

correlation calculation, different weighting schemes were

tried. It was found that the logarithmic value of the averaged

intensities yielded optimal results. In the following analysis,

logarithmic values of the one-dimensional averaged intensity

from each pattern were used for comparison, to identify the

most probable orientation of the sample for each experi-

mental pattern.

The normalized angular intensity profile described in the

previous paragraph is size-invariant if the momentum transfer

|q| is integrated out, as shown in Appendix A. In the experi-

mental analysis, the integration range for |q| is limited from

qmin to qmax (here, 0.44 � q � 0.89 nm�1), making the inte-

gration not fully size-invariant. However, the results showed

that the orientation recovery method is still robust against

variations in particle size because this angular profile is more

specific to the particle orientation than to the particle size (see

Discussion section).

2.3.2. Size determination. Sorting the size information from

the scattering patterns is necessary before assembling the

scattering intensity into a three-dimensional volume. The

particle size can be derived from the q spacing between the

interference fringes (speckles) in the scattering patterns, as

described for X-ray scattering from a faceted nanocrystal by

equation (1) of the paper by Kirian et al. (2010), with �kZ = 0

(for the projection approximation with a flat Ewald sphere)

for Bragg reflection g = 0. These are exactly analogous to the

N � 1 subsidiary maximum observed between Bragg reflec-

tions from an optical grating of N slits. The q spacing running

along the diffraction streaks also depends on the orientation,

which can be recovered using the approach described in the

previous section. A computer program was implemented to

identify the spacing between speckles. It consists of three

steps: (i) calculate the angular intensity profile to find the

angle �max associated with the maximum intensity (i.e. iden-

tifying the streaks); (ii) find the speckles along the line at �max;

(iii) calculate the average spacing between adjacent speckles.

This q spacing, projected onto the detector and denoted �x,

was then used to derive the particle sizes.

According to the geometric relationship between cubic

facets and the X-ray incident direction, the patterns were

classified into two cases: (i) the normal incidence case and (ii)

the general incidence case. For the normal incidence cases, the

incident beam is perpendicular to one of the six cubic faces,

and the resulting scattering patterns exhibit two pronounced

series of speckles that cross perpendicularly. In this case, the

particle size, d, can be estimated directly from the spacing

between speckle peaks at low resolution, as reported by

Takahashi et al. (2013). Given the experimental setup, the

particle size is obtained as

dexp ¼
�R

�x
; ð3Þ

where � is the X-ray wavelength, R is the distance between the

sample and the detector, and �x is the spacing between

adjacent speckles on the detector.

For the general incidence cases, the X-ray beam is not

normal to any face of the cubic shell. In such cases, it is much

more challenging to compute the particle sizes directly based

on the gap between the fringes, so we resort to the reference-

based approach by comparing the experimental patterns and

the simulated patterns at the same orientation. For those

patterns with clear streaks, the spacing between speckles can

be used to derive particle sizes by utilizing the inverse relation

between real space and Fourier space

dexp ¼ dref

�xref

�xexp

; ð4Þ

where dexp and dref are the particle sizes used in the experi-

ment and the simulation, respectively, and �xexp and �xref are

the spacings between speckles in the experimental and simu-

lated patterns, respectively. In principle, the particle size for

the general incidence cases can also be calculated by

measuring a series of q spacings and solving the resulting

linear equations. In this experimental data set, the q-spacing

variation along the detected streaks is very small (<1% of the

detector pixel size), so it is not practical to obtain particle size

information directly from the data.

3. Results and analysis

3.1. Method validation using simulation data

3.1.1. Orientation determination: at the pixel level versus
integrated angular profile level. We assessed the performance

of two comparison approaches, namely, pixel-wise comparison

and angular profile comparison. The raw data are in the form

of two-dimensional scattering patterns consisting of n pixels,

so it is straightforward to conduct pixel-level correlation

calculations by treating each pattern as a vector in an

n-dimensional space. If there is no size variation, this approach

is valid and accurate. However, the two-dimensional patterns

are strongly dependent on particle size, according to the

scaling properties of Fourier transforms. More specifically, the

intensity distribution in the radial direction has strong oscil-
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lations for scattering patterns resulting from objects with

facets, observed as speckles in the scattering patterns (see

Fig. 2, left). The positions and values of the minima and

maxima are determined by the particle size and orientation.

On the other hand, the angular profile approach described in

the Methods section allows integration of the intensity along

the radial direction, i.e. the modulus of momentum transfer, q.

As a result, the size information is partially integrated out (see

Appendix A), making the angular profile depend strongly on

orientations and be less sensitive to particle size variation.

Although the actual q range for integration is not ideally from

0 to infinity in real experimental data analysis, it is shown that

the angular profile is still far less sensitive to particle size

variations compared with the two-dimensional patterns.

The method was validated using scattering data simulated

for particles sized between 44 and 60 nm with an increment of

2 nm. A 52 nm model, close to the mean size of the nano-

particles used in the experiment, was constructed using a

priori core–shell model information as the reference. The

Euler angle space of rotation was confined to a subspace,

where 70� < �, �, � < 90�, and the step angles ��, ��, �� were

set to 2�. This choice of subspace is possible because of the

high symmetry of the nanoparticles, so that the recovered

orientations do not have degeneracies, i.e. the core–shell

particle will not resemble itself using the rotations within this

subspace. To be consistent with the experimental data, the

scattering intensity within two annuli (0.44 and 0.89 nm�1) was

used to simulate the experimental conditions. The particle size

information was only used for validation purposes.

The recovery correctness criterion was

max abs ��0;��0;�� 0ð Þ½ � < 3�; ð5Þ

where

��0 ¼ �recovered � �real; . . . ð6Þ

The orientation recovery results for both pixel-level based and

angular-profile based algorithms are summarized in Fig. 3(a).

Using a pixel level comparison, more than 90% of the simu-

lated patterns are recovered to their correct orientations when

the particle sizes are within 2 nm of the reference model. The

accuracy drops rapidly when the particle size deviates from the

reference model size. The angular-profile based approach is

more robust in determining the correct orientations, even for

large size differences (up to 	8 nm). From Fig. 3(a), we can

conclude that the pixel-level method performs slightly better

only when the experimental sample size distribution is narrow

and known. For nanoparticle scattering data, the angular-

profile based comparison approach is more appropriate.

3.1.2. Size determination. To validate the size determina-

tion method, 5000 scattering patterns were simulated for

particles with sizes covering the same range as the orientation

recovery test described in the previous section (44, 48, 52, 56

and 60 nm, 1000 patterns at random orientations for each

size). A 52 nm core–shell particle was used as the reference to

determine the particle sizes. Using the algorithm described in

the Methods section, the results indicate that, for all data sets,

the recovered particle sizes are narrowly distributed around

the actual values. The difference between the average size for

each group and the true size is within 0.5% (Fig. 3b).

3.2. Analysis results for the XFEL single-particle scattering
data

From the raw data collected at LCLS, 54 405 experimental

patterns were identified to be scattering patterns from the Au–

Pd core–shell nanoparticles, as reported previously (Li et al.,

2017). Because of the symmetry of the reference model, the

orientations can be covered using a subspace of the SO(3)

group, and here we confine the Euler angles to be from 0 to

90�. The discretization size was set to 1� for the �, � and �
angles, resulting in 753 571 (913) reference profiles to be

compared with the experimental data.

3.2.1. Orientation recovery. The orientations of the nano-

particles corresponding to scattering patterns in the experi-
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Figure 3
Orientation recovery and size analysis for simulated data. (a) Orientation recovery results with the pixel-level method and the angular profile method.
The angular profile method (blue curve) is more robust in the presence of size variation than the pixel-level method (red curve). (b) Size determination
for the simulated data. The red dashed lines indicate the actual values of particle size, while the histograms show the size distribution obtained using our
method. The particle sizes are narrowly distributed, and the differences between the mean values of each group and the actual values are within 0.5%.



ment are not known in advance, so it is difficult to assess the

performance of orientation recovery directly. Instead, we

studied the orientation distribution by grouping the recovered

orientations based on the second Euler angle, �. This angle

can be pictured as the angle between the direction pointing

from a cubic face towards the particle center and the incident

beam direction. For example, if the incident beam direction

coincides with the�z direction for the reference model before

rotation, then the rotation of the particle will change the angle

between the beam direction and the �z direction by �. To

differentiate this from the Euler angles, we denote this angle

as the tilting angle, �. The analysis was done on 10 878 patterns

that were selected automatically from the overall set of 54 405

patterns. The angle � exhibits the distribution shown in Fig. 4.

This is different from the expected distribution for randomly

oriented particles, which should be an increasing function

(proportional to sin�, which can be derived by uniformly

sampling points on a spherical surface) as indicated by the

green curve.

The deviation of the observed distributions from the

expected distribution could be attributed to two possible

sources: (i) the orientation preference of the sample particles,

probably related to flow alignment in the liquid jet stream

used to deliver the particles across the pulsed XFEL beam; or

(ii) a deficiency in the data analysis programs.

We simulated patterns at different tilting angles and

observed that scattering patterns with medium tilting angles

(around 45�) do not exhibit strong speckle features and that

the overall measurable scattering intensity (averaged from 500

patterns simulated at each tilting angle) was much lower

(Fig. 5). After systematic analysis, we found that the under-

represented orientations with tilting angles around 45� are

more likely to trace back to the orientation recovery algo-

rithm, which depends on strong features that reflect the

orientations. In other words, the core–shell model does not

yield distinct scattering features when the tilting angle is

around 45�, leading to a failure to identify the patterns at those

orientations. Furthermore, due to the presence of experi-

mental noise, the patterns that produced less pronounced

features yielded low correlation coefficients compared with

the reference profiles and were classified as failed cases in the

orientation recovery analysis, because the correlation coeffi-

cient is below the pre-set threshold level. If we reduce the

confidence levels by lowering the correlation coefficient

threshold, the number of patterns around 45� increases (see

Fig. S1 in the supporting information). Therefore, the

proposed algorithm works well for patterns with good

features, but fails for featureless patterns if we set a high

threshold to ensure the accuracy of the recovered orientations.

3.2.2. Particle size analysis. Based on the results from the

orientation recovery, 209 out of 54 405 selected patterns were

identified as normal incidence cases, i.e. the beam was

perpendicular to a cube surface. By studying the speckle

spacing, the particle size distribution was found to be in the

range 45–61 nm, with a mean size of 52 nm (Fig. 6). The

distribution is consistent with that obtained from STEM

measurements (see Fig. 1), validating the performance of the

proposed algorithm. It is worthwhile pointing out that the

angular profile is essential for the orientation and size analysis

of a large range of size variations.

4. Discussion

The pixel-wise pattern comparison can be useful when the

particle size variation is small, as shown in Fig. 3(a). The

analysis of XFEL experimental data using cross correlation at

the pixel level showed that the patterns can be clustered. The

patterns from particles of the same size at similar orientations

can be identified. For example, Fig. 7 shows five XFEL

patterns at the same orientation that are identified using cross

correlations. The outcome from such an analysis is limited to
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Figure 4
Tilting-angle distribution for 10 878 experimental patterns. The angle � is
the tilting angle, defined as the angle between the incident beam direction
and the direction that is normal to the cubic face, such as the z axis of the
particle (see Fig. 1a). The green curve is the expected distribution,
assuming random orientations. The green curve illustrates that the
analytical distribution function p(�) is proportional to sin(�).

Figure 5
The dependence of the scattering pattern on orientation. (a) A simulated
pattern for a tilting angle of 0�, the normal incidence case. (b) A typical
scattering pattern when the tilting angle is 45�. There are two strong
streaks when the incident beam is perpendicular to the particle surface as
in panel (a), but the features for the scattering pattern at a tilting angle of
45� are less pronounced. (c) Total intensity plotted as a function of tilting
angle. We simulated 500 patterns for each tilting angle. The overall
intensity within the q range 0.44–0.89 nm�1 is calculated, showing that the
overall intensity is lower for cases where the tilting angle is around 45�,
while the standard deviations (error bars) for the intensity indicate larger
fluctuations for the same group of patterns.



particles of the same size, therefore the results can be subject

to three-dimensional merging and phasing for the given

particle size. Pixel-wise comparison cannot be applied directly

when the size variation is significant. To get the statistics of the

samples with large size variations, new methods are needed

that are less sensitive to the particle sizes. In this work, we

have demonstrated that the proposed method is robust in

pattern comparison when the particle size has a wide distri-

bution, as in the presented core–shell nanoparticle scattering

case. Below, we discuss the problems in three-dimensional

merging from the experimental data and phase-retrieval

challenges when the information at low frequency is missing.

4.1. Merging scattering intensity to three-dimensional reci-
procal space

The heterogeneity of the sample particles introduces chal-

lenges for orientation recovery, and subsequently prevents

merging the data into a three-dimensional diffraction volume.

This sample heterogeneity issue becomes a severe bottleneck

for the data-processing pipeline. For synthetic nanoparticles,

the heterogeneity is often dominated by size variation,

because the synthesis of nanoparticles follows well designed

protocols to produce the ideal or expected nanoparticles.

Here, we constructed an initial reference model based on the

particle design and prior information from other measure-

ments (such as the STEM images). The angular profile

approach reduces the information to one-dimensional data

that are less dependent on the particle size, yet recovers the

orientation information at high accuracy. A size-invariant

profile is critical for the method to work, otherwise multiple

reference models at various sizes must be constructed for a

pixel-level intensity comparison, making it computationally

intractable.

Using the algorithm presented here, orientation and size

information were recovered from single-particle scattering

data. We tried to merge the data into a three-dimensional

diffraction volume. Patterns corresponding to sizes between

50 and 54 nm were used for three-dimensional merging. The

resulting three-dimensional intensity distribution covers about

89.7% of reciprocal space up to a resolution of 7.06 nm. To

assess the convergence of the data, we calculated Rsplit by

randomly dividing the data set into two subsets. The Rsplit

value was about 0.15 for the resolution range which was well

sampled, indicating self-consistency of the data (see Fig. S2 in

the supporting information).

The merged data were also compared with the theoretical

values of the constructed reference core–shell model. The

calculated R factor for the intensity was 0.88, too large to

conclude that the experimental data are consistent with the

model. On the other hand, this can be improved by refining

both the orientations of each pattern and the structure of the

nanoparticle. As a control, we compared the merged inten-

sities with the cubic shell models without the Au core, and the
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Figure 6
Particle size distribution. (a) Size distribution of particles in normal incidence cases. Note that the distribution is slightly different from the plot given by
Li et al. (2017), due to the different number of patterns in the analysis. (b) Distribution of particle sizes in the general incidence case. The two
distributions both show that the mean size of particle is approximately 52 nm, consistent with electron microscopy image statistics.

Figure 7
Scattering patterns from particles at the same orientation. The dominant signals (vertical series of speckles) are from the shell and the weaker signals are
due to the presence of the Au core. The particles have very similar sizes, indicated by the q spacing between the speckles.



results indicate that the merged data agree better with the

core–shell model than with the cube model. A pixel-wise

comparison between the experimental pattern and the refer-

ence pattern (with corrected size and orientation) for both the

cubic model and the core–shell model was carried out for 559

selected scattering patterns. The correlation coefficients indi-

cated that 557 of these patterns are more similar to the core–

shell model than to the cubic model (Fig. 8).

4.2. Phase retrieval with information loss at low resolution

In the data set collected for this study, the intensity at low

resolution is missing due mainly to the gaps in the assembled

detector, making it difficult to reconstruct real-space models.

Using simulated data with missing data at low resolution, we

investigated the feasibility of model reconstruction at several

levels of information loss (the intensity in the central hole was

masked out). The simulated data were generated at the over-

sampling ratio of 10. The HIO phase algorithm implemented

in Hawk was used as the image reconstruction engine (Maia et

al., 2010). Random phases were used for the first iteration, and

the feedback factor, �, was set to 0.8 in the phase retrieval

experiments. The fraction of support area was reduced from 1

to 0.012 for a dense object and to 0.005 for a sparse object

within 5000 iterations, using the shrink-wrap approach

(Marchesini et al., 2003). The phase retrieval results indicate

that the information loss within one Shannon pixel can be

tolerated by the algorithm using the above protocol. When the

information loss at low resolution goes beyond one Shannon

pixel, the reconstructed object becomes less accurate, from the

boundary of the object to an entirely wrong model. For sparse

objects, phase retrieval can be achieved at more severe

information loss of up to four Shannon pixels (see Fig. 9 for a

comparison).

In the experimental data set from the LCLS nanoparticle

scattering experiments, the information loss is nearly four

Shannon pixels. According to our simulation results, two-

dimensional reconstructions can barely be achieved using the

existing phasing algorithms for this experimental data set, so

new algorithms are needed to phase such data. For instance,

additional information may be helpful to provide stronger

constraints for the model reconstructions.

4.3. Statistical characterization of nanoparticles

Although a three-dimensional model reconstruction was

not achieved due to the large amount of information lost at

low resolution, sample size distributions were extracted and

agree with data measured using the STEM imaging method.

This highlights the capability of XFEL single-particle scat-

tering methods for characterizing the properties of nano-

particles. Given that heterogeneity is often an intrinsic

characteristic of synthetic nanoparticles such as catalysts, and

is often related to function, a statistical analysis becomes

necessary to assess sample quality. Using high repetition rate

XFELs, with improved sample delivery methods, this single-

particle scattering approach can be used for high-throughput
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Figure 8
Comparisons between the experimental patterns and two sets of theoretical models. (a) The distributions of Pearson correlation coefficients between the
experimental and reference models. The green bars show the results with the core–shell model as reference, and the magenta bars are the results using
the cubic model (without an octahedral core). (b) Histogram of Pearson correlation coefficient (Pcc) difference between the experimental patterns and
the best matched patterns from the core–shell and cube reference models. Only two out of 559 patterns favor the cube model over the core–shell model.

Figure 9
Model reconstructions for two test cases (dense object and sparse object).
The numbers on the top row indicate the information loss levels,
measured by the number of Shannon pixels missing from the central mask
(blue disk). The middle and bottom rows are the reconstruction results
for the dense object and sparse object, respectively, with the original
objects shown in the first column.



studies to measure sample properties at the individual particle

level and to quantify the associated heterogeneity.

5. Conclusion

Au–Pd core–shell nanoparticles were intercepted by femto-

second XFEL pulses at LCLS and their scattering signals were

detected. These core–shell nanoparticle scattering patterns

have useful features to facilitate data analysis. Preliminary

results indicate that the scattering signals from individual

particles extend to a resolution of about 7.06 nm for Au–Pd

core–shell nanoparticles. Computational methods have been

developed to characterize the nanoparticles, based on analysis

of the scattering patterns. A new method based on an intensity

angular profile is described for orientation determination,

while features in the shape transforms provide particle size

information. The orientation distribution indicates that

medium tilting-angle orientations are less populated,

reflecting a potential deficiency of the data-analysis algorithm.

The size distribution determined from X-ray scattering data is

highly consistent with that obtained from electron microscope

images, validating the proposed methods for analyzing the

scattering patterns of core–shell particles. The merged three-

dimensional intensities are self-consistent, and the discre-

pancy compared with the theoretical values needs to be

resolved by refining the pattern orientations and further

treatments of the particle heterogeneity. The study also shows

that XFEL single-particle scattering can be applied to quantify

the statistical properties of nanoparticles at the individual

level.

APPENDIX A
The structure factor can be expressed in the form of a

Fourier transform

FðqÞ ¼

Z
r

f ðrÞ expð�iq 
 rÞ dr: ð7Þ

Let us assume that the particle internal structures are the

same, and the size variations can be modeled as a scaling

factor R, then r = R 
 r̂r, where fr̂rg spans the unit sphere. The

effective form factor f(r) that describes the particle structure

can be treated as a constant � within the domain defined by

the vector r = R 
 r̂r. Then a model of radius R will yield

structure factors expressed in the form of

Fðq; RÞ ¼ F
R

R0

q; R

� �
; ð8Þ

according to the scaling property of the Fourier transform,

where R0 is the size of the reference model. The intensity, the

norm of the structure factor, follows a similar relationship. If

the integration of the variable q is carried out in the domain

[0, 1], the resulting quantity does not depend on the size of

the particle, except that the overall intensity will be scaled by

R2=R2
0. In the cases presented here, the integration cannot be

carried out from 0 to infinity due to the constraints of the

experimental setup, so instead the integration is limited to the

finite domain [qmin, qmax]. Nonetheless, fluctuations in the

integrated values due to particle size variation are much

smaller than the fluctuations in the raw data recorded at any

particular pixel. This is verified from computer simulations, as

described in the main text.
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