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Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes

the reversible hydration/dehydration of CO2/HCO3
�. Although hCA II has been

extensively studied to investigate the proton-transfer process that occurs in

the active site, its underlying mechanism is still not fully understood. Here,

ultrahigh-resolution crystallographic structures of hCA II cryocooled under

CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new

intermediate solvent states of hCA II that provide crystallographic snapshots

during the restoration of the proton-transfer water network in the active site.

Specifically, a new intermediate water (WI
0) is observed next to the previously

observed intermediate water WI, and they are both stabilized by the five water

molecules at the entrance to the active site (the entrance conduit). Based on

these structures, a water network-restructuring mechanism is proposed, which

takes place at the active site after the nucleophilic attack of OH� on CO2. This

mechanism explains how the zinc-bound water (WZn) and W1 are replenished,

which are directly responsible for the reconnection of the His64-mediated

proton-transfer water network. This study provides the first ‘physical’ glimpse of

how a water reservoir flows into the hCA II active site during its catalytic

activity.

1. Introduction

The reversible interconversion of carbon dioxide (CO2) and

water to bicarbonate and a proton (H+) occurs at a rate that is

limited by the diffusion of substrates in the presence of

carbonic anhydrases (CAs) as the catalyst (Davenport, 1984;

Christianson & Fierke, 1996; Chegwidden & Carter, 2000;

Frost & McKenna, 2013; Supuran & De Simone, 2015). CAs

are metalloenzymes that mostly contain zinc, although some

are found with iron or cadmium. There are six distinct families

of CA (�, �, �, �, � and the � family, which was recently

subdivided from the � family) that are found throughout the

animal, plant and bacterial kingdoms. In animals, CAs

primarily function to maintain acid–base balance in the blood

and other tissues, and to help the transport of CO2 out of

tissues. In particular, mammalian CAs belong to the � family

and are expressed as many different isozymes (Hewett-

Emmett & Tashian, 1996). For instance, 14 forms of human

�-CA can be divided into four cytosolic (I, II, III and VII), two

mitochondrial (VA and VB), one secreted (VI) and four

membrane-bound (IV, IX, XII and XIV). The remaining three

isoforms lack catalytic activity and are referred to as carbonic

anhydrase-related proteins (CARPs). Among these isozymes,

human CA II (hCA II) is expressed in most cell types, with

involvement in many physiological processes (Krishnamurthy

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252517017626&domain=pdf&date_stamp=2018-01-01


et al., 2008; Frost & McKenna, 2013; Supuran & De Simone,

2015).

The first crystal structure of hCA II, known at the time as

hCA C, was determined by Liljas and coworkers in 1972 and

was further refined in 1988 (Liljas et al., 1972; Eriksson et al.,

1988). These studies laid the foundation for understanding the

mechanism of CA activity. In hCA II, the active-site zinc is

located within an �15 Å deep cleft and is tetrahedrally co-

ordinated by three histidine residues (His94, His96 and

His119) and an OH� ion (Fig. 1). Furthermore, the active-site

cavity subdivides into two distinct sides, formed by hydrophilic

residues (e.g. Tyr7, Asn62, His64, Asn67, Thr199 and Thr200)

and hydrophobic residues (e.g. Val121, Val143, Leu198,

Thr199-CH3, Val207 and Trp209). The ‘hydrophobic’ side

sequesters and positions the CO2 for nucleophilic attack by

OH� (Liang & Lipscomb, 1990).

Mechanistically, the conversion of CO2 to bicarbonate in

the hydration direction takes place via the nucleophilic attack

of CO2 by the zinc-bound hydroxide (OH�) (1). The subse-

quently generated bicarbonate is then displaced by a water

molecule (WZn; Silverman & Lindskog, 1988) (1):

CO2 þ EZnOH� Ð EZnHCO�3 Ð
H2O

EZnH2OþHCO�3 ; ð1Þ

EZnH2Oþ BÐ EZnOH� þ BHþ : ð2Þ

The next step of catalysis is the transfer of a proton from

WZn to the bulk solvent, regenerating the zinc-bound OH�

(2). Here, the tetrahedral coordination of WZn to zinc causes

polarization of the hydrogen–oxygen bond, making the O

atom slightly more positive and thereby weakening the bond

(Christianson & Fierke, 1996). The general base (B) for the

proton transfer is likely to be mediated by ordered waters and

His64 within the enzyme, where the hydrophilic side of the

active site forms the hydrogen-bonded water network (W1,

W2, W20, W3a and W3b) that connects WZn to His64. This

hydrogen-bonded network is believed to act as a proton wire

that reduces the work required to transfer a proton from WZn

to the bulk solvent for the regeneration of the zinc-bound

OH� (2) (Silverman & McKenna, 2007; Steiner et al., 1975;

Cui & Karplus, 2003; Fisher, Tu et al., 2007; Zheng et al., 2008;

Fisher, Maupin et al., 2007; Silverman et al., 1979). Neutron

studies have been utilized to observe the protonation states

and orientation of water molecules in proteins (Langan et al.,

2008). Such experiments have determined that the water

network in hCA II is pH-dependent, with an unbranched wire

between WZn and His64 at physiological pH that is broken at

high pH owing to a rearrangement of the hydrogen bonds of

W1 (Budayova-Spano et al., 2006; Fisher et al., 2011). The side

chain of His64 is oriented in two conformations, termed the

‘in’ (pointing towards the active site) and ‘out’ (pointing away

from the active site) positions, that are suggested to facilitate

the proton-shuttling process (Tu et al., 1989; Fisher et al., 2005;

Nair & Christianson, 1991; Maupin & Voth, 2007; Lindskog,

1997; Avvaru et al., 2010). Neutron structures have revealed

that His64 is uncharged when occupying the ‘in’ position,

priming the residue for the acceptance of a proton transferred

from WZn, regenerating the enzyme during catalysis (Fisher et

al., 2010). Moreover, the fact that binding of small molecules

(activators) in the vicinity of His64 changes the catalytic rate

by altering the proton-transfer step adds to the hypothesis that

proton shuttling occurs via His64 (Supuran, 2008; Temperini et

al., 2005, 2006a,b; Briganti et al., 1997, 1998).
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Figure 1
Surface rendition of hCA II depicted using the ultrahigh-resolution
(0.9 Å) crystal structure of 7.0 atm CO2 hCA II. The hydrophobic and
hydrophilic regions are coloured green and yellow, respectively. (a) The
overall hCA II shows the CO2-binding active site that is located at a depth
of 15 Å from the surface and is open to the outside bulk solvent through
an entrance (the entrance diameter is �7–10 Å and it is referred to as the
‘entrance conduit’ in this study). The substrate and product (CO2/
bicarbonate) of hCA II as well as water molecules can pass in and out
through this open entrance conduit. (b) A closer view of the active site
(Zn, CO2 binding site and His64) is shown through the entrance conduit
with a 2Fo � Fc map (in blue) contoured at 2.5� (for His64) and 5.0�
(others). The isolated electron density of the C atom of CO2 is clearly
visible in this ultrahigh-resolution structure. The protein surface around
His64 is removed and the proton-transfer water network (WI/W2/W3a/
W3b) is not shown for clarity. The proton transfer during the catalytic
activity is thought to occur via His64 through the proton wire rather than
through the open entrance conduit.



Previously, the capture of CO2 in the active site of hCA II

was achieved by cryocooling hCA II crystals under a 15 atm

(1 atm = 101.325 kPa) CO2 pressure (Kim et al., 2005; Domsic

et al., 2008). More recently, attempts have been made to track

the intermediate changes during gradual CO2 release to the

CO2-free state by incubating 15 atm CO2-pressurized hCA II

crystals at room temperature (RT) for different time intervals

(50 s, 3 min, 10 min, 25 min and 1 h) to decrease the internal

CO2 pressure (Kim et al., 2016). The resulting so-called

intermediate snapshots revealed that two deep waters (WDW

and W0DW) immediately replace the vacated space as CO2

leaves the active site. In addition, WI (intermediate water),

which is only observed in fully CO2-bound hCA II (Domsic et

al., 2008), abruptly disappears, while W1 appears, as the CO2 is

released. Moreover, with CO2 release W20 (an alternate

position of W2) in close proximity to residue His64 was

observed to gradually disappear, whereas His64 concurrently

rotated from the ‘out’ to the ‘in’ rotameric conformation.

Despite the structural changes observed, the rapid changes

taking place with the crystal incubation method left some of

the key questions unanswered, such as how the proton-

transfer water network is restored during hCA II catalytic

activity.

In this study, we present ultrahigh-resolution structures of

hCA II from crystals cryocooled under CO2 pressures of

7.0 atm (0.9 Å resolution) and 2.5 atm (1.0 Å resolution),

which are hereafter referred to as ‘7.0 atm CO2 hCA II’ and

‘2.5 atm CO2 hCA II’, respectively. These two structures were

compared with the three previous structures (Kim et al., 2016)

of hCA II crystals cryocooled under 15 atm CO2 pressure and

then incubated at room temperature for 0 s (1.2 Å resolution

structure from PDB entry 5dsi; hereafter referred to as ‘15 atm

CO2 hCA II’), 50 s (1.25 Å resolution structure from PDB

entry 5dsj; hereafter referred to as ‘15 atm CO2 hCA II – 50s’)

and 1 h (1.45 Å resolution structure from PDB entry 5dsn; the

‘CO2-free state’ and hereafter referred to as ‘15 atm CO2 hCA

II – 1h’). The structural comparison reveals that 7.0 atm CO2

hCA II and 2.5 atm CO2 hCA II are previously unknown

intermediate states between 15 atm CO2 hCA II and 15 atm

CO2 hCA II – 50 s. Together, these studies provide a view of

how hCA II utilizes a water reservoir to fill the void in the

active site as CO2 is released.

2. Experimental procedures

2.1. Protein expression and purification

The zinc-containing hCA II was expressed in a recombinant

strain of Escherichia coli BL21 (DE3) pLysS transformed with

a plasmid encoding the hCA II gene (Forsman et al., 1988).

Purification was carried out using affinity chromatography as

described previously (Khalifah et al., 1977). Briefly, bacterial

cells were enzymatically lysed with hen egg-white lysozyme

and the lysate was loaded onto agarose resin coupled with

p-(aminomethyl)benzenesulfonamide, which binds to hCA II.

The protein on the resin was eluted with 400 mM sodium azide

in 100 mM Tris–HCl pH 7.0. The azide was removed by

extensive buffer exchange against 10 mM Tris–HCl pH 8.0.

2.2. Protein crystallization

Crystals of hCA II were obtained using hanging-drop

vapour diffusion (McPherson, 1982). A 10 ml drop consisting

of equal volumes of protein solution (5 ml) and well solution

(5 ml) was equilibrated against 1 ml well solution (1.3 M

sodium citrate, 100 mM Tris–HCl pH 7.8) at room tempera-

ture (�20�C) (Domsic et al., 2008). Crystals grew to approx-

imate dimensions of 0.1 � 0.1 � 0.3 mm in a few days.

2.3. CO2 entrapment using pressure cryocooling

CO2 entrapment was carried out as described in previous

reports (Domsic et al., 2008; Kim et al., 2016). The hCA II

crystals were first soaked in a cryosolution consisting of the

reservoir solution supplemented with 20%(v/v) glycerol. The

crystals were then coated with mineral oil to prevent dehy-

dration and loaded into the base of high-pressure tubes. Once

in the pressure tubes, the crystals were pressurized with CO2

gas to two different pressures (7.0 and 2.5 atm) at room

temperature. After 10 min, the crystals were cryocooled to

liquid-nitrogen temperature (77 K) without releasing the CO2

gas. Once the CO2-bound crystals had been fully cryocooled,

the crystal-pressurizing CO2 gas was released and the crystal

samples were stored in a liquid-nitrogen dewar until X-ray

data collection. Note that once cryocooled, the CO2-bound
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Table 1
Data-collection and refinement statistics for 7.0 and 2.5 atm CO2 hCA II.

Values in parentheses are for the highest resolution shell.

CO2 pressure 7.0 atm 2.5 atm

Data collection
Space group P21 P21

a, b, c (Å) 42.31, 41.37, 71.94 42.28, 41.41, 72.11
�, �, � (�) 90, 104.12, 90 90, 104.16, 90
Resolution (Å) 30–0.90 (0.92–0.90) 30–1.00 (1.02–1.00)
Rmerge (%) 12.1 (42.6) 9.1 (56.4)
hI/�(I)i 14.1 (1.9) 25.1 (3.0)
Completeness (%) 95.2 (73.6) 98.6 (96.3)
Multiplicity 4.7 (2.8) 7.1 (5.2)

Refinement
Resolution (Å) 0.9 1.0
No. of reflections 162430 122146
Rwork/Rfree (%) 11.1/12.7 11.4/13.1
No. of atoms

Protein 2155 2153
Ligand/ion 1 Zn, 1 GOL†, 2 CO2 1 Zn, 1 GOL, 1 CO2

Water 429 441
B factors (Å2)

Protein
Main chain 7.9 9.5
Side chain 11.2 12.8

Ligand/ion 3.6 (Zn), 12.6 (GOL),
9.5 (first CO2),
36.4 (second CO2)

4.9 (Zn), 15.2 (GOL),
15.2 (CO2)

Water 29.3 28.8
R.m.s. deviations

Bond lengths (Å) 0.023 0.024
Bond angles (�) 2.223 2.206

† Glycerol.



hCA II crystals were handled just like normal protein crystals

and were flash-cryocooled at ambient pressure.

2.4. X-ray diffraction and data collection

Diffraction data were collected on CHESS beamline F1

(wavelength of 0.9180 Å, beam size of 100 mm) under a

nitrogen cold stream (100 K). Data were collected using the

oscillation method in intervals of 1� on an ADSC Quantum

270 CCD detector (Area Detector Systems Corporation) with

a crystal-to-detector distance of 100 mm. For the 7.0 atm CO2

hCA II data set (0.9 Å resolution), an initial data set consisting

of 180 images was collected with 1 s exposures to cover

diffraction resolution up to 1.1 Å. The detector was then offset

to cover diffraction resolution up to 0.88 Å, and a second data

set consisting of 360 images was collected with 10 s exposures.

For the 2.5 atm CO2 hCA II data set (1.0 Å resolution), a

single data set consisting of 360 images was collected with 10 s

exposure for each image. For each X-ray data set, the esti-

mated absorbed X-ray dose was �2 � 107 Gy. No significant

diffraction resolution decay was observed up to this X-ray

dose. Indexing, integration, merging and scaling were

performed using HKL-2000 (Otwinowski & Minor, 1997).

Data-processing statistics are given in Table 1.

2.5. Structure determination and model refinement

The structures of hCA II at CO2 pressures of 7.0 and 2.5 atm

were determined using the CCP4 program suite (Winn et al.,

2011). Prior to refinement, a random 5% of the data were

flagged for Rfree analysis. The previously determined 1.1 Å

resolution crystal structure (PDB entry 3d92; Domsic et al.,

2008) was used as the initial phasing model. Maximum-

likelihood refinement (MLH) was carried out using

REFMAC5 (Murshudov et al., 2011) and the water molecules

were automatically picked up using ARP/wARP (Perrakis et

al., 1999) during the MLH cycles. The refined structures were

manually checked using the molecular graphics program Coot

(Emsley & Cowtan, 2004). Reiterations of MLH refinement

were carried out with anisotropic B factors and riding H

atoms. The partial occupancies of W1 in 7.0 and 2.5 atm CO2

hCA II were estimated such that the electron density in the Fo

� Fc map disappears. The refinement statistics are given in

Table 1. We also re-refined the water molecules in the three

previously reported structures (PDB entry 5dsi for 15 atm

CO2 hCA II, PDB entry 5dsj for 15 atm CO2 hCA II – 50s and

PDB entry 5dsn for CO2 hCA II – 1h; Kim et al., 2016) for

accurate comparison of the bound water molecules in the

active site and the entrance conduit. The re-refined structures
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Figure 2
The active site of hCA II at different internal CO2 pressures. (a) 15 atm CO2 hCA II, (b) 7.0 atm CO2 hCA II, (c) 2.5 atm CO2 hCA II, (d) 15 atm CO2

hCA II – 50s, (e) 15 atm CO2 hCA II – 1h. The electron-density (2Fo� Fc) map (in blue) is contoured at 1.3�, except for W0I in (d), which is contoured at
1.0�. The intermediate waters WI and W0I are coloured light grey and the entrance-conduit water W0EC1 is coloured cyan for clarity. Note that CO2 is fully
bound in the active site in (a) and (b). Concurrent with the decrease in CO2 pressure, the electron density for CO2 fades out in (c) and is eventually
replaced by two water molecules in the CO2 binding site (d, e). Note also the dynamic changes reflected by the electron densities of WI, W0I and W1 that
take place as the internal CO2 pressure decreases. These events are more explicitly explained in Fig. 4.



were updated in the PDB with the new PDB codes 5yui

(superseding 5dsi), 5yuj (superseding 5dsj) and 5yuk (super-

seding 5dsn). Details of the structural analysis of the bound

water molecules are given in the Supporting Information. All

structural figures were rendered with PyMOL (Schrödinger).

3. Results and discussion

3.1. CO2 binding sites: active site (CO2/WZn/WDW/W000DW) and
secondary CO2 site near Phe226

Structural examinations show that the five structures are

very similar. The all-protein-atom r.m.s.d.s between 15 atm

CO2 hCA II and the other four structures (7.0 atm CO2 hCA

II, 2.5 atm CO2 hCA II, 15 atm CO2 hCA II – 50s and 15 atm

CO2 hCA II – 1h) are 0.14, 0.12, 0.10 and 0.13 Å, respectively.

Although changes in the zinc-coordinating histidines (His94,

His96 and His119) are negligible between the structures, the

electron densities for the CO2 binding site differ significantly,

as expected (Fig. 2). While 15 and 7.0 atm CO2 hCA II show a

clear position for the CO2 (Figs. 2a and 2b), deterioration of

electron density for the CO2 site occurs in the 2.5 atm CO2

hCA II structure, represented by sparsely connected lobes

(Fig. 2c). When the density is modelled and refined with only

CO2, the CO2 occupancy is at most 0.7. This difference

suggests that the CO2 site is occupied by both CO2 and two

waters (deep waters WDW and W0DW) at a pressure of 2.5 atm.

The manifestation of WDW at this pressure is supported by the

extended electron-density connection from CO2 to WI

(Supplementary Fig. S1). In 15 atm CO2 hCA II – 50s, the

electron density for the CO2 binding site is further shifted

towards Zn and WZn, which correlates with the known posi-

tions of WDW and W0DW (Fig. 2d). This argues that 2.5 atm CO2

hCA II has a higher internal CO2 pressure than 15 atm CO2

hCA II – 50s. Finally, in 15 atm CO2 hCA II – 1h, the electron

density of the CO2 binding site splits into two distinct lobes,

indicating that the CO2 site is completely replaced by WDW

and W0DW (Fig. 2e).

Previously, the binding of a secondary CO2 molecule which

is 15–16 Å away from the active-site CO2 molecule was

reported in a hydrophobic pocket created by Val223 and

Phe226 (Domsic et al., 2008). Comparison of the 15 atm CO2

hCA II and 15 atm CO2 hCA II – 1h structures in this region

indicates that the side chain of Phe226 must rotate to

accommodate the secondary CO2 molecule (Supplementary

Figs. S2a and S2e). Interestingly, in the lower pressured

7.0 atm CO2 hCA II, the subdued electron density for the

secondary CO2 results in dual conformations of the Phe226

side chain (Supplementary Fig. S2b). In the cases of 2.5 atm

CO2 hCA II and 15 atm CO2 hCA II – 50s, the secondary CO2
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Figure 3
Rotameric states of His64 and solvent positions at different internal CO2 pressures. (a) 15 atm CO2 hCA II, (b) 7.0 atm CO2 hCA II, (c) 2.5 atm CO2

hCA II, (d) 15 atm CO2 hCA II – 50s, (e) 15 atm CO2 hCA II – 1h. The electron density (2Fo� Fc) for W0I in (d) is contoured at 1.0�. In all other cases, the
electron density (2Fo � Fc) for His64 and the electron density (2Fo � Fc) for waters are contoured at 1.5 and 1.3�, respectively. The intermediate waters
WI and W0I are coloured light grey and the entrance-conduit water W0EC1 is coloured cyan for clarity. As the internal CO2 pressure decreases, W20

gradually dissipates and the His64 side chain shifts from the ‘out’ to the ‘in’ position from (a) to (e). The intermediate water, WI, is clearly observed in (a)
and the electron density gradually subsides (b, c) and finally disappears (d, e). In accordance to the decrease in WI, electron density for W1, which is not
observable in (a), appears in (b) and subsequently increases gradually (c, d, e). When the models are refined with partial occupancy, the W1 occupancies
are 0.8 in (b) and 0.9 in (c). Interestingly, the electron density for the newly observed intermediate water W0I increases gradually from (a) to (c), but
decreases in (d) and disappears in (e). The measured distance between WI and W1 in (b) and (c) is 2.0 Å. The electron density for W3a is well isolated in
all cases, but W3b shows an alternate position W3b0 in (a) which grows in (b) but subsequently disappears (c, d, e).



was not present and the Phe226 side chain sits in the position

observed in the CO2-free 15 atm CO2 hCA II – 1h (Supple-

mentary Figs. S2c, S2d and S2e). Hence, the observation of the

secondary CO2 and the dual conformations of the Phe226 side

chain in 7.0 atm CO2 hCA II imply that 7.0 atm CO2 hCA II

has a higher internal CO2 pressure than 15 atm CO2 hCA II –

50s.

3.2. His64 and the water network (W1/WI/W2/W2000/W3/W3a/
W3b) near the active site

As described above, structural examinations of the CO2

binding sites suggest that both 7.0 atm CO2 hCA II and

2.5 atm CO2 hCA II have a higher internal CO2 pressure than

15 atm CO2 hCA II – 50 s. Furthermore, 7.0 atm CO2 hCA II

intuitively has a higher internal CO2 pressure than 2.5 atm

CO2 hCA II, hence leading to the conclusion that the internal

CO2 pressure decreases in the sequence 15 atm CO2 hCA II,

7.0 atm CO2 hCA II, 2.5 atm CO2 hCA II, 15 atm CO2 hCA II

– 50s, 15 atm CO2 hCA II – 1h. Such an interpretation ascer-

tains that 7.0 atm CO2 hCA II and 2.5 atm CO2 hCA II are

intermediate states that fill the gaps between the 15 atm

pressurized CO2 hCA II and the earliest time point of CO2

release (15 atm CO2 hCA II – 50s) observed in the previous

study (Kim et al., 2016). On this foundation, His64 and the

water network near the active site were analyzed in order of

decreasing internal CO2 pressure (Fig. 3).

Although the side chain of His64 lies predominantly in the

‘out’ position in 15 atm CO2 hCA II (Fig. 3a), the electron

density of His64 infers that it occupies dual ‘out’ and ‘in’

positions as the internal CO2 pressure decreases (Figs. 3b, 3c

and 3d). However, in the CO2-free 15 atm CO2 hCA II – 1h,

His64 is observed to primarily occupy the ‘in’ position

(Fig. 3e). In concert with His64 moving from the ‘out’ to the

‘in’ position, the density for W20 (an alternate position of W2)

is observed to gradually dissipate.

In the previous studies, it has been recognized that when

CO2 is fully bound in the 15 atm CO2 hCA II structure, WI but

not W1 is observed (as in Figs. 2a and 3a; Kim et al., 2016).

However, this WI disappeared in 15 atm CO2 hCA II and W1

was observed to appear instead in the CO2-free 15 atm CO2

hCA II – 1h (as in Figs. 2e and 3e; Kim et al., 2016). Because

the measured distance between WI and W2 is �4.8 Å, the

hydrogen-bonded water network (via W1, W2 and His64)

necessary for the proton-transfer wire was presumed to be

broken when CO2 fully binds to the active site. In this study,

we observed the dynamic replacement of WI with W1 as the

internal CO2 pressure decreases, since dually occupied
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Figure 4
Solvent positions in the entrance conduit. (a) 15 atm CO2 hCA II, (b) 7.0 atm CO2 hCA II, (c) 2.5 atm CO2 hCA II, (d) 15 atm CO2 hCA II – 50s, (e)
15 atm CO2 hCA II – 1h. In all cases the electron-density (2Fo� Fc) maps are contoured at 1.3�, except for the electron density (2Fo� Fc) for W0I in (d),
which is contoured at 1.0�. The intermediate waters WI and W0I are coloured light grey and the entrance-conduit waters are coloured cyan for clarity. As
the internal CO2 pressure decreases, alternate positions appear and disappear, especially for WEC1, WEC2 and WEC5, suggesting dynamical motions that
are correlated with the dynamical changes in WI, W0I and W1 (a, b, c). For example, note that W0EC1 in (a) and (b) is located next to the electron density for
W3b0, attesting to the interaction between the two. As WI and W0I disappear in (d) and (e) together with appearance of W1, the entrance-conduit water
molecules return to the singly ordered positions (d, e).



positions of W1 and WI are seen for 7.0 and 2.5 atm CO2 hCA

II (Figs. 3b and 3c). The reduction of electron density for WI is

observed in the order 15, 7.0 and 2.5 atm CO2 hCA II, with

complete disappearance in 15 atm CO2 hCA II – 50s and

15 atm CO2 hCA II – 1h (Fig. 3). In contrast, W1 electron

density starts to emerge in the 7.0 atm CO2 hCA II, is more

pronounced in 2.5 atm CO2 hCA II, and is fully occupied in

15 atm CO2 hCA II – 50s and 15 atm CO2 hCA II – 1h. The

close 2.0 Å distance between W1 and WI in 7.0 and 2.5 atm

CO2 hCA II suggests that W1 and WI exhibit partial occu-

pancies rather than being two separate, stable waters. The

inverse correlation, with a decrease in WI and increase in W1

electron density upon decreasing internal CO2 pressures,

suggests that WI moves to the W1 position upon CO2 release.

3.3. New observations of alternate WI (W
000
I ), alternate W3b

(W3b000) and entrance-conduit waters (WEC1/WEC2/WEC3/WEC4/
WEC5)

This study reveals newly observed features in the water

network within and at the entrance to the hCA II active site.

Along with the previously reported intermediate water WI,

another well ordered intermediate water W0I (in this study) was

observed in the structures of 7.0 and 2.5 atm CO2 hCA II

(Figs. 2, 3b and 3c). When the previously reported structures

were compared, W0I existed in the 15 atm CO2 hCA II and

15 atm CO2 hCA II – 50s structures, but was overlooked

because of its faint electron density (Figs. 2, 3a and 3d).

Compared with WI, W0I is located farther away from the active

site and more towards the entrance that connects the active

site of hCA II to bulk solvent. Because the entrance is near the

active site where water, substrate and product (CO2/

bicarbonate) can interchange/interact with bulk solvent, we

will refer to it as the ‘entrance conduit’ (Fig. 1). The conduit

consists of the hydrophobic residues Leu198, Val135, Leu204,

Pro202 and Phe131 on one side, and the hydrophilic residues

His64, Gln92 and Thr200 on the other. It should also be noted

that the proton-shuttling His64 is positioned perpendicularly

to this entrance conduit (Fig. 1).

A close inspection of the structures further identified five

water molecules (named entrance-conduit waters or WECs)

that are ordered along the surface of the entrance conduit in

the CO2-free 15 atm CO2 hCA II – 1h (sequentially named

counterclockwise as WEC1, WEC2, WEC3, WEC4 and WEC5

starting from the one closest to water W3b; Fig. 4). Unlike for

WEC3 and WEC4, alternate positions for WEC1 (W0EC1 and

W00EC1), WEC2 (W0EC2) and WEC5 (W0EC5) exist in the different

internal CO2 pressure structures. Tight hydrogen-bonding

networks stabilize WEC1, WEC2, WEC3, WEC4 and WEC5, which

are mediated by residues lining the entrance conduit

(Supplementary Fig. S3). For instance, the side-chain amide N

atom of Gln92 binds to WEC2, and the main-chain carbonyl O

atom of Pro201 and the side-chain hydroxyl O atom of Thr200

bind to WEC5, which are conserved throughout all of the

internal CO2 pressure structures. Hydrogen-bonding inter-

actions also exist in all of the structures between the five WEC

waters (WEC1–WEC2, WEC2–WEC3, WEC3–WEC4 and WEC4–

WEC5).

The intermediate waters WI and W0I are located deep within

this conduit near the active site and several WEC waters are
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Figure 5
Entrance-conduit water dynamics. (a) 15 atm CO2 hCA II, (b) 7.0 atm CO2 hCA II, (c) 2.5 atm CO2 hCA II, (d) 15 atm CO2 hCA II – 50s, (e) 15 atm CO2

hCA II – 1h. In all cases, the electron-density (2Fo� Fc) maps are contoured at 1.3�. The intermediate water WI is coloured light grey and the entrance-
conduit waters are coloured cyan for clarity. Although all five WEC waters (WEC1, WEC2, WEC3, WEC4 and WEC5) exist in all of the structures regardless of
the different internal CO2 pressures, dramatic variations of WEC1 (near to the proton-shuttling His64), WEC2 (near to WI, W0I and W1) and W3b0 are
manifested by multiple alternate positions during the internal CO2 pressure decrease. These observations indicate that the waters of the proton-transfer
network (W1/W2/W20/W3a/W3b/W3b0), the intermediate waters (WI/W

0
I) and the entrance conduit waters (WEC1/WEC2/WEC3/WEC4/WEC5) all act

interdependently and are dynamically correlated.



involved in transiently stabilizing them and water W1

(Supplementary Fig. S4). Among the WEC waters, WEC2, WEC3

and WEC5 participate in stabilizing WI, W0I and W1 within all of

the structures. For example, hydrogen-bonding interactions

with W0I are observed for WEC2, WEC3 and WEC5, while

hydrogen-bonding interactions with WI and W1 are observed

for WEC2.

Although all five WEC waters are present regardless of the

different internal CO2 pressures, some perturbations of WEC1

(near to the proton-shuttling His64) and WEC2 (near to WI, W0I
and W1) were observed during the internal CO2 pressure

decrease, which are manifested by multiple alternate positions

(Fig. 5). The dynamic motions of WEC waters imply their direct

interplay with the proton-transfer water network in the active

site. Specifically, interactions between WEC1 and W3b were

observed. Previously, the positions of W3a and W3b were

thought to be invariant and singly occupied regardless of CO2

binding, leading to the belief that the main role of W3a and

W3b was to stabilize the W2 water molecule that is directly

located within the proton-transfer wire. However, in this study

an alternate position of W3b [named W3b0, which is different

from the two alternative positions (W3b0 and W3b00) in CO2-

bound apo CA II in Kim et al. (2016)] was observed along with

an alternate position of WEC1 (named W0EC1 in this study) in 15

and 7.0 atm CO2 hCA II (Figs. 5a and b). In these structures,

the distances between W3b, W3b0, WEC1 and W0EC1 are so close

(1.3–1.7 Å; Supplementary Fig. S5) that they organize into a

continuous tube of electron density (Fig. 5). W3b0 and W0EC1

disappear in lower internal CO2 pressure structures, with

WEC1 recovering to the singly occupied position (Figs. 5c, 5d

and 5e). These results suggest that the waters in the proton-

transfer network (W1/W2/W20/W3a/W3b/W3b0), the inter-

mediate waters W0I/WI and the water network of the entrance

conduit (WEC1/WEC2/WEC3/WEC4/WEC5) all act inter-

dependently with their motions correlated.

3.4. Mechanism of the restoration of the proton-transfer
water network

By lowering the CO2 pressure in hCA II crystals, we

captured additional intermediate states, including dual occu-

pied positions of W1 and WI, an active site partially occupied

with CO2, WDW and W0DW, a new intermediate water W0I and an

alternate position of W3b (W3b0). By realizing that WI and W0I
are transiently stabilized by several entrance-conduit water

molecules and that they rearrange during the restoration of

the proton-transfer water network, we propose the sequential

events in the formation of the water network that replenishes

WZn and the consequential connection of the His64-mediated

proton-transfer wire during the catalytic turnover of hCA II.

Although these events have been postulated from the obser-

vations during CO2 release in this study, these mechanisms

may also account for restoration of the water network after

bicarbonate release, assuming that both CO2 and bicarbonate

molecules do not directly mediate the water-network

restoration process.

It is observed that only WI, and not W1, is observed near the

active site of hCA II in the fully CO2-bound state (Fig. 6a).

Because the distance between WI and W2 is �4.8 Å, the lack
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Figure 6
Proposed mechanism of water-network restoration. (a) In hCA II with
fully bound CO2, WZn exists as OH� and nucleophilic attack occurs to
form bicarbonate. In this state, only WI is present and not W1, suggesting
that the water network for proton transfer is broken. (b) The sequential
events for water-network restoration as the product bicarbonate leaves
the active site. After the intermediate water WI fills the places for W1 and
WDW, and these W1 and WDW waters or WI can move to the WZn position.
WDW also fills the position for W0DW. Note that four waters (W1, WZn,
WDW and W0DW) are eventually filled in from WI during this water-network
restoration process. A newly found intermediate water W0I is located
between WI and the outside bulk solvent, is stabilized by the entrance-
conduit waters and seems to facilitate the fast charging process of WI. (c)
Only after the water network is restored can proton transfer can occur
from WZn to the outside through W1/W2/W20/His64in/His64out. Now, with
CO2 binding, hCA II is ready for the next catalytic turnover.



of W1 suggests that the hydrogen-bonded water network from

WZn to His64 (charged and in the ‘out’ position) is disrupted.

In fact, when hCA II is fully CO2-bound, the proton transfer

should have already happened to result in the deprotonation

of WZn to OH�, which is necessary for the nucleophilic CO2

attack (the first step in equation 1). After bicarbonate

formation via this nucleophilic attack, the product bicarbonate

subsequently leaves the active site and WZn is replenished

along with restoration of the active-site water network prior to

the proton-transfer process from WZn.

It is likely that WZn replenishment and water-network

restoration are directly mediated by the transient waters WI

and W0I. After bicarbonate diffuses out of hCA II, WI seems to

immediately fill the positions of both W1 and WDW (Fig. 6b).

This directional branching movement of WI is predictable

since the distance between WI and W1 is 2.0 Å and the

distance between WI and WDW is 2.4 Å. This interpretation is

further supported by the observation that the electron density

of W1 emerges as that of WI disappears (Figs. 3a, 3b, 3c and

3d), as well as by the observation that the electron density of

WI is fused to the electron density of WDW (Supplementary

Fig. S1). Subsequently, W1 can move to WZn (the distance

between W1 and WZn is 2.6 Å), and WDW can shift to either

WZn or W0DW (the distances from WDW to WZn and from W0DW

are 2.4 and 2.2 Å, respectively). Judging by the distance from

WI to WZn (2.6 Å), WI can also directly flow into the WZn

position (Fig. 6b).

As WI replenishes multiple water positions (W1/WDW/W0DW/

WZn), it is important that the bulk solvent supplies the WI

position rapidly (acting as a water reservoir), a process that

seems to be facilitated by W0I. W0I is separated from WI by

2.2 Å, is located closer to the bulk solvent and is transiently

stabilized by the dynamic motions of water molecules in the

entrance conduit, which take place in concert with the changes

of solvent in the active site (Fig. 4 and Supplementary Fig. S4).

As the W1/WDW/W0DW/WZn positions are filled, the inter-

mediate water WI is destabilized by steric hindrance with W1

(the distance between W1 and WI is only 2.0 Å). In addition,

the dynamic motions of water molecules in the entrance

conduit decrease as the water network is restored in the active

site (Fig. 5), which causes destabilization of W0I. Therefore, the

intermediate waters WI and W0I disappear. Finally, the active-

site water network is fully restored and proton transfer occurs

from WZn to His64 (uncharged and in the ‘in’ position) via

W1/W2/W20 (Fig. 6c).

4. Conclusions

Structural comparisons between hCA II in complex with CO2

and during its release reveal intermediate snapshots during

the water-network rearrangement in the active site as the

waters fill the void following CO2 liberation. Based on our

observations, insight into the water-network restoration prior

to proton transfer is proposed. While previous studies of the

catalytic activity of hCA II have mainly focusing on the CO2

binding site (Zn/WZn/WDW) and the proton-transfer water

network (W1/W2/W3a/W3b), our results indicate that the

intermediate and alternate waters (W0I, WI, W20 and W3b0) and

the entrance-conduit waters (WEC1, WEC2, WEC3, WEC4, WEC5

and their alternative positions) are critically involved in

catalysis by hCA II. The substrate CO2 enters via the hydro-

phobic half of the active site, while the product HCO3
�, being a

charged molecule, exits by perturbing the ordered waters that

fill the hydrophilic half of the active site (Silverman et al., 1979;

Koenig et al., 1983). Thus, the ordered waters within the active

site and its vicinity are likely to exist in a state of intermittent

rearrangement during the forward and reverse reactions of

catalysis. Taken collectively, our results provide snapshots of

low-energy stages of water rearrangement during catalysis.

Future mutation studies to perturb the protein regions that

stabilize these waters would provide more evidence of their

roles in the reaction. Moreover, our results suggest that the

catalytic activity of hCA II can be more thoroughly under-

stood with the ‘extended’ catalytic waters (WDW/W0DW/WZn/

W1/WI/W
0
I/W2/W20/W3a/W3b/W3b0/WEC1–WEC5). Molecular

dynamics simulations on this extended water network may

reveal further insights into the bioenergetic mechanisms

utilized by hCA II to generate ordered water networks from

the surrounding disordered bulk solvent (Riccardi et al., 2006;

Roy & Taraphder, 2007).
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