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Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering

provide a means of obtaining experimentally validated models of protein

conformational ensembles. This paper shows that compared with a single

periodic unit-cell model, the accuracy of simulating diffuse scattering is

increased when the crystal is modeled as a periodic supercell consisting of a

2 � 2 � 2 layout of eight unit cells. The MD simulations capture the general

dependence of correlations on the separation of atoms. There is substantial

agreement between the simulated Bragg reflections and the crystal structure;

there are local deviations, however, indicating both the limitation of using a

single structure to model disordered regions of the protein and local deviations

of the average structure away from the crystal structure. Although it was

anticipated that a simulation of longer duration might be required to achieve

maximal agreement of the diffuse scattering calculation with the data using the

supercell model, only a microsecond is required, the same as for the unit cell.

Rigid protein motions only account for a minority fraction of the variation in

atom positions from the simulation. The results indicate that protein crystal

dynamics may be dominated by internal motions rather than packing

interactions, and that MD simulations can be combined with Bragg and diffuse

X-ray scattering to model the protein conformational ensemble.

1. Introduction

In X-ray diffraction from protein crystals, the sharp Bragg

peaks are accompanied by diffuse scattering: streaks, cloudy

features and other patterns between and under the peaks.

Diffuse scattering comes from imperfections in the crystal

such as diverse protein conformations. Unlike the Bragg

diffraction, which is only sensitive to the mean charge density,

diffuse scattering is sensitive to the spatial correlations in

charge-density variations. Diffuse scattering therefore provides

unique data for modeling protein conformational ensembles.

There is a longstanding interest in using diffuse scattering

to validate molecular-dynamics (MD) simulations of protein

crystals (Clarage et al., 1995; Faure et al., 1994; Héry et al., 1998;

Meinhold & Smith, 2005a,b, 2007; Wall et al., 2014). Recent

advances in computing now enable microsecond duration

simulations of diffuse scattering (Wall et al., 2014) and Bragg

diffraction (Janowski et al., 2013, 2016) that can overcome the

limitations seen using MD trajectories of 10 ns or shorter

(Clarage et al., 1995; Meinhold & Smith, 2005b). In a micro-

second simulation of a single staphylococcal nuclease unit cell

(Wall et al., 2014), much of the agreement between the MD

simulation and diffuse data is owing to the isotropic compo-

nent, a small-angle scattering-like pattern seen for all protein

crystals. Agreement with this component is significant as it

consists of roughly equal contributions from solvent and
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protein (Meinhold & Smith, 2005a; Wall et al., 2014). The

anisotropic component, which is about tenfold weaker, agrees

less well with the simulation (linear correlation of 0.35–0.43).

This gap in accuracy between the isotropic and anisotropic

components must be closed because the anisotropic compo-

nent is richly structured and can come almost entirely from the

protein, creating possibilities for the validation of detailed

models of protein motions. Accurate modeling of the aniso-

tropic component is the key to unlocking the potential of

diffuse scattering and MD simulations for modeling the

conformational ensemble.

Wall et al. (2014) noted that the simulation of a single unit

cell might limit the accuracy of MD models of diffuse scat-

tering, and suggested that simulating a larger section of the

crystal with several unit cells might improve the accuracy.

Here, this idea is tested by constructing a periodic model of a

2� 2� 2 supercell of staphylococcal nuclease and performing

an MD simulation of 5.1 ms duration. The linear correlation of

the anisotropic component of diffuse intensity computed from

this simulation with the data is 0.68, indicating that the

supercell simulation greatly increases the accuracy of the

model. Analysis using Patterson methods suggests that the

distance dependence of the correlations is captured well. The

mean structure factors from the simulation largely agree with

the crystal structure; however, there are local deviations,

suggesting a path to improve the MD model. The B factors

from the simulation agree well with the crystal structure and

improve on a TLS model. Similar to the unit-cell simulation,

the agreement of the supercell model with the data reaches a

maximum within a microsecond. This suggests the possibility

that the simulation duration required for diffuse scattering

calculations might become independent of the system size as

it is increased beyond the length scale of the correlations.

Finally, rigid-body motions explain only a minority component

of the dynamics, indicating that internal motions may be more

important than packing dynamics in MD simulations of

protein crystals.

2. Methods

2.1. Molecular-dynamics simulation

A solvated crystalline model was created using PDB entry

1snc (Loll & Lattman, 1989). After stripping the waters, UCSF

Chimera (https://www.cgl.ucsf.edu/chimera/) was used to add

residues that were absent in the crystal structure. Using the

context of the crystal structure as a guide, six missing residues

at the N-terminus were modeled as a �-strand and eight

missing residues at the C-terminus were modeled as an

�-helix. A P1 unit cell of the protein and a thymidine 30,50-

bisphosphate (pdTp) ligand was built in UCSF Chimera using

space group P41 (four copies per cell). The unit-cell para-

meters were a = b = 48.499, c = 63.430 Å, � = � = � = 90�. The

system was extended to a 2 � 2 � 2 supercell in a 96.998 �

96.998 � 126.860 Å right rectangular box using PropPDB

from AmberTools (http://ambermd.org) (Fig. 1).

Molecular-dynamics simulations were performed using

GROMACS (Berendsen et al., 1995) v.5.0.2 (setup and first

4.1 ms) and v.5.1.4 (extension to 5.1 ms). The protein topology

was defined using gmx grompp with CHARMM27 parameters

(MacKerell et al., 1998, 2004). The His-protonation states from

grompp were used without modification. 15 440 TIP3P water

molecules were added using gmx solvate. To neutralize

the system, 192 waters were replaced by Cl� ions using

gmx genion. CHARMM27 compatible parameters for the

pdTp ligand were obtained using the SwissParam server

(http://www.swissparam.ch/; Zoete et al., 2011).

Simulations were performed using a constant NVT

ensemble. NVT simulations are desired for crystalline simu-

lations to enable comparisons of any calculated densities and

structure factors to the crystal structure while avoiding diffi-

culties introduced by drift of the unit-cell parameters during

the course of the simulation. The model after gmx genion

showed large negative pressures when simulated via NVT. The

standard approach for solvated systems of initially equili-

brating the pressure using NPT simulations cannot be used as

this would change the box size and therefore the unit cell. The

present approach is to iteratively perform energy minimiza-

tion, NVT simulation adding harmonic restraints, and solva-

tion until a pressure near 100 kPa is obtained. After several

iterations, the number of water molecules was increased by

1890 to 17 138. The mean pressure computed from the first

110 ns of the trajectory was 1.8 MPa with a standard deviation

of 13 MPa, indicating that the procedure was successful.

The final system consisted of a total of 129 462 atoms. There

were 32 copies of the protein, 32 copies of the pdTp ligand, 32

Ca2+ ions, 17 138 water molecules and 192 Cl� counterions.

For the production simulations, a time step of 2 fs was used

with LINCS holonomic constraints on all bonds and no

harmonic restraints. Neighbor searching was performed every
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Figure 1
Staphylococcal nuclease supercell model. Eight unit cells containing four
protein molecules each are arranged in a 2� 2 � 2 layout. Protein chains
are rendered as cartoons. The pdTP ligand is rendered as red sticks. Water
atoms are indicated using speck-like blue spheres. The image was
rendered using PyMOL (https://pymol.org/).



ten steps. The particle mesh Ewald (PME) algorithm was used

for electrostatic interactions, with a cutoff of 1.4 nm. A

reciprocal grid of 64 � 64 was used with fourth-order B-spline

interpolation. A single cutoff of 1.4 nm was used for van der

Waals interactions. Temperature coupling was performed with

the v-rescale algorithm. The protein–ligand complex was

treated as a separate temperature group from the rest of the

atoms. Periodic boundary conditions were used. Trajectory

snapshots were obtained every 2 ps in GROMACS .xtc

format. The first 110 ns of the trajectory was dedicated to

initial setup and equilibration. An initial production run then

extended the duration to 1.1 ms. Subsequent extensions were

performed to 5.1 ms in 1 ms increments (as mentioned above,

the final microsecond used a later version of GROMACS).

The size of the equilibration trajectory was 27 GB and the rest

were 245 GB each. Each microsecond of simulation took

about 2–4 weeks to complete on LANL Institutional

Computing machines, depending on the availability of cycles.

2.2. Simulated diffuse intensity

The diffuse intensity was calculated for 100 ns sections of

the MD trajectory. Each section was divided into 200 chunks,

which were processed in parallel across ten nodes of an Intel

Xeon E5-2660_v3 cluster. Prior to performing the calculation,

each snapshot of the trajectory was aligned with the crystal

structure using the GROMACS .tpr structure file. To

perform this, the .tpr file was converted to a multimodel

.pdb file using gmx editconf. The .pdb file was processed to

ensure that the coordinates reflected the connectivity of the

molecules (gmx trjconv -pbc mol). The alignment was

performed using the processed .pdb file as the reference

structure (gmx trjconv -fit translation -pbc

nojump).

Each chunk of sampled structures was processed using the

previously described Python script get_diffuse_from_md.py

(Wall et al., 2014) to calculate the diffuse intensity to 1.6 Å

resolution. The calculation of the diffuse intensity Dmd(hkl)

uses Guinier’s equation (Guinier, 1963),

DmdðhklÞ ¼ hjfnðhklÞj2in � jhfnðhklÞinj
2: ð1Þ

In the script, the structure factor, fn(hkl), for each sample n is

calculated at Miller indices hkl using the iotbx package in

the Computational Crystallography Toolbox (cctbx; Grosse-

Kunstleve et al., 2002). The script was modified to accept input

of an externally supplied unit-cell specification using the PDB

CRYST1 format. Specifying the P1 unit cell from the crystal

structure yields the diffuse intensity Dmd,1�(hkl) sampled on

the Bragg lattice only at integer hkl values. Specifying the

P1 supercell dimensions in the CRYST1 record yields

Dmd,2�(hkl), which is sampled twice as finely at hkl values that

are multiples of 1/2. Averages for longer sections of the

trajectory were accumulated from averages of the smaller

chunks.

To decompose the diffuse intensity into isotropic and

anisotropic components, reciprocal space was subdivided into

concentric spherical shells, each with a thickness equal to the

voxel diagonal. The discretely sampled isotropic intensity

Dmd(sn) was calculated as the mean intensity at scattering

vector sn at the midpoint of each shell n. The anisotropic

intensity D0md(hkl) was then calculated at each lattice point hkl

by subtracting the isotropic intensity Dmd(shkl) from the

original signal Dmd(hkl). The value of Dmd(shkl) at scattering

vector shkl in the range sn, sn+1 was obtained by cubic B-spline

interpolation of Dmd(sn) [previous anisotropic intensity

calculations made use of linear interpolation (Wall et al.,

2014); results using either interpolation method were similar

in the present case, although the spline is generally preferred

for increased accuracy]. The same method was used to obtain

isotropic [Do(sn)] and anisotropic [D0o(hkl)] components of the

experimentally observed diffuse intensity.

Because the experimental diffuse intensity shows symmetry

consistent with the P41 symmetry of the unit cell, the P4/m

Laue symmetry (corresponding to the P41 unit-cell symmetry)

was enforced by replacing each Dmd(hkl) value with the

average over all symmetry-equivalent hkl positions in the map.

2.3. Simulated structure factors and average structure

Averages of fn(hkl) were computed along with the diffuse

intensity. To obtain structure factors for comparison with the

crystal structure, the P41 unit-cell CRYST1 record was used in

lieu of the P1 unit-cell or supercell record. The real-space

correlation coefficient (RSCC) was evaluated using the

MolProbity validation tool in PHENIX (Adams et al., 2010),

using PDB entry 4wor (Wall, Ealick et al., 1997) and the

intensities IMD(hkl) computed as the square of the mean

fn(hkl). The errors in the intensities were calculated as the

square root of the intensities. Prior to calculating the RSCC, a

molecular-replacement search using MOLREP in CCP4 was

used to determine the placement of the protein in the unit cell.

The average structure from the simulation was computed by

using phenix.refine to refine the crystal structure against the

IMD(hkl). The phenix.refine option apply_overall_

isotropic_scale_to_adp=false was used to remove

the bulk-solvent scaling component from the B factors. For

comparison, the B factors from a TLS model were obtained

by refinement against the experimental Bragg data

using refine.adp.tls=“chain A” strategy=tls in

phenix.refine.

2.4. Image processing and diffuse data integration

Experimental diffuse scattering data from Wall, Ealick et al.

(1997) were used for validation of the simulations. These data

were collected on a custom CCD detector configured in an

anti-blooming mode in which charge was drained away from

overflow pixels (Wall, 1996). The data were processed using

the Lunus software for diffuse scattering (Wall, 2009; https://

github.com/mewall/lunus). Indexing was performed using

image numbers 1, 20 and 40 from the rotation series. Rather

than limiting the observations Do(hkl) to integer values of the

Miller indices hkl, as was performed for the single-unit-cell

MD simulations (Wall et al., 2014), data were sampled twice as

finely: both at Miller indices and at the midpoints between.
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The twofold sampling yields data that correspond precisely to

the reciprocal lattice of the 2 � 2 � 2 supercell from the MD

model. To place the model and data in an equivalent orien-

tation, the data were reindexed by applying a 180� rotation

about the h axis. Prior to integration, images were mode-

filtered to reject the Bragg peak signal (Wall, 1996, 2009). The

kernel for the mode filter was a 15 � 15 pixel square, with

frequency statistics evaluated in 1 ADU bins.

The accuracy of Lunus was improved by shifting from

integer to floating-point arithmetic for the polarization

correction and solid-angle normalization, which were

combined into a single step. The increase in accuracy is small

for strong diffraction images such as those used here, but is

substantial for weaker diffraction images, for example

including pixels with fewer than 10–100 photon counts. In

addition, as mentioned above (diffuse scattering computa-

tion), a cubic B-spline method was implemented in Lunus to

improve calculation of the anisotropic intensity.

A collection of helper scripts was added to Lunus to enable

diffraction images to be processed and integrated in parallel.

The helper scripts produce shell scripts with Lunus workflows

to perform image processing, integration and merging of the

data and a cctbx (Grosse-Kunstleve et al., 2002) workflow to

index the data and obtain a transformation from map pixels in

diffraction images to fractional hkl values in reciprocal space.

The scripts were executed in parallel on 12 nodes of a 32-core

Intel Haswell cluster; the 96 1024 � 1024 images of diffraction

from staphylococcal nuclease could be processed in 1 min.

Real-time parallel processing of diffuse scattering from single-

crystal synchrotron data sets is therefore now possible using

Lunus.

All Lunus revisions, including helper scripts for parallel

processing, have been committed to the github repository

https://github.com/mewall/lunus.

As for the calculated Dmd(hkl), the P4/m Patterson

symmetry was enforced for the experimental Do(hkl). The

isotropic and anisotropic components Do(sn) and D0o(hkl)

were calculated from Do(hkl) as for Dmd(sn) and D0md(hkl)

(diffuse scattering computation). The correlation coefficient

roc was used to compare the total calculated diffuse scattering

Dmd(hkl) with the experimental data Do(hkl), and the corre-

lation coefficient r0oc was used to compare the anisotropic

component D0md(hkl) with the experimental data D0o(hkl).

2.5. Simulated diffraction images

Diffraction images were simulated using methods similar to

those used for the data integration, except that instead of the

data sets being compiled from the pixel values, the pixel values

were obtained from three-dimensional data sets. An indexing

solution was obtained as in the data integration, and a

template image was provided to determine the crystal orien-

tation. Each pixel was mapped to a fractional Miller index, and

the pixel value was calculated as a sum of intensities at the

eight nearest grid points in the data set, in proportion to the

distance to the center of the grid point along each axis in the

space of Miller indices. The method was implemented in a

Lunus Python script, simulate_diffraction_image.py,

using cctbx methods.

2.6. Patterson maps

Diffuse Patterson maps were created by Fourier trans-

forming diffuse intensities. Symmetrized anisotropic diffuse

intensities were output in hklI text format using lat2hkl

in Lunus, and were converted to .mtz format using

phenix.reflection_file_converter. Fourier transforms were

computed using the Patterson FFT method (Ten Eyck, 1973)

in the CCP4 suite (Winn et al., 2011). A Patterson map of the

anisotropic component of the Bragg reflections was computed

for comparison with the diffuse Patterson maps. The aniso-

tropic component of Bragg reflections was calculated using

anisolt in Lunus after conversion of the reflections from

.mtz format to hklI text using mtz2various in CCP4. The

intensities were then converted back to .mtz format using

phenix.reflection_file_converter and the Patterson was

obtained using FFT, as mentioned above.

2.7. Rigid-body rotation analysis

Snapshots of C� positions from the supercell were obtained

every 40 ps and were translationally aligned with the structure

in the .tpr file used for the 110–1100 ns simulation. Rotation-

matrix analysis was performed using 32 runs of gmx rotmat,

using the snapshots for each of the 32 copies of the protein as

inputs. The gmx_rotmat.c source code was edited to add

outputs of the root-mean-square deviation (r.m.s.d.) of coor-

dinates between the snapshot and the reference structure both

before and after alignment, in addition to the usual output, the

elements of the rotation matrix. A custom Python script was

written to compute standard deviations of Euler angles from

the .xvg rotation-matrix element output of gmx rotmat and to

accumulate trajectory-wide r.m.s.d.s by calculating the square

root of the average squared r.m.s.d. for individual snapshots.
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Figure 2
Linear correlation between the simulated and experimental diffuse
intensity evaluated for sequential 100 ns sections of the MD trajectory
(dashed boxes) and as a running average (solid line). The running average
reaches a maximum at a value of 0.68 within the first microsecond.



3. Results

MD simulations were performed using a solvated supercell

model of crystalline staphylococcal nuclease consisting of

eight unit cells in a 2 � 2 � 2 layout (Fig. 1, x2). The total

simulation duration was 5.1 ms. Trajectories were obtained for

the following segments, sampled every 2 ps: the initial equili-

bration (0–110 ns), 110–1100, 1100–2100, 2100–3100, 3100–

4100 and 4100–5100 ns.

Diffuse intensities were calculated from the trajectories in

100 ns sections, and the agreement with the data was assessed

using the anisotropic component (x2). In the 100 ns immedi-

ately following the equilibration, the linear correlation

between the simulation and the data is 0.62. Correlations

range between 0.59 and 0.62 for subsequent sections through

1100 ns (Fig. 2, boxes). Beyond 1100 ns, the agreement with

the data decreases somewhat: the correlation for 100 ns

sections between 1100 and 5100 ns ranges from 0.56 to 0.60.

The correlation of the running average of the diffuse

intensity (the mean diffuse intensity calculated from sequen-

tial 100 ns sections) with the data increases steadily from 0.62

to 0.68 from 110 to 700 ns; it remains at 0.68 through 1100 ns

and decreases slowly to 0.67 thereafter (Fig. 2, solid line). The

average within the 110–1100 ns range was used as the simu-

lated diffuse intensity for subsequent analyses and visualiza-

tions.

Simulated and experimentally derived diffraction images

look similar (Fig. 3). There is good correspondence between

the shapes of cloudy features in the simulation and the

experimental data at all but the lowest resolutions. There are

some large differences in the strengths of the features; for

example, the large, intense red feature in the bottom half of

the simulation image (Fig. 3, left panel) is weaker than the

corresponding feature in the experimentally derived image

(Fig. 3, right panel).

The correlation between the simulation and the data is

substantial over a wide resolution range (Fig. 4, solid steps),

consistent with the range over which the diffuse features look

similar in Fig. 3. Above 10 Å resolution, the correlation is at
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Figure 3
Comparison of simulated diffraction images calculated from the simulated (left panels) and experimental (right panels) three-dimensional diffuse
intensities. The crystal orientation corresponds to the first diffraction image in the rotation series. The display is truncated at 1.6 Å. The mean pixel value
at each scattering vector was subtracted, and then the minimum value in the image was subtracted, prior to visualization. The images were displayed
using the rainbow color map in Adxv (Arvai, 2012), with a pixel value range arbitrarily chosen to highlight the similarities.

Figure 4
Resolution-dependent agreement between simulation and data (solid
line) compared with the self-consistency of the data, as assessed using the
expected P4/m symmetry (dotted line).



least 0.52 in all of the 32 resolution shells, and is above 0.6 in

all but three. Below 3 Å resolution the agreement between the

simulation and data is substantially less than the agreement

between symmetrized and unsymmetrized data sets, indicating

that there is room for improvement in modeling the data in

this resolution range. Above 2 Å resolution the agreement

between the data and simulation is higher than the degree to

which the symmetry is obeyed, suggesting that the symmetry

averaging might have eliminated some systematic error in the

data. Below 10 Å resolution the agreement becomes very

small (with the exception of a low-resolution outlier), and the

CCsym values also become very small, suggesting that the data

were not accurately measured in the neighborhood of the

beamstop.

Real-space comparisons of the Patterson function of the

charge-density variations (x2) show that both the simulation

and the data exhibit similar modulation with distance (Fig. 5).

The amplitude of the variations is especially similar in the x = 0

section (Figs. 5a and 5b). In the z = 0 section the simulation has

higher amplitude variations than the data at longer distances

(Figs. 5d and 5e), indicating that the correlations within this

plane are stronger in the simulation than in the data. The

linear correlation between the Pattersons computed from the

simulation and the data is 0.70. The Patterson computed from

the Bragg data (Figs. 5c and 5f) shows much higher amplitude

features at long distances, indicating a longer length scale of

correlations for the mean than for the variations in charge

density.

The RSCC computed using the crystal structure and the

calculated Bragg reflection amplitudes from the simulation

(x2) is high in most regions (Fig. 6, purple line); however, there

are especially large dips (<0.6) for residues 6–8 at the N-

terminus and for residues 46–52. The average RSCC for all

residues is 0.80. Regions of the crystal structure with high B
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Figure 5
Comparison of the Fourier transform of the simulated diffuse intensity (left panels) with that of the experimental data (middle panels) and the Bragg
data (right panels). Only the anisotropic component is used to calculate the transforms. Positive contours are in black and negative contours are in red.
Contours are at every 0.5� between 0 and 10� in the diffuse data and are adjusted to be equivalent with respect to �/Imax in the other panels. (a) x = 0
section, simulation; (b) x = 0 section, diffuse data; (c) x = 0 section, Bragg data; (d) z = 0 section, simulation; (e) z = 0 section, diffuse data; ( f ) z = 0
section, Bragg data. The plots were produced using mapslicer in CCP4 (Winn et al., 2011).



factors (Fig. 6, blue line) include both the N-terminus and a

previously observed disordered loop in the crystal structure at

residues 44–50 (Loll & Lattman, 1989). The overall r.m.s.d. of

atom positions between the simulation average structure (x2)

and the crystal structure is 0.7 Å, with high deviations

concentrated in local regions of the protein (Fig. 6, yellow

line). The residue-wise composite B factors from the crystal

structure and the simulation average structure are very similar

(Fig. 7); the linear correlation between the two is 0.94. By

comparison, the residue-wise composite B factors from a TLS

model of the crystal structure underestimate the disorder in

the N-terminus and in the flexible loop (Fig. 7); the linear

correlation between the B factors derived from the individual

ADP versus TLS model is 0.89.

4. Discussion

The 0.68 correlation with the anisotropic component of the

diffuse data is much higher than has been previously achieved

using MD simulations. The present simulation used a supercell

model, whereas previous simulations used a unit-cell model

of the crystalline protein. In addition, compared with the

previous simulation, the present simulation included residues

theoretically modeled at the N- and C-termini. To determine

the role of including the extra residues in achieving the

increased correlation, a 1.1 ms MD simulation of a single unit

cell was performed using the extended model (unpublished

work). The correlation between the simulated and experi-

mental diffuse intensity within the first microsecond was 0.42,

compared with the previous correlation of 0.35–0.43 (Wall et

al., 2014). The use of the supercell model therefore accounts

for the increased accuracy of the simulated diffuse scattering.

One possible explanation for the increased accuracy of the

supercell model is simply the increased size of the ensemble

compared with a unit-cell model. The number of intracellular

atom pairs is eightfold higher for a 2 � 2 � 2 unit cell than for

an equivalent duration of a unit-cell trajectory. However, the

agreement with the data for each 100 ns section of the

supercell simulation (correlation in the range 0.59–0.62) is

much higher than the agreement for the first microsecond of

the unit-cell simulation (correlation of 0.42), for which the

ensemble is slightly larger. The improvement of the supercell

model therefore cannot be attributed to a larger ensemble.

Another possible explanation for the improvement is the finer

sampling of reciprocal space using the supercell model. The

supercell model yields two predictions per Miller index along

three directions, or eightfold more predictions of diffuse

intensity. These predictions are compared with a diffuse data

set that is similarly sampled, including measurements at half-

integer Miller indices, where the Bragg peak signal is minimal.

In contrast, the unit-cell model yields predictions only at

integer Miller indices, where the rejection of the Bragg peak

signal in the data is more challenging. To test this explanation,

the diffuse intensity was calculated from the supercell model

using a P1 unit cell (x2), producing a grid sampled at integer

Miller indices. The accuracy of this calculation was assessed

using the same data set as was used to evaluate the unit-cell

simulations. The cumulative correlation over a microsecond

was 0.66, which is comparable to the value of 0.68 between the

P1 supercell calculation and the more finely sampled data set.

The improvement therefore cannot be explained by the finer

sampling of the diffuse signal.

The most reasonable explanation for the improvement of

the supercell model is that it more realistically describes the

dynamics, especially the interactions across unit-cell bound-

aries. This explanation is consistent with normal-mode

analysis studies, in which the inclusion of crystal contacts

(Kundu et al., 2002; Riccardi et al., 2009) and extension to

supercells using Born–von Kármán boundary conditions

(Riccardi et al., 2009, 2010) improves the fit to crystallographic

data. One rationale for the improvement in the MD is that
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Figure 7
Residue-wise comparison between the B factors from the crystal
structure (purple), the MD-simulated average structure (cyan) and a
TLS model of the crystal structure (green).

Figure 6
Residue-wise comparisons between the simulated structure factors and
the crystal structure. The real-space correlation coefficient (purple line) is
computed using the crystal structure and the simulated Bragg reflections.
The isotropic B factors (blue line) are taken from the crystal structure.
The r.m.s.d. of heavy-atom atomic coordinates (yellow line) is computed
between the average structure from the simulation and the crystal
structure.



using the less accurate unit-cell model displacement correla-

tions between remote atoms can be artificially increased by

the periodic boundary conditions, as the atoms can become

neighbors across the boundaries of the simulation box. The

effect of this artifact on diffuse intensity values sampled at

integer Miller indices should be diminished using a 2 � 2 � 2

periodic supercell, as no two atoms in the same unit cell can be

neighbors across the simulation box. Because atoms near

opposite edges of the simulation box still can be nearby in the

supercell model, however, even larger supercell models might

further increase the accuracy of the simulations. Larger

supercells also can yield detailed models of large-scale

motions that have been studied using simpler models of

protein diffuse scattering, such as acoustic crystal vibrations in

ribosome crystals (Polikanov & Moore, 2015), coupled rigid-

body motions in lysozyme crystals (Doucet & Benoit, 1987),

and liquid-like motions with long correlation lengths in crys-

tals of lysozyme (Clarage et al., 1992) and calmodulin (Wall,

Clarage et al., 1997).

As in the supercell simulation, the residue-wise B factors of

the average structure from the single-unit-cell simulation are

similar to the crystal structure (Supplementary Fig. S1a); the

linear correlation between the two is 0.95, compared with a

correlation of 0.94 for the supercell simulation. A similar high

agreement with crystallographic B factors was seen in MD

simulations of a 3 � 2 � 2 supercell of crystalline P1 hen egg-

white lysozyme (Janowski et al., 2016). The RSCC values

computed between the crystal structure and the unit-cell

simulation also are similar to those for the supercell simulation

(Supplementary Fig. S1b); the average RSCC for all residues is

0.82 for the unit-cell simulation, compared with 0.80 for the

supercell simulation. Compared with the unit-cell simulation,

the supercell simulation therefore specifically improves the

model of structure variations, but not the model of the average

structure.

The maximum agreement with the data was achieved within

the first 1100 ns of the simulation. The time required to reach

the maximum is similar to what was seen for the previously

published unit-cell simulation (Wall et al., 2014). Because the

diffuse intensity is only sensitive to the two-point correlations

in the variations, this result suggests that the motions that

account for most of the agreement with the experimental data

are correlated on a length scale shorter than the unit cell. The

short length scale of the correlations is supported by the

comparison between the Patterson computed from the Bragg

and diffuse data, which reveals that the diffuse Patterson is

attenuated at long distances (Fig. 5). Prior to this study, the

expectation was that supercell simulations would require a

longer duration than unit-cell simulations, as larger systems

involve motions on longer length scales, which are generally

slower. It is important to note that there is much room for

improvement in the accuracy of the MD model, and that to

achieve a higher correlation with the data might require

longer simulation durations, with stricter requirements for

convergence to the thermodynamic ensemble. The relative

durations required for diffuse scattering calculations from

supercell versus unit-cell simulations also might vary for

different protein crystals. Nevertheless, this example suggests

the possibility that for sufficiently large supercells, the

simulation durations required for accurate diffuse scattering

calculations might be independent of system size.

There are strong similarities between the Patterson maps

calculated from the simulated and experimental diffuse

intensities (Fig. 5). The overall modulation of the diffuse

Patterson is especially similar between the simulation and the

data, indicating that the distance dependence of the correla-

tions is captured well by the MD simulation. The attenuation

of the Patterson along the a and b lattice vectors is more

pronounced in the data than in the simulation, however,

indicating a longer length scale of correlations in the simula-

tion than in the data within the z = 0 plane (Figs. 5c

and 5d).

If the simulation perfectly described the experimental

system, the agreement would be expected either to increase or

to plateau at long times, depending on how accurately the data

were measured. The agreement beyond 1100 ns decreased

somewhat, however, indicating a drift of the simulation away

from the data. While it is possible that the decrease is transient

and that running the present simulation for longer would

eventually lead to an increase in the agreement, the simplest

explanation is that the MD model is deviating from the

experimental behavior at long times.

Dips in the residue-wise RSCC plot (Fig. 6, purple line)

indicate regions where the simulated charge density locally

deviates from the crystal structure. Dips at the N-terminus and

at residues 46–52 correspond to high B-factor regions (Fig. 6,

blue line) and might reflect the intrinsic difficulty of capturing

discrete conformational variability using B factors (Garcı́a et

al., 1997). Dips in the RSCC also correspond to regions of high

r.m.s.d. between the simulation average structure and the

crystal structure (Fig. 6, yellow line). These include not only

the high B-factor regions, but also many regions with lower B

factors. The low B-factor regions with high r.m.s.d.s indicate

where the atom positions from the simulation locally deviate

from the crystal structure. The discrepancies in these regions

would be especially good targets for improving the MD model.

There are a number of specific routes to improving the MD

model. Missing residues at the N- and C-termini could be

modeled more accurately using more of the context from the

crystal structure. The 2� 2� 2 supercell could be extended to

an even larger supercell. Additional compounds found in the

mother liquor could be added to the model (e.g. 23%

2-methyl-2,4-pentanediol) and the ionic strength of the

solvent could be more accurately modeled; the current model

only includes water and neutralizing counterions. There might

be inaccuracies in the MD force fields; importantly, the

accuracy of the MD models should now be high enough to

enable the improvement of force fields using crystallographic

data, just as validation using NMR data (Chatfield et al., 1998)

has led to improvement of MD force fields (Lindorff-Larsen

et al., 2010, 2012; Showalter & Brüschweiler, 2007). Time-

averaged ensemble refinement produces models that are

closer to the crystal structure (Burnley et al., 2012) and might

be used in combination with diffuse data to generate more
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accurate conformational ensembles. Higher quality data also

might be needed to substantially improve the model.

Recent solid-state NMR (ssNMR) experiments combined

with crystalline protein simulations (Kurauskas et al., 2017; Ma

et al., 2015; Mollica et al., 2012) create opportunities for joint

validation of MD simulations using crystallography and NMR.

An ssNMR + MD study of the protein GB1 (Mollica et al.,

2012) showed reasonable agreement between 200 ns MD

simulations and the data for longitudinal relaxation rates and

chemical shifts, with lower agreement for the transverse

relaxation rates. An ssNMR + MD study of ubiquitin

(Kurauskas et al., 2017; Ma et al., 2015) attributed the trans-

verse relaxation rates to rigid-body rotations of whole proteins

in the crystal lattice, with amplitudes of 3–5� extracted from

the simulations. To assess the importance of rigid-body rota-

tions in the present staphylococcal nuclease simulation,

snapshots of each of the 32 copies of the protein were rota-

tionally aligned with a reference structure (x2). Standard

deviations of Euler angles were mostly in the 1–2� range, with

individual values of as low as 0.8� and as high as 2.3� (Fig. 8a).

The r.m.s.d. of coordinates between the snapshots and the

reference structure decreased after the alignment, but only by

10–20% for most copies of the protein, with a minimum of 8%

and a maximum of 28% (Fig. 8b). Therefore, rigid-body

rotations are not a substantial component of the dynamics in

the present simulations.

Further investigation of the rotational matrix fit for protein

numbers 4 and 31, which have  -angle standard deviations of

2.3 and 2.2�, respectively, revealed a pitfall in rotational

analysis. Visual inspection of the trajectories for these protein

numbers revealed a conformational change in the flexible loop

around residues 42–54 during the first microsecond (Fig. 9).

When the tip of the loop was removed (residues 46–52;

rendered using sticks in Fig. 9), the  -angle standard deviation

decreased by 0.7� for these protein numbers. This means that

the rotational matrix fit does not solely report on rigid-body

motions, as is commonly assumed; therefore, caution is

warranted when using rigid-body motions models to interpret

MD simulations. It would be interesting to perform a similar

analysis of crystalline ubiquitin MD trajectories (Kurauskas et

al., 2017; Ma et al., 2015) to see whether the variations in

rotational fit correspond to rigid-body rotations, as assumed,

or whether they instead might reflect internal motions.

The modeling of the B factors is improved using the MD

model compared with a TLS model (Fig. 7). This is consistent

with the expectation that TLS models might underestimate the

disorder in the most mobile regions of the protein (and, in

turn, that the B factors themselves might underestimate the

underlying disorder; Garcı́a et al., 1997). Overall, the analysis

here highlights the importance of internal motions and

suggests a more minor role for independent rigid-body

translations (Ayyer et al., 2016) or rotations (Pérez et al., 1996)
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Figure 9
Snapshots of protein 31 at 110 ns (green) and 1001 ns (pink). The seven
residues at the N-terminus (left) and C-terminus (upper right), ignored in
the rotational fit, are colored white. The SD of the Euler angle  of the
rotational fit decreases by 0.7� when the tip of the flexible loop (residues
46–52, indicated using sticks) is removed. The image was rendered using
PyMOL (https://pymol.org/).

Figure 8
Analysis of the MD trajectory in terms of rigid-body motions of whole
proteins. (a) Standard deviations of Euler angles that optimally align
protein snapshots with the reference structure. (b) R.m.s.d.s of
coordinates computed before and after aligning protein snapshots with
the reference structure.



in protein diffuse scattering. It will be important to determine

whether rigid-body motions are important for other proteins,

especially proteins that are stiffer than staphylococcal

nuclease. Studies that combine crystallography, ssNMR and

MD simulations to develop accurate models of crystalline

protein dynamics with multiple points of validation are

strongly motivated to reveal the mechanisms of variation that

really occur in protein crystals.

In Bragg analysis, a good molecular-replacement solution

yields a linear correlation with the Bragg data of about 0.80.

The individual atom positions and B factors can then be

refined to determine a crystal structure that is specific to the

crystallographic experiment. Because each Bragg reflection is

determined by the entire crystal structure, local atomic details

only become resolved once the entire structure is modeled

with sufficient accuracy. Similarly, accurate models of diffuse

data might only reveal the atomic details of molecular motions

when the entire conformational ensemble is modeled with

sufficient accuracy.

The present correlation of 0.68, although a significant

advance, probably only reflects a global agreement of the

model with the data and not a validation of the details of the

simulation. As for the Bragg data, once the correlation of

models with the anisotropic diffuse data is sufficiently high,

diffuse scattering figures of merit such as correlation coeffi-

cients or R factors might become more sensitive indicators of

whether the MD motions are real. If this can be achieved, then

crystallography and MD simulations will become a powerful

tool for obtaining experimentally validated models of

biomolecular mechanisms in crystalline proteins.
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