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An experimental procedure for transmission X-ray ghost imaging using

synchrotron light is presented. Hard X-rays from an undulator were divided

by a beamsplitter to produce two copies of a speckled incident beam. Both

beams were simultaneously measured on an indirect pixellated detector and the

intensity correlation between the two copies was used to retrieve the ghost

image of samples placed in one of the two beams, without measuring the samples

directly. Aiming at future practical uses of X-ray ghost imaging, the authors

discuss details regarding data acquisition, image reconstruction strategies and

measure the point-spread function of the ghost-imaging system. This approach

may become relevant for applications of ghost imaging with X-ray sources such

as undulators in storage rings, free-electron lasers and lower-coherence

laboratory facilities.

1. Introduction

Imaging methods may be broadly categorized as either direct

or indirect. Here, direct refers to any form of X-ray imaging in

which the acquired image or images exhibit forms, shapes or

structures directly related to the morphology of the object.

Examples of direct imaging in an X-ray context include

absorption-contrast X-ray imaging, X-ray interferometry,

analyser-based X-ray phase-contrast imaging, Zernike phase-

contrast X-ray imaging and propagation-based X-ray phase

contrast. Methods for indirect X-ray imaging, in which the

registered data bear no direct resemblance to the sample,

include X-ray crystallography, coherent diffractive X-ray

imaging, inline X-ray holography and X-ray ghost imaging.

The field of ghost imaging, which originated in visible-light

quantum optics (Klyshko, 1988; Belinskii & Klyshko, 1994;

Pittman et al., 1995; Strekalov et al., 1995; Bromberg et al.,

2009; Katz et al., 2009; Erkmen & Shapiro, 2010; Shapiro &

Boyd, 2012; Shirai, 2017), has a rich history which will not be

reviewed here. Rather, our focus in the present paper is on the

translation of the ghost-imaging concept into the classical

X-ray domain. Indeed, with only four published papers at the

time of writing (Yu et al., 2016; Pelliccia et al., 2016; Schori &

Shwartz, 2017; Zhang et al., 2018), the field of X-ray ghost

imaging is still in its absolute infancy and has much scope for

optimization and further development.

With a view to developing an intuitive understanding of the

essence of the ghost-imaging concept, let us begin with an idea

that is ubiquitous in physics, mathematics and engineering,
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namely the concept of Fourier series. The principle of Fourier

series is that a function can be expanded as a linear combi-

nation of sinusoidally oscillating functions with different

frequencies, which act as basis functions. What is often much

less appreciated is that noise can form a basis too; therefore, it

is possible to express functions as a sum of different noise

maps (see e.g. Ceddia & Paganin, 2018a,b), in a conceptually

similar manner to building functions as a sum of sinusoids in a

Fourier series. Applied to imaging, this becomes the essence of

the ghost-imaging concept. Here, ‘noise maps’ may equate for

instance to speckle fields, or to shot-noise maps, while the

functions that are to be decomposed become images that are

to be synthesized by superposing noise maps.

Stated more precisely, the essence of the classical ghost-

imaging concept (together with the closely related notion of

computational imaging), may be captured in two ideas. (i)

Spatially random fields, such as speckle fields, may be used as a

basis in the sense that the intensity transmission function of a

thin object can be approximately expressed as a linear

combination of such speckle fields; (ii) the coefficients, in the

expansion of an object’s transmission function in terms of the

speckle basis, may be obtained using an ensemble of single-

pixel (‘bucket’) correlation measurements of the total inten-

sity transmitted by the sample, for each known (or measured)

illuminating speckle field. When the illuminating speckle fields

are measured at the same time as the bucket signals, we speak

of ghost imaging, while if the illuminating speckle fields are

known then we speak of computational ghost imaging.

The speckled-intensity basis elements may be sponta-

neously generated using, for example, the X-ray photon shot

noise from individual electron bunches (Pelliccia et al., 2016),

or may be deterministically created using, for example,

transmission of a plane wave through a scattering object (Yu et

al., 2016). In either case, it is interesting that ghost imaging is

able to ‘synthesize signals as a superposition of noise’.

The current literature on experimental realizations of X-ray

ghost imaging is sparse. With the exception of the very recent

work by Zhang et al. (2018), all published X-ray ghost-imaging

reconstructions (Yu et al., 2016; Pelliccia et al., 2016; Schori &

Shwartz, 2017) are one-dimensional. The paucity of the

existing literature on experimental realizations of X-ray ghost

imaging is an obvious indicator of avenues for future work.

Indeed, it is our view that significant further work is needed to

clarify whether X-ray ghost imaging is merely an interesting

novelty, or has the capacity to develop into a technique of

genuine utility and enduring value.

The early experimental realizations of X-ray ghost imaging

have followed two approaches: (i) using a beamsplitter to

create two copies of the speckled incident beam, with the

sample located in one of the beams (Pelliccia et al., 2016;

Schori & Shwartz, 2017) or (ii) measuring the speckled beam

directly without splitting, and repeating the cycle of

measurements twice, with and without the sample (Yu et al.,

2016; Zhang et al., 2018). The second approach is well suited

when the speckled beam can be accurately reproduced, and

has the advantage of avoiding X-ray optics to split the beam.

The first approach on the other hand, dispenses with the need

to control the incident speckles, as both beams are measured

simultaneously. This is an evident advantage when the

speckles cannot be controlled with high accuracy, or when they

are generated through a genuinely random process, such as

electron shot noise in an undulator when using a synchrotron

source (Pelliccia et al., 2016). Note also that the signal-to-noise

ratio (SNR) of shot-noise-induced speckles is limited by the

bunch brightness, whereas the SNR of scatterer-induced

speckles may be controlled by varying the nature of the

scatterer, or the energy of the X-rays, and can be increased

significantly by prolonging the exposure time.

A key feature of ghost imaging is its robustness with respect

to non-correlated fluctuations in the two arms of a ghost-

imaging setup (Meyers et al., 2007). Since it relies on intensity

correlations, the ghost signal is unaffected by such non-

correlated post-beamsplitter random perturbations in the split

signals. Another attractive feature, which is especially

appealing when using ionizing radiation, is the possibility of

dose reduction on the sample (Yu et al., 2016; Pelliccia et al.,

2016; Li et al., 2018; Zhang et al., 2018).

Ghost imaging is also potentially relevant for future appli-

cations with free-electron lasers (FELs) and other brilliant

sources of pulsed X-rays. The high spatial coherence of these

sources permits a high degree of control on the speckled

illumination on the sample. Along with the development of

suitable, high-frame-rate detectors (Hatsui & Graafsma,

2015), ghost imaging may represent an alternative way to

overcome radiation damage for structural biology experi-

ments (Spence, 2017). At the same time, a high degree of

spatial coherence can also boost the efficacy of intensity

correlation techniques to gather information about the

sample. However, we emphasize that coherence is not a

requirement of the method, making translation to lower-

coherence laboratory sources, such as was achieved in the

recent investigation of Schori & Shwartz (2017), an interesting

avenue for further work.

A key motivation for studying X-ray ghost imaging, within

an X-ray context, is the previously mentioned possibility it

may give for a reduced dose. While the data available so far

seem to suggest that dose reduction may be possible in a

conventional imaging setting (Zhang et al., 2018), it is

currently not clear whether the same idea could benefit future

application to free-electron lasers, to avoid sample destruc-

tion.

Here, we present a two-dimensional, high-resolution,

experimental realization of X-ray ghost imaging, with a higher

number of pixels in each transverse dimension than the

previously cited experimental studies. Two different methods

of ghost-image reconstruction are considered, together with a

study comparing spatial resolution in the two methods. Our

approach is to split the X-ray beam to produce two correlated

copies of the speckled illumination. We believe this method

offers a practical avenue for X-ray ghost imaging. (i) It is

scalable to tomography (Kingston et al., 2018) and even finer

spatial resolutions. (ii) It is amenable to highly parallel

geometries, in which ghost images of many objects may be

acquired simultaneously.
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We close this introduction with a brief outline of the

remainder of the paper. Section 2 gives an outline of the X-ray

synchrotron-based experimental setup and measurement

process for two-dimensional X-ray ghost imaging. Section 3

presents our reconstructed two-dimensional images, of both a

perforated lead-sheet stencil and the tungsten filament of an

incandescent light globe. Section 4 discusses resolution,

robustness, parallelization and computational X-ray ghost

imaging. This final section also includes some considerations

regarding possible future developments in the currently infant

field of X-ray ghost imaging.

2. Experiment

2.1. Experimental setup

The experiments were carried out at beamline ID19 of the

ESRF in Grenoble (France). Pink radiation from a so-called

single-harmonic undulator, with a mean energy of 26.3 keV,

was focused by a stack of compound refractive lenses to a focal

spot of about 5.5 mm diameter at the sample. To produce

variable (and controllable) speckles in the beam we inserted a

1 cm thick perspex container filled with glass powder in the

beam, 5.8 m upstream of the sample. The powder (Ober-

flächentechnik Seelmann, Germany) was composed of grains,

irregular in shape, with a typical size distributed in the range

200–1000 mm. Propagation-based phase-contrast (Snigirev et

al., 1995) from these beads generated a speckle pattern on the

sample, that could be controlled by raster scanning the

perspex container in the transverse plane. The contrast of the

speckle pattern generated in this way was about 14%, as

measured in a region around the centre of the beam. A silicon

crystal beamsplitter, placed 20 cm upstream of the sample, was

used to produce two copies of the beam via Laue diffraction

(transmission geometry) from the (220) planes of the silicon.

The primary beam was mostly transmitted by the Si wafer (see

Fig. 1), thus creating two identical copies of the beam, though

with highly unbalanced intensities. Both beams were then

recorded by the same pixel array detector (scintillator lens-

coupled to a FReLoN camera), placed immediately down-

stream of the sample. The effective pixel size of the camera

was 30 mm.

The attenuated image of the primary beam, with the glass-

beads slab in place, is shown in Fig. 2(a). An attenuator

composed of a 500 mm thick Cu foil and a 500 mm thick GaAs

wafer was inserted in the primary beam to avoid saturation

and protect the camera during the prolonged exposures. The

corresponding image of the diffracted beam (cropped from

the same frame of the camera) is shown in Fig. 2(b). The image

was acquired with 2 s exposure time. Notice the different

intensity of the two beams, with the diffracted beam being

much weaker than the primary beam. The ratio of the average

intensities in a region around the centre of the diffracted and

direct beam was estimated by successive measurements with

and without attenuators to be 1:4� 10�4.

Three main features of our ghost-imaging configuration

based on an X-ray beam splitter need some more discussion.

(i) Owing to unavoidable vibration of the silicon crystal, the

image of the diffracted beam appears blurred when compared

with the primary beam. To facilitate comparison between the

two copies, and understand the scale of the vibration, we

blurred the primary beam image and show the result in

Fig. 2(c). The blurring was performed using a Gaussian kernel

with standard deviation � ¼ 60 mm (2 pixels), which can be

taken as the approximate spatial extent of the vibration of the

Si wafer. This vibration-induced blurring is likely to locally

decrease the speckle-to-speckle correlation between reference

and bucket beam. This in turn is expected to decrease the

efficiency of the ghost-imaging formation process, while

leaving the resolution of the system unaffected. The issue is

discussed in more detail in x4. Note that the blurring is

presented here only for the sake of explaining the difference

between a direct and diffracted beam. The ghost-imaging

reconstruction described in the next section was performed
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Figure 1
Schematic diagram of the experimental setup.

Figure 2
(a) Image of the primary beam on the FReLoN camera acquired with 2 s
exposure time. The beam was attenuated by stacking a 500 mm thick Cu
foil and a 500 mm thick GaAs wafer to avoid saturation. (b)
Corresponding image of the diffracted beam. No attenuator was placed
in the diffracted beam path. (c) Blurred version of the image in (a) to
highlight the similarities in the speckle pattern distribution between the
direct and the diffracted beam.



without introducing this artificial blurring in the direct beam.

(ii) The diffracted beam appears to be slightly compressed,

probably because of some strain generated in the crystal

mount, with more intensity being diffracted around the top

and bottom edge of the beam. As we will see in x3.2, this

generates some distortion in the ghost images, when compared

with the original images, in the proximity of these edges. (iii)

The diffracted beam has a much narrower energy bandwidth

than the primary beam. Again, ghost imaging can be realized

to the extent to which a speckle correlation is maintained

between the two beams, regardless of the energy difference.

This aspect has been demonstrated in a more general way by

Aspden et al. (2015) where ghost imaging was demonstrated

using photons of different wavelengths (visible and infrared).

2.2. Acquisition protocol

The sample was inserted in the diffracted beam rather than

the direct beam. We used this configuration to ensure the

sample was illuminated by the weaker beam. Given our esti-

mated intensity ratio, and assuming the measured counts to be

proportional to the number of photons (this is nearly a

monochromatic case), we expect that the sample receives

0.014% of the photons in the reference beam. The variable

speckle illumination was obtained by raster scanning the glass-

beads slab in the transverse plane. The range of the raster scan

was 150� 90 mm (H�V), with a step size of 750� 500 mm (H

� V). The step size was chosen to be about three times larger

than the typical speckle size, to ensure that images taken at

neighbouring positions along the scan were nearly indepen-

dent. The typical speckle size is in fact much smaller than the

average (or median) size of the glass beads, being determined

by the wave propagation parameters of the phase-contrast

image generated at the sample. The average speckle size, as

discussed in detail in x4.1, is the point-spread function of the

ghost-imaging system. In our case, the associated resolution is

about 125 mm (see x4).

A speckle image was acquired at each position of the glass-

beads slab, with 2 s exposure time. The bucket signal was then

synthesized by summing the number of counts in an area of

200 � 180 pixels comprising the diffracted beam. The refer-

ence image at each position was generated by cropping an

area of 260 � 230 pixels centred around the primary beam

from the raw (attenuated) camera image. We acquired a total

of 5000 frames for each ghost-imaging reconstruction. Note

that, unlike our previous realization of direct X-ray ghost

imaging (Pelliccia et al., 2016), in this case the time structure of

the synchrotron light is irrelevant. In our previous work we

used the natural speckles arising from the shot noise in the

X-ray emission of individual electron bunches. Here the glass

beads are responsible for the speckled illumination, in a

procedure that can be used in pulsed and continuous sources

alike.

Owing to the periodic electron injections into the ESRF

storage ring, a low-frequency time structure (with a period of

1 h) was present in the intensity signal. To prevent this feature

affecting the ghost-imaging reconstruction, the data (both

bucket signal and reference images) were Fourier filtered to

remove such low frequency components. The filter was a

simple low-pass designed to remove all frequencies below 5%

of the Nyquist (temporal) frequency, and therefore discard all

slow variations of the beam intensity owing to the injections.

3. Results

3.1. Reconstruction

Conventional ghost-imaging reconstruction can be obtained

with the formula (Bromberg et al., 2009; Katz et al., 2009):

vi ¼
1

m

Xm

j¼1

bj �
�bb

� �
Aij; ð1Þ

where vi is the ith pixel of the (rasterized) ghost image v,

written as the superposition of the corresponding pixels of the

measured speckle images Aij (ith pixel of the jth measure-

ment). Each term of the superposition is weighted by the

corresponding bucket signal bj subtracted by its mean b. The

total number of images used in the process is m. In our

experiment m ¼ 5000. The ghost image v consists of

n ¼ n1 � n2 pixels. Denoting by A the m� n matrix of

reference images, the bucket signal is b ¼ Av.

Equation (1) can be written in the compact form:

v ¼ h b� hbið Þ Ai; ð2Þ

where hi denotes ensemble average.

Before we continue, we return to the comments made in the

introduction, that a key concept in ghost imaging is the idea of

noise-maps (such as speckle fields) being a basis out of which

optical images may be synthesized. This is precisely what

equation (1) achieves, since it synthesizes the ghost images in

terms of a linear combination of speckle images. This idea of

speckle fields as a basis has been recently investigated by

Ceddia & Paganin (2018a,b) and Gureyev et al. (2018).

The use of random speckle images (defined mathematically

by the random measurement matrix A) is however not

optimal: to attain a good signal-to-noise ratio (SNR) a large

number of measurements is generally required, i.e. m� n,

which makes the basic protocol unsuitable for applications

demanding low dose. A better basis is made of orthonormal

rather than merely linearly independent vectors, therefore the

quality of the ghost image recovery depends on how well the

rows of the random measurement matrix approximate an

orthonormal basis (see Appendix A for more detail). It is also

worth noting that genuinely random illumination can be hard

to produce in practice. In our case, we took care to scan the

glass-beads slab by a transverse step size that was much larger

than the transverse speckle size, however, residual correla-

tions were still present.

To overcome such limitations, several approaches are

currently used. Compressive ghost-imaging speeds image

recovery using ideas and techniques of compressive sensing

(Katz et al., 2009), improving image recovery by identifying an

orthonormal basis in which the image to be recovered is sparse

(Candés et al., 2006; Candés & Wakin, 2008; Katz et al., 2009).
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In an alternative approach, commonly used in single-pixel

cameras, image recovery can be much improved if one starts

from an orthonormal measurement matrix (or sensing matrix)

in the first place. A common choice is the Hadamard matrix H

implementing Hadamard–Walsh functions via a spatial light

modulator (see for instance, Clemente et al., 2013, and

Appendix B).

As will be clear by looking at the results in x3.2, the

limitations we discussed above severely affect the ghost-

imaging reconstruction using equations (1) or (2). To improve

the quality of the reconstructed images, we developed two

independent strategies. In a first approach, inspired by

orthonormal matrices such as H, we performed an effective

orthogonalization of the background-subtracted speckle fields

using the QR decomposition of the matrix A:

A ¼ QR; ð3Þ

where, Q is the orthogonal matrix we seek, and R is an upper

triangular matrix.

Once the QR decomposition has been found, the relevant

transformation for the bucket signal can be computed (the

mathematics involved in this process is explained in Appendix

B) to obtain a modified bucket ~bb whose average is zero. The

ghost-imaging reconstruction can then be obtained using

equation (2) with b! ~bb and A! Q (note that h ~bbi = 0):

v ¼ h ~bb Qi: ð4Þ

Reconstructing a ghost image using equation (4) has two main

advantages over the conventional formula in equation (2).

First, it guarantees better use of the information, as the new

measurement matrix is now composed of orthogonal rows.

Second, since the QR decomposition scrambles the basis, the

typical speckle size of the orthogonal measurement matrix Q

becomes effectively smaller than the typical size of the

physical speckles used in the measurement. Hence, the reso-

lution of the reconstructed ghost image is no longer limited by

the real speckle size (cf. Oh et al., 2013; Sprigg et al., 2016), at

the price of increased noise in the reconstruction.

Notably, one could also overcome the noise problem, by

noting that for under-constrained problems (m< n) one could

perform a QR decomposition multiple times by permuting the

rows of A (and, correspondingly, of b) each time. In practice

one obtains a different reconstruction for each permutation,

but the difference in the reconstructions is mostly in the noise

background. By averaging multiple reconstructions (using

always the same data, hence not increasing radiation dose),

one could reduce noise and increase resolution of the recon-

struction at the same time.

A different approach, which may be useful in the presence

of noisy data, is to perform an iterative refinement of the basic

reconstruction obtained using equation (2) with a gradient

descent method (Kingston et al., 2018). The iterative refine-

ment is iterated until a suitable convergence criterion is

achieved (Huang et al., 2018). In the next section we will show

results obtained using all of the methods described.

3.2. Experimental results

The first sample we imaged was a stencil obtained by dril-

ling three holes in a lead sheet. The direct image of the sample

in the diffracted beam (before synthesizing the bucket signal)

is shown in Fig. 3(a). The ghost image, obtained using equation

(2) with m = 5000, is shown in Fig. 3(b). Note that the ghost

image size is equal to the reference image size of

260� 230 ¼ 59 800 pixels. Therefore, we acquired a little

more than 8% of the Nyquist sampling. The standard ghost-

imaging reconstruction clearly reproduces the sample features

albeit at a reduced resolution, as dictated by the speckle size,

and is unaffected by the previously mentioned vibration in the

bucket beam. Significant background noise is also present as a

consequence of the limited number of measurements and the

camera noise.
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Figure 3
Measurement of the stencil sample. (a) Direct image of the sample when
illuminated by one realization of the speckle pattern. (b) Conventional
ghost-imaging reconstruction using m ¼ 5000 measurements. (c) Ghost-
imaging reconstruction after QR decomposition of the measurement
matrix, obtained using the same measurement as the previous case. (d)
Median image of 150 ghost images obtained by QR decomposition of the
randomly permuted measurement matrix. (e) Image obtained by iterative
refinement of the image in (b) using 50 Landweber iterations. ( f )
Corresponding refined image using 150 Landweber iterations.



As discussed in the previous section, resolution can be

improved via QR decomposition of the measurement matrix.

The result of this operation [see equation (4) and the discus-

sion in Appendix B] is shown in Fig. 3(c). Resolution is

improved, to the detriment of noise which is increased. This

trade-off is consistent with the noise-resolution uncertainty

principle (Gureyev et al., 2016). By repeating the QR

decomposition 150 times (each time performing a random

permutation of the rows of the measurement matrix A and,

correspondingly, of the bucket values b) and taking the

median of those images, the map in Fig. 3(d) can be synthe-

sized. This last image is comparable to the conventional

reconstruction in terms of noise and displays higher resolu-

tion.

The last two panels of Fig. 3 shows the result of the Land-

weber iterative refinement of the basic reconstruction in

Fig. 3(b), using 50 and 150 iterations, respectively. The itera-

tive refinement is helpful in reducing the background noise,

while producing a somewhat smoother reconstruction.

The corresponding set of images for the second sample, a

tungsten coil, is shown in Fig. 4. The map obtained by the

median of 150 ghost images obtained after QR decomposition

shows a marked improvement over the conventional ghost

image, which reflects the advantage of the QR decomposition

method by optimizing the use of the available information. As

before, the Landweber refinement further improves the

contrast of the reconstructed image.

When compared with the stencil reconstruction, the ghost

image of the coil looks noisier. Both images have been

reconstructed using the same number of measurements. The

difference is to be found in the sample extent compared to the

beam size. The stencil sample is effectively composed of three

holes only, whose size is relatively small compared with the

beam. Hence, variations in the speckles’ position amount to

relatively large excursions of the bucket signal. Conversely,

the bucket signal after the coil sample will vary comparably

much less, as it receives contributions from most of the beam

size. Therefore we expect that the ghost-imaging procedure is

much more sensitive when reconstructing the stencil, as

opposed to the tungsten coil.

Finally, as anticipated in x2.1, owing to the beam compres-

sion by the silicon beamsplitter, the ghost images appear

slightly distorted in the proximity of the top and bottom edge

of the beam. This is somewhat more evident observing the coil

images in Fig. 4, while, however, being present to the same

extent in the ghost image reconstructions of both samples.

4. Discussion

4.1. Point-spread function of the ghost-imaging system

The standard ghost-imaging formula in equation (1)

considers the ensemble of linearly independent random

speckle images as a basis from which to synthesize the

reconstruction. As explored in more detail in Appendix A, the

standard ghost-imaging formula may be viewed as a super-

position of approximately orthogonal functions. A direct

consequence is that the rows of the measurement matrix A

should obey an ‘approximate completeness relation’, which

can be written as

1

m

Xm

j¼1

Aij � A
� �

Akj � A
� �

’ �ik; ð5Þ

where �ik is the Kronecker delta. Note that, subtracting

the average A from each coefficient is required to have zero-

mean terms, as each of the Aij is non-negative on account of it

being a measured intensity value. The previous equation

would be exact only in the ideal case in which the measure-

ment matrix (after subtracting its average) forms a complete

orthonormal set.

To make the previous argument more apparent, let us

explicitly rewrite the rows of the measurement matrix as the

measured speckle images Ijðx; yÞ, where x; y are the coordi-

nates on the detector plane and the index j runs over the
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Figure 4
Measurement of the tungsten coil. (a) Direct image of the sample when
illuminated by one realization of the speckle pattern. (b) Conventional
ghost-imaging reconstruction using m ¼ 5000 measurements. (c) Ghost-
imaging reconstruction after QR decomposition of the measurement
matrix, obtained using the same measurement as the previous case. (d)
Median image of 150 ghost images obtained by QR decomposition of the
randomly permuted measurement matrix. (e) Image obtained by iterative
refinement of the image in (b) using 100 Landweber iterations. ( f )
Corresponding refined image using 250 Landweber iterations.



number of measurements. With this new, more transparent,

notation the completeness relation in equation (5) can be

rewritten as

1

m

Xm

j¼1

Ijðx; yÞ � I
� �

Ijðx
0; y0Þ � I

� �
’ �ðx� x0; y� y0Þ; ð6Þ

where �ðx; yÞ is the Dirac delta. As before, equation (6) is

exact only when the speckle images subtracted by their

average form a complete orthonormal set. In all practical

cases, the previous equation can be used to instead define an

effective point-spread function (PSF),

�ðx� x0; y� y0Þ ! PSFðx� x0; y� y0Þ centred around the

point x0; y0 [see equation (14) in Appendix A, together with

Ferri et al. (2010)].

This PSF governs the spatial resolution of the ghost-imaging

system; the auto-covariance of the speckle fields defines the

ghost-imaging PSF, which implies a spatial resolution

comparable to the speckle size (for example, Oh et al., 2013;

Sprigg et al., 2016). In light of this idea, we calculated equation

(6) for the conventional ghost-imaging situation [where the

Ijðx; yÞ are the original speckle images] as well as for the

modified speckle images after the QR decomposition. The

results are shown in Fig. 5. When using the original mask, the

full width at half maximum (FWHM) of the approximately

rotationally symmetric PSF (fitted with a Gaussian) is about

125 mm, which reduces to about 80 mm after the QR decom-

position.

The form of ghost imaging presented here, equipped with

the definition of the PSF as discussed above, may be viewed as

a form of scanning probe imaging (see, for example, Penny-

cook & Nellist, 2011) using a completely delocalized probe

and a large integrating bright-field detector. While the reso-

lution of scanning probe imaging is usually dictated by the size

of a localized scanning probe, for our delocalized scanning

probe the resolution is limited by the smallest characteristic

length scale present in the intensity fluctuations of the

ensemble of illuminating speckle fields [cf. equation (14) in

Appendix A], which is in turn the width of the PSF calculated

using equation (6).

4.2. Other practical aspects of X-ray ghost imaging

We have previously mentioned the robustness of ghost

imaging (Meyers et al., 2007, 2008, 2011, 2012; Hardy &

Shapiro, 2011; Tajahuerce et al., 2014). This robustness arises

from the invariance of the ensemble average in equation (2),

with respect to the addition of statistically uncorrelated fluc-

tuations in the object and reference arms of the ghost-imaging

setup. Stated more precisely, the ensemble average in equation

(2) is unchanged under either or both of the replacements

b! bþ �b and A! Aþ �A, where �b is a zero-average

random fluctuation added to the bucket signal and �A is a

random fluctuation added to the speckle images, provided that

�b and �A are not correlated. In our experimental case, this

fact amounts to the statement that the ghost-imaging process

is substantially robust against uncorrelated noise in the bucket

or reference beam. We expect, however, that the vibration-

induced blurring in the bucket beam discussed in x2, does have

a negative effect on the speckle-to-speckle correlation and

must, therefore, be minimized. Specifically, while the total

number of photons incident on the sample is unaffected by the

blurring (at least to a first approximation) the local distribu-

tion will cause the bucket signal to slightly change to the effect

of reducing the excursion of the signal relative to its mean.

This in turn, will make the image-formation process less effi-

cient, i.e. the ghost image is less clear for the same number of

frames m.

Another practical aspect of X-ray ghost imaging in the

experimental setup used here, is its ability to be parallelized.

Inspired by the parallel form of computational ghost imaging

research papers

434 Daniele Pelliccia et al. � Towards practical X-ray ghost imaging IUCrJ (2018). 5, 428–438

Figure 5
(a) PSF of the ghost-imaging system, calculated using equation (6), for the
conventional ghost-imaging situation. (b) Corresponding PSF calculated
after QR decomposition. The PSF appears noticeably narrower, reflecting
the resolution improvement afforded by the QR decomposition. (c) Line
profile taken across the central horizontal line in the maps in (a) black
solid line and (b) red solid line. When fitted with a Gaussian function, the
two peaks have a FWHM of 125 mm and 80 mm respectively.

Figure 6
Schematic setup for parallelized X-ray ghost imaging.



proposed by Yuan et al. (2016), consider the setup shown in

Fig. 6. Here, an X-ray source � illuminates an ensemble of

m random speckle-producing masks fAjðx; yÞg, where

j ¼ 1; � � � ;m labels each realization of the mask and ðx; yÞ are

coordinates in the plane perpendicular to the optic axis. A

series of beamsplitters B1;B2; � � � then illuminate a series of

objects �; �; � � �, giving associated non-spatially resolved

signals in the bucket detectors b1; b2; � � � Each bucket signal in

each detector may be correlated with the same ensemble of

speckle images registered by the pixellated array detector for

each realization of the mask, to yield independent parallelized

ghost imaging. The objects in Fig. 6 are staggered so as to keep

constant the source-to-object distance, thereby ensuring that

Fresnel diffraction and other free-space-propagation effects

are accounted for, with the registered speckle pattern

measured over the pixellated array detector being equal (up to

a multiplicative constant) to the speckle patterns illuminating

each object. Note that each beamsplitter only needs to remove

a negligible fraction of the total energy from the beam which

ultimately illuminates the pixellated array detector; the

resulting attenuation of the speckle-basis images registered by

the array detector can be trivially taken into account in the

parallel ghost reconstructions. Note also that, while Fig. 6

indicates one object per beamsplitter, one could also have

multiple objects per beamsplitter, using multiple Bragg or

Laue reflections from a crystal beamsplitter, or multiple Laue

reflections from a polycrystal beamsplitter.

Despite the interesting avenues offered by parallelized

ghost imaging, we should note that the use of a crystal

beamsplitter is not ideal, with the current stage of technology

at least. Indeed, since the object-plus-bucket beam need only

be very weak, a crystal beamsplitter is in no way essential for

the realization of X-ray ghost imaging. For example, while the

experiment of Schori & Schwartz (2017) uses a pyrolytic

graphite crystal as a beamsplitter, the experiment of Zhang et

al. (2018) needs no beamsplitter at all since the object-free

reference images are pre-recorded. This latter case is a close

analogue of the concept of computational ghost imaging in the

optical domain.

On this note, in the spirit of computational (ghost) imaging

(Shapiro, 2008; Bromberg et al., 2009; Sun et al., 2013), one

may even dispense altogether with the pixellated array

detector. To do this, one would have a highly structured mask

whose three-dimensional micro-structure is so well char-

acterized, and the illuminating beam so stable and well char-

acterized, that one could use a numerical implementation of

the X-ray scattering and diffraction to calculate the ensemble

of reference speckle fields that one would have measured had

an array detector been used; therefore, these images do not

need to be measured. One would then have a form of

computational X-ray ghost imaging using only bucket detec-

tors. In this context, we point out that the function played by

spatial light modulators in visible-light computational imaging

is replaced with the known micro-structured mask, in the

proposed form of X-ray computational imaging. In the near

future, this highly structured mask might even be amenable to

fabrication using 3D printing technology.

In addition, we note that spatially random masks are not

necessarily optimal for X-ray ghost imaging. While random

masks are often easy to synthesize using, for example, spatially

disordered condensed matter, other structures such as the

uniformly redundant array (Fenimore & Cannon, 1978) may

be more efficient.

Regarding the ultimate resolution that is achievable in

principle by ghost imaging, the preceding analysis makes clear

that this equates to the smallest speckle size that may be

achieved using X-rays. Since the smallest X-ray speckle size

that may be attained is itself limited by the wavelength of the

X-rays, it is the X-ray wavelength that governs the ultimate

resolution achievable by ghost imaging. Thus, for example,

one could return to the use of shot noise to generate speckles

(Pelliccia et al., 2016), work in a geometry where the reference

beam is magnified, and recall that the object-plus-bucket beam

does not influence resolution. In this X-ray ghost microscopy

scenario, which is a minor extension of that previously

demonstrated by Pelliccia et al., (2016), the resolution would

be limited by the resolution with which a magnified shot-noise

image could be detected.

5. Conclusions

We have presented an experimental realization of X-ray ghost

imaging using synchrotron X-rays from an undulator. This

demonstration has been developed to explore practical

avenues for producing X-ray ghost images. We reported the

measurements of two samples, a stencil in a lead mask and a

tungsten coil. For both samples we reported three different

reconstruction strategies. The first is based on the conven-

tional ghost-imaging formula, in which the ghost image is

approximated by the weighted average of the speckle illumi-

nating images. The weights of the superposition are the bucket

signals subtracted by their average. The second approach is

based on prior QR decomposition of the measured speckle

reference images. In this way, the ensemble of speckle images

can be made to be a better approximation to an orthogonal

basis, thereby improving the resolution of the reconstruction.

The third approach uses Landweber iteration to refine the

ghost reconstruction still further. Next, we analysed in more

detail the resolution of our ghost-imaging system, defining an

effective PSF which was shown to be improved upon QR

decomposition of the illuminating functions. Finally, we

discussed practical aspects for future applications of X-ray

ghost imaging, including its robustness against uncorrelated

intensity fluctuations, and improved measurement strategies

using parallelized ghost imaging and computational X-ray

ghost imaging.

APPENDIX A
Estimating ghost-imaging resolution from a given
speckle basis

Consider an ensemble of m� 1 spatially random two-

dimensional intensity speckle patterns fIjðx; yÞg defined over a
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domain � with area Að�Þ in the ðx; yÞ plane. Each ensemble

member is labelled by the integer j, with each Ijðx; yÞ being

non-negative on account of being an intensity map.

Assume ‘many speckles’ in each random speckle field. More

precisely, consider each to be a distinct realization of a

stochastic process with every member of the ensemble of

speckle fields having the same characteristic transverse length

scale �, in both x and y. Stated differently, we assume each

realization of the speckle field to be statistically identical.

Since each speckle field has M speckles with

M ’ Að�Þ=�2 � 1, this implies that (i) the spatially averaged

intensity of each realization of the ensemble is approximately

the same; (ii) the spatially averaged squared intensity, of each

member, is also approximately the same; and (iii) the

ensemble-averaged intensity at any point in � is independent

of position, and approximately equal to the spatially averaged

intensity in any particular realization.

The standard ghost-imaging formula considers the

ensemble fIjðx; yÞg as a speckle basis, from which the ghost

image of the object transmission function vðx; yÞ may be

synthesized (Bromberg et al., 2009; Katz et al., 2009),

vðx; yÞ � PSFðx; yÞ ¼
1

m

Xm

j¼1

ðbj � bÞIjðx; yÞ; ð7Þ

where, * denotes convolution over x and y, PSFðx; yÞ is a

point-spread function associated with the finite spatial reso-

lution with which vðx; yÞ is estimated, the bucket signal is

bj ¼

Z Z
�

vðx; yÞIjðx; yÞdx dy; ð8Þ

and the average bucket signal is

b ¼
1

m

Xm

j¼1

bj: ð9Þ

Using the above definitions and assumptions, one can readily

show that

b ¼ I vAð�Þ; ð10Þ

where

I ¼
1

m

Xm

j¼1

Ijðx; yÞ ¼
1

Að�Þ

Z Z
�

Ijðx; yÞdx dy for any j; ð11Þ

and

v ¼
1

Að�Þ

Z Z
�

vðx; yÞdx dy: ð12Þ

Using equations (8), (10) and (11), equation (7) can be

manipulated into the form:

vðx; yÞ � PSFðx; yÞ

¼

Z Z
�

dx0dy0vðx0; y0Þ
1

m

Xm

j¼1

½Ijðx
0; y0Þ � I�½Ijðx; yÞ � I�: ð13Þ

Since v(x,y)*PSF(x,y) =
R R

� vðx0; y0Þ PSFðx� x0; y� y0Þdx0dy0,

the point-spread function associated with the ghost-imaging

reconstruction is the ensemble-averaged intensity–intensity

correlation between the locations ðx; yÞ and ðx0; y0Þ in the

illuminating speckle fields (Ferri et al., 2010), corresponding to

the smoothed completeness relation:

PSFðx� x0; y� y0Þ ¼
1

m

Xm

j¼1

½Ijðx
0; y0Þ � I�½Ijðx; yÞ � I�: ð14Þ

For any fixed position ðx; yÞ ¼ ðx0; y0Þ, and a specified

measured ensemble of intensity-speckle fields, equation (14)

can be used to estimate the local resolution associated with

superpositions [such as equation (7)] that utilize this basis in a

ghost-imaging context – see Fig. 5. The above expression may

also be used to generate a ‘pixel basis’ consisting of a lattice of

PSFs whose centroids are separated by the FWHM of each

PSF. This set of PSFs is another approximately orthogonal

basis, which is complementary to the approximately ortho-

gonal speckle basis from which it is derived, insofar as the

former is localized whereas the latter is not. Indeed, one may

loosely speak of equation (14) as showing how linear combi-

nations of the spatially delocalized speckle probes may be

formed to yield very localized probes.

Interestingly, a variant of the above chain of reasoning may

be used to derive the standard ghost-imaging formula from

first principles, in a physically transparent manner. One can

start with an ensemble of intensity speckle fields that obey the

previously articulated assumptions (see the second paragraph

of this Appendix). The intensity covariance on the right hand

side of equation (14) will typically be a narrowly peaked

normalizable function, making it natural to adopt it as a

(possibly position-dependent) point-spread function, by defi-

nition. The convolution of this point-spread-function with a

well behaved but otherwise arbitrary function vðx; yÞ, then

leads directly to the standard ghost-imaging formula in

equation (7), by reversing the logical development of this

Appendix.

We close by noting that the standard ghost-imaging formula

may be viewed in approximate terms as a form of orthogonal

function expansion. Indeed, for our ensemble of speckle

images, each of which are statistically identical and each of

which contain many speckles, symmetry considerations dictate

the following expression for the (approximate) orthogonality

of distinct background-subtracted speckle fields:

1

Að�Þ

Z Z
�

~IIjðx; yÞ~IIj0 ðx; yÞdx dy ’ �jj0VarðIÞ; ð15Þ

where

~IIjðx; yÞ 	 Ijðx; yÞ � I; ð16Þ

and VarðIÞ is the variance of each Ijðx; yÞ, which is assumed to

be independent of j on account of the previously articulated

assumptions. By construction, the set f~IIjðx; yÞg of speckle

patterns has each member averaging to zero over �, with

distinct members being orthogonal to each another, and all

members being approximately orthogonal to a constant offset.

Thus, the standard ghost-imaging formula, as a weighted

superposition of the near-orthogonal set of functions
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ff~IIjðx; yÞg; 1g, may be viewed in approximate terms as a form

of orthogonal function expansion. Such near-orthogonality of

distinct background-subtracted speckle fields evidently forms

a natural albeit implicit assumption when using equation (1)

directly.

APPENDIX B
Details on ghost-imaging reconstructions using QR
decomposition

The QR decomposition approach stems from the observation

that equation (1) is, strictly speaking, exact only when the

speckle basis is exactly orthonormal. This is the case repro-

duced in visible-light single-pixel cameras using a measure-

ment matrix equal to the Hadamard matrix H. In this case,

redefining the bucket signal as bH ¼ Hv, in the absence of

noise, the expansion in equation (1) is exact when m ¼ n.

While this is a convenient choice in the visible part of the

spectrum (where efficient spatial light modulators exist), this

option is not currently easy to implement for X-ray imaging.

The QR decomposition is a solution to this issue. Starting

from the measurement matrix A describing the speckle basis,

we can generate an orthogonal matrix by QR decomposition

of A:

A ¼ QR; ð17Þ

where, Q is the orthogonal matrix we seek, and R is an upper

triangular matrix [cf. the related more sophisticated approach,

utilizing Moore–Penrose pseudo-inverses, by Zhang et al.

(2014)].

Once the decomposition is obtained, the only non-trivial

step is to rearrange the bucket vector b accordingly. Specifi-

cally, we seek a vector ~bb ¼ Qv, that is the bucket signal that

would be measured if the measurement matrix were the

orthogonal matrix Q. Since b ¼ Av, we can write

b ¼ QRv ¼ QRQ�1Qv ¼ AQ�1 ~bb: ð18Þ

Therefore, by inverting the previous expression:

~bb ¼ QA�1b: ð19Þ

Equations (17) and (19) constitute the algorithm we use on

our data to produce an approximately orthonormal decom-

position. The new measurement matrix Q and the transformed

bucket signal ~bb can be used in equation (1) to obtain the ghost-

imaging reconstruction.
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