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In recent years, the success of serial femtosecond crystallography and the

paucity of beamtime at X-ray free-electron lasers have motivated the

development of serial microcrystallography experiments at storage-ring

synchrotron sources. However, especially at storage-ring sources, if a crystal is

too small it will have suffered significant radiation damage before diffracting a

sufficient number of X-rays into Bragg peaks for peak-indexing software to

determine the crystal orientation. As a consequence, the data frames of small

crystals often cannot be indexed and are discarded. Introduced here is a method

based on the expand–maximize–compress (EMC) algorithm to solve protein

structures, specifically from data frames for which indexing methods fail because

too few X-rays are diffracted into Bragg peaks. The method is demonstrated on

a real serial microcrystallography data set whose signals are too weak to be

indexed by conventional methods. In spite of the daunting background scatter

from the sample-delivery medium, it was still possible to solve the protein

structure at 2.1 Å resolution. The ability of the EMC algorithm to analyze weak

data frames will help to reduce sample consumption. It will also allow serial

microcrystallography to be performed with crystals that are otherwise too small

to be feasibly analyzed at storage-ring sources.

1. Introduction

X-ray free-electron lasers (XFELs) have catalyzed several

novel methods in biostructural science. Serial femtosecond

crystallography (SFX), arguably the most successful of these

methods so far, allows protein structure determination from

nanocrystals by using X-ray pulses only femtoseconds long so

as to outrun the damage process (Chapman et al., 2011; Boutet

et al., 2012). Although developments in detector technology,

sample delivery and data analysis have made SFX a viable

technique, its wide use is limited by the scarcity of XFEL

beamtime.

Despite the construction of XFELs worldwide, available

beamtime in the near future will still be scarce compared with

that provided by existing storage-ring synchrotron sources.

This has inspired the development of serial micro-

crystallography experiments at current storage-ring sources

(Gati et al., 2014; Stellato et al., 2014; Heymann et al., 2014;

Gruner & Lattman, 2015; Botha et al., 2015; Nogly et al.,

2015; Roedig et al., 2016; Martin-Garcia et al., 2017). A

serial microcrystallography experiment involves crystals
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sequentially delivered in random orientations into the X-ray

beam. To merge the diffraction patterns, each frame must be

indexed to determine the crystal orientation, which usually

requires at least 20 to 30 resolvable Bragg peaks per frame.

Since the pulse width of storage-ring sources is of the order of

picoseconds, radiation damage cannot be outrun in the same

way as at XFELs. At storage rings the exposure time per

crystal is limited by radiation damage. If the crystal is too

small, too few X-rays to determine the crystal orientation will

be diffracted prior to irreversible radiation damage. There-

fore, serial crystallography at storage-ring sources has thus far

relied on relatively large crystals. Frames with insufficient

resolvable Bragg peaks for indexing, which we call ‘sparse

frames’, are simply discarded. Proteins not bound up in large

crystals are wasted for the purpose of structure determination.

Using the expand–maximize–compress (EMC) algorithm

(Loh & Elser, 2009), we have developed an alternative

analysis approach that makes use of the sparse frames. Unlike

indexing algorithms that determine a definite orientation on a

per frame basis, the EMC algorithm models the orientation of

each frame probabilistically and reconstructs a consistent

three-dimensional intensity model using all the data frames

simultaneously. The information from a sparse frame still

contributes to the reconstruction even though the frame alone

cannot be indexed. This approach can reduce the usable

crystal size in serial microcrystallography experiments at

storage-ring sources and extract information from the sparse

frames that would otherwise have been discarded.

This work is the latest contribution from a methodical

programme to handle sparse frames. Philipp et al. (2012) and

Ayyer et al. (2014) first showed that the probabilistic modeling

of the EMC algorithm continues to hold even with just a few

photons per frame in two- and three-dimensional shadow-

graphy. Ayyer et al. (2015) subsequently applied the EMC

algorithm to sparse frames collected from a small-molecule

crystal rotated about a single axis, and Wierman et al. (2016)

further extended the study to sparse frames taken from a large

protein crystal rotated about a single axis. In order to sample a

greater portion of the rotation space, Lan et al. (2017)

analyzed sparse frames taken from a large protein crystal

rotated about two orthogonal axes and developed computing

schemes to speed up the reconstruction at high resolution.

Here, we describe a step-by-step analysis using the EMC

algorithm on a real serial microcrystallography data set.

Specifically, we threw away the strong crystal diffraction

patterns and focused our analysis on the data frames that

cannot be indexed by conventional means. In contrast with the

Monte Carlo integration approach (Kirian et al., 2010), our

method uses the reconstructed crystal volumes, for all the data

frames, when building the three-dimensional intensity model.

This paper is organized as follows: Section 2 describes the

data set, the process of data reduction, and the modified

version of the EMC algorithm used to address the individual

crystal sizes and the large diffuse background scattering

arising from the lipidic cubic phase (LCP) gel used to convey

the crystals into the X-ray beam. Section 3 presents the results

of the EMC reconstruction and the protein structure solution.

In Section 4, we compare the experimentally measured

background profile with the simulated scattering from water

and discuss possibilities for background reduction. Additional

technical details are presented in Appendices A and B.

2. Materials and methods

We tested our analysis method on a serial micro-

crystallography data set collected by Martin-Garcia et al.

(2017) on the GM/CA 23-ID-D beamline at the Advanced

Photon Source (APS). The raw data consist of 304 643 frames

measured from hen egg white lysozyme microcrystals, ranging

in size from 5 to 10 mm, at room temperature. We note that this

data set is a representative subset of the data collected by

Martin-Garcia et al. (2017) (364 724 frames in total), without

any pre-selection. The crystals were sequentially delivered to

the X-ray beam in random orientations by an LCP gel injector

with a glass nozzle of 50 mm inner diameter (Weierstall et al.,

2014). The data were collected by a PILATUS3 6M detector

with resolution of up to 1.75 Å in the detector corners. The

detector has 2527� 2463 square pixels, 172 � 172 mm each. In

order to demonstrate the ability of our method to handle weak

crystal diffraction data, we excluded data frames with more

than 20 resolvable Bragg peaks, the empirical lower bound for

normal indexing methods to succeed. In other words, we only

considered the weak crystal diffraction patterns that were

rejected from the structure determination by Martin-Garcia et

al. (2017), which gives the 120 574 sparse frames used in our

reconstruction.

2.1. Data reduction

Our analysis started with identifying the frames containing

crystal diffraction because the crystals were randomly

distributed in the LCP gel. This process, also known as ‘hit

finding’, first locates possible Bragg peaks from the diffuse

background scatter. Our method is based on outlier detection.

In the absence of crystal diffraction, the probability that a

pixel measures a photon count, K, follows the Poisson distri-

bution, Pb(K) = exp(�b)bK/K!, where b is an estimate

(described below) of the photon number at that pixel due to

the diffuse background scatter. Given b, we can identify an

outlier pixel by its photon count being too large to be

consistent with Poisson statistics. This consistency is defined

via a photon count threshold, eKK, defined by the cumulative

probability

min
~KK

X~KK

K¼0

PbðKÞ > 1� "; ð1Þ

where " is a small number that lets us set a false-positive rate

(see below). If the photon count measured in the pixel exceeds

the thresholdeKK, we assume that crystal diffraction contributed

to the signal.

Since we had no prior knowledge of the background photon

numbers b, we estimated them using the following self-

consistent iterative scheme. Observing that the background

scatter is generally azimuthally symmetric about the incident
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X-ray beam, we assumed that b only depends on the frame

index k and the spatial frequency magnitude q. The initial

values of bqk were obtained by averaging all photon counts in

annular regions, after the pixel-wise correction of the polar-

ization factor and solid angle. Because the number of pixels in

these annular regions ranged from 103 to 104, the value of " in

equation (1) was set to 10�5 to reduce false positives arising

from statistical fluctuations. In each iteration we used the

current estimates of bqk to calculate the pixel-wise background

estimates, bik , by the relation

bik ¼ pibqk ; ð2Þ

where pi is the product of the (positive) polarization factor and

the solid angle of pixel i. From the values of bik, we identified

the outlier pixels and excluded them from the annular average

for bqk in the next round. This procedure was repeated until

the values of bqk converged, giving us a good estimate of the

background scatter and a list of outlier pixels for each data

frame.

The photon count thresholds eKK, defined by equation (1)

with " = 10�5, are plotted in Fig. 1(a) over a range of back-

ground estimates b. Also shown is the signal-to-noise ratio

(SNR), which is defined as the ratio of eKK to b. We can see that

the SNR takes on a wide range of values over b, especially

when the values of b are close to zero. Since the background

estimates in the data frames used in this study range from a

fraction to 20 photons, the threshold values defined by the

cumulative Poisson probability detects outliers in a more

consistent way than those determined by a fixed SNR. Fig. 1(b)

further illustrates this point by plotting the cumulative prob-

abilities Pb(K � b � SNR) for different thresholds defined by

fixed values of the SNR. Under this definition, photon counts

greater than the threshold, b� SNR, are identified as outliers,

which may result in many false positives at small values of b. In

practice, the SNR is usually used along with other criteria that

characterize a peak in the hit-finding process.

We defined a possible Bragg peak as a cluster with at least

two but no more than ten contiguous outlier pixels, because

most of the clusters have sizes smaller than five pixels. A

cluster with more than ten contiguous outlier pixels was

considered as originating from something other than a Bragg

spot and was masked out for the rest of the analysis. As

mentioned earlier, we discarded strong crystal diffraction

patterns with more than 20 possible Bragg peaks. The possible

Bragg-peak locations in the remaining data frames enabled us

to estimate the lattice parameters by constructing a one-

dimensional pseudo-powder pattern as follows: after mapping

the possible peaks to reciprocal space, we recorded the

distances between the centroids of the peaks in each data

frame. By dividing the spatial frequency magnitudes into bins

of the same size, the one-dimensional pseudo-powder pattern

was given by a histogram recording the frequencies of the

inter-peak distances in each bin. The inter-peak distances are a

more reliable source of information about the lattice geometry

than the distance from the center of the detector because of

the beamstop. By assuming a primitive tetragonal lattice to

simplify the analysis in this study, the lattice parameters were

estimated by fitting the peaks in the one-dimensional pseudo-

powder pattern.

In principle, we should be able to determine the lattice

parameters from the one-dimensional pseudo-powder pattern

even with no knowledge of the unit-cell type. This can be done

by an exhaustive search over combinations of lattice para-

meters from unit cells with high symmetry to those with low

symmetry. In challenging cases of crystals with low symmetry

and large unit-cell dimensions, it may be necessary to take a

separate diffraction measurement, that better resolves the

inter-peak distances, with the detector further from the

interaction point. The one-dimensional pseudo-powder

pattern in this case would be the sum of resolvable peak values

over spatial frequency magnitudes. Sample consumption

should not be a concern here, since the number of peaks

needed to populate the one-dimensional pseudo-powder
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Figure 1
(a) The photon count thresholds determined by equation (1) with " = 10�5. The SNR is defined as the ratio of the thresholds to the background estimates.
(b) The cumulative probabilities Pb(K� b� SNR) to measure a photon count K that is no larger than the thresholds b� SNR, defined by fixed values of
SNR over a range of background estimates b.



pattern is of a similar order to the number of lattice para-

meters to be fitted (at most six). These low-resolution crystal

diffraction patterns can also be incorporated into the EMC

reconstruction to improve the statistics of Bragg intensities at

low resolution.

Finally, we completed the hit-finding process by an

exhaustive search in three-dimensional rotation space. The

centroids of the possible peaks within a low-resolution cutoff

in each frame were rotated over all rotation samples. We

considered a frame to be a ‘crystal hit’ when at least three

possible peaks matched the predicted Bragg positions within a

predefined radius, rp, at some orientation, and all such

orientations were recorded as the possible crystal orientations

of this frame. This criterion reduced the number of frames by

60% for the later analysis and narrowed down the number of

possible orientations for each frame. However, the possible

orientations for each frame are still far from unique to orient

the frames (see Section 3 for more details).

2.2. Model reconstruction

2.2.1. Signal model. The diffraction pattern of each crystal

hit can be modeled as the Poisson sample from the incoherent

sum of the crystal diffraction and the background estimates,

i.e. the average photon number due to the diffuse background

scatter. Consider data frame k that records the diffraction of a

crystal at orientation j. The average photon number eWWijk

measured by pixel i is given by

eWWijk ¼ bik þ pi’kWij ; ð3Þ

where ’k is a scale factor proportional to the crystal volume,

the X-ray beam fluence and the travel time of the crystal

across the beam, and Wij denotes the value sampled by pixel i

from the three-dimensional crystal intensity model W at

crystal orientation j. In this study, all crystal volumes refer to

the portion of crystals illuminated by the X-ray beam over the

exposure time of a data frame. The Poisson sample from eWWijk

gives the photon count Kik with the crystal orientation

unmeasured. Our main task in this study is to reconstruct W

and ’k given the data Kik and background estimates bik.

2.2.2. EMC algorithm. We reconstructed the models W and

’ using the EMC algorithm (Loh & Elser, 2009), which

iteratively updates the current models by maximizing the data

likelihood. Each iteration of the EMC algorithm consists of

three steps: expand (E), maximize (M) and compress (C). The

E step calculates the tomograms Wij from the current three-

dimensional intensity model W(p) by linear interpolation

Wij ¼
X

p

f p� Rj � qi

� �
WðpÞ; ð4Þ

where f(�) is the interpolation weight, p denotes the three-

dimensional grid points in reciprocal space, Rj is the rotation

matrix that brings the laboratory frame to the crystal refer-

ence frame when the crystal has orientation j, and qi is the

spatial frequency of pixel i in the laboratory frame. We adopt

the convention |q| = 2sin(�/2)/�, where � is the scattering angle

and � represents the X-ray wavelength.

The M step updates the models by maximizing an expected

log-likelihood function

QðW 0; ’0Þ ¼
X

ijk

PjkðW; ’kÞ

� Kik log bik þ pi’
0
kW 0ij

� �
� bik þ pi’

0
kW 0ij

� �� �
:

ð5Þ

Here, Pjk(W, ’k) denotes the conditional probability that data

frame k records the diffraction of a crystal at orientation j

given the current models:

PjkðW; ’kÞ ¼
wj

Q
i
eWWKik

ijk expð�eWWijkÞP
j0 wj0

Q
i
eWWKik

ij0k expð�eWWij0kÞ
; ð6Þ

where wj is the fraction of the continuous rotation group

assigned to rotation sample j. However, simultaneous updates

for W 0 and ’ 0 are nontrivial because they appear as products

in Q. As suggested by Loh et al. (2010), the models are instead

updated by maximizing Q with one or other of these para-

meters, W 0 or ’ 0, held fixed in each EMC iteration. This

alternating update rule converts the original problem into two

sets of minimizations

W 0ij ¼ arg min
W0

ij

X
k

PjkðW; ’kÞ

� bik þ pi’kW 0ij
� �

� Kik log bik þ pi’kW 0ij
� �� �

;

ð7Þ

’0k ¼ arg min
’0

k

X
ij

PjkðW; ’kÞ

� bik þ pi’
0
kWij

� �
� Kik log bik þ pi’

0
kWij

� �� �
:

ð8Þ

Since the functions to be minimized in equations (7) and (8)

are convex, the minima can be readily found by a line search,

i.e. a simple numerical algorithm to locate minima in one

dimension (Press et al., 2007). We imposed the non-negativity

constraint on ’0k when solving equation (8) to prohibit nega-

tive crystal volume. On the other hand, negative values of W 0ij
are allowed when solving equation (7), as a result of noise.

The C step enforces consistency between different tomo-

grams W 0ij by merging them to form a new three-dimensional

intensity model, W 0. If the updated model is ’ 0 in an iteration,

the C step is skipped and the current model, ’, is replaced by

’ 0 to start the next iteration. The tomograms W 0ij are mapped

to the updated three-dimensional intensity model, W 0(p), by

W 0ðpÞ ¼

P
ij f p� Rj � qi

� � P
k PjkðW; ’kÞ’k

� �
W 0ijP

ij f p� Rj � qi

� � P
k PjkðW; ’kÞ’k

� � : ð9Þ

The tomograms W 0ij are weighted by
P

k PjkðW; ’kÞ’k to reflect

the frequency of orientation j populated by the data frames

with a weight corresponding to the signal strength of the

frame. The construction of W 0 completes the C step and the

iterations continue until the models converge: W ’ W 0 and

’ ’ ’ 0.
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3. Results

3.1. Background estimate and hit finding

Using the method described in Section 2.1, we estimated the

pixel-wise background estimates bik and identified the outlier

pixels. Bragg-peak candidates were identified by two to ten

contiguous outlier pixels and clusters larger than this size were

masked out. Data frames with more than 20 candidate peaks

were discarded to show that the EMC algorithm is able to

reconstruct the three-dimensional crystal intensity from the

sparse data frames, where normal indexing methods, including

the one used by Martin-Garcia et al. (2017), would fail. Using

the remaining data frames, we calculated the inter-peak

distances in reciprocal space to generate the one-dimensional

pseudo-powder pattern (Fig. 2). The lattice parameters were

estimated as a = 79.1 and c = 38.4 Å assuming a primitive

tetragonal lattice.

We later rotated the candidate peaks within 4 Å resolution

in each frame over all rotation samples to find the possible

crystal orientations, where at least three peaks match the

Bragg positions predicted by the lattice parameters. Data

frames with no such orientations were discarded. Rotations

were sampled by the 600-cell subdivision method at order

n = 70 (Loh & Elser, 2009), which corresponds to an angular

resolution of 0.944/n ’ 13.5 mrad. This procedure reduced the

data to 120 574 crystal-hit frames, with the statistics shown in

Fig. 3. We note that, in general, a given crystal can be in any

orientation. Practically speaking, discretization of all possible

orientations results in hundreds to thousands of possibilities as

a consequence of two factors: (i) the large angular size of low-

resolution peaks, given that high-resolution peaks may not be

resolvable due to their weak signals, and (ii) the inclusion of

peak candidates arising from multiple crystals or any source of

scatter other than protein crystals. The EMC algorithm

addresses these two issues by making use of all the available

photon count values.

3.2. EMC reconstruction

3.2.1. Low-resolution reconstruction. We began with a low-

resolution reconstruction because the computation time of the

EMC algorithm is proportional to the number of pixels and

the number of rotation samples. Pixels with a resolution higher

than 4 Å were masked out in the 120 574 selected frames, and

the rotation samples for each frame were limited to the

possible crystal orientations recorded in the hit-finding
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Figure 2
The one-dimensional pseudo-powder pattern generated from the frequency of the inter-peak distances in reciprocal space. Red dashed lines indicate
peaks predicted by a primitive tetragonal lattice with lattice parameters a = 79.1 and c = 38.4 Å. The peak closest to the origin represents pairs of Bragg-
peak candidates that are very close to each other. These pairs are actually fragments of Bragg spots of a larger size.

Figure 3
(a) The number of possible peaks in each crystal-hit frame. Data frames with more than 20 peaks were excluded from this study. (b) The number of
possible orientations for each crystal-hit frame, determined by an exhaustive search of rotation space using the identified peaks within 4 Å.



process. All photon counts within the resolution cutoff were

input to the EMC algorithm to reconstruct both the strong and

weak intensities. We seeded the three-dimensional intensity

model W with three-dimensional Gaussians of random height

at each Bragg position, and only allowed the voxels within the

predefined radius rp about the Bragg positions to be non-zero

throughout the reconstruction. The scale factors ’k were

initialized by the average value of the identified peaks in each

frame. To achieve the highest resolution, we imposed tetra-

gonal and Friedel symmetries on the values of W after each

update to increase the SNR of the Bragg peaks. We note that

EMC reconstructions normally succeed even without

imposing symmetry (Wierman et al., 2016; Lan et al., 2017).

To rapidly obtain a rough estimate of W, we fixed the values

of ’k and only updated W in the first few iterations. Subse-

quently, we alternated the updates between W and ’ until the

models converged. Depending on the crystal concentration in

the sample-delivery medium, a data frame may record

diffraction signals from multiple crystals. Since our algorithm

assumes that each crystal-hit frame only contains a single

crystal, we had to reject multi-crystal frames to avoid

compromising the reconstruction. This task was completed

using the converged probability distribution Pjk . When a data

frame has non-negligible probabilities at two independent

orientations j1 and j2 , which cannot be related by the crystal

point-group symmetry, it is likely that the diffraction signals

were scattered from two different crystals. With probabilities

greater than 0.05 considered non-negligible, a data frame has

1.02 independent orientations on average. We identified 528

multi-crystal frames and excluded them, together with the

2142 frames with ’k = 0, from the later analysis. Using the

remaining 117 904 single-crystal frames, we updated W for a

few more iterations by fixing the values of ’k until the new

convergence was reached.

Fig. 4(a) shows the central slice of the reconstructed three-

dimensional intensity model, W, perpendicular to the l axis of

the crystal. Each spot represents the integrated value of a

Bragg peak in arbitrary units. After dividing the reconstructed

values of ’k by the beam fluence and the crystal exposure time,

we obtained crystal-volume estimates for the single-crystal

frames. In order to put these on an absolute scale, we further

rescaled their values so that the largest crystal has a size of

10 mm, the value reported by Martin-Garcia et al. (2017). The

resulting crystal-volume distribution has 73% of the frames

with a crystal volume below 100 mm3 (Fig. 4b). Since our

analysis excluded frames with more than 20 peaks, which

generally have larger crystal sizes, this distribution represents

the upper limit of the crystal volume illuminated by the X-ray

beam.

3.2.2. High-resolution reconstruction. Based on the low-

resolution models, we extended our reconstruction to high

resolution using data up to 2 Å. We initialized the three-

dimensional intensity model W by three-dimensional Gaus-

sians of random height at each Bragg position, and replaced

the voxel values within 4 Å resolution with the low-resolution

three-dimensional intensity model. To reduce the computation

time for the high-resolution reconstruction, we implemented

the local update scheme of the EMC algorithm. This scheme

limits the rotation samples searched for each data frame to

those neighboring the orientations that were given a non-

negligible probability in the low-resolution reconstruction

(Lan et al., 2017). Here the orientation sampling was set at

order n = 140, which corresponds to an angular resolution of

6.7 mrad. The update was limited to the three-dimensional

intensity model W, because we believe the values of ’k are

reliably determined by the low-resolution peaks. Tetragonal

and Friedel symmetries were imposed after each update of W

to increase the SNR of the Bragg peaks. Fig. 5 shows the

central slice of W perpendicular to the l axis of the crystal, on

the same scale as Fig. 4(a). The uncertainties of the integrated

intensities were estimated following the procedure described

in Appendix A.
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Figure 4
(a) The central slice of the low-resolution three-dimensional intensity model, W, perpendicular to the l axis of the crystal. Each spot represents an
integrated Bragg peak in arbitrary units, with the negative reflections thresholded to zero for rendering. (b) The reconstructed crystal-volume
distribution for the single-crystal frames. The values of the crystal volume were rescaled so that the largest crystal size is 10 mm.



We evaluated the reproducibility of the reconstruction

using CC1/2 , the correlation coefficient between two sets of

Bragg intensities reconstructed independently from two

halves of the data frames. The values of CC1/2 were calculated

as follows. The 117 904 single-crystal frames were separated

into two halves, from which we carried out two independent

reconstructions. The reciprocal space was then divided into

shells with equal spacing, and the correlation coefficients CC1/2

were computed between the unique reflections from the two

reconstructions in each shell. As shown in Fig. 6, the positive

values of CC1/2 throughout the spatial frequency magnitudes

validate the reproducibility of our approach. The values of

CC1/2 can be further used to estimate another correlation

coefficient, CC*, through the relation

CC� ¼
2CC1=2

1þ CC1=2

� �1=2

; ð10Þ

where CC* measures the correlation between the recon-

structed intensities and the underlying true signals (Karplus &

Diederichs, 2012). The resolution of the reconstruction is

conventionally determined at the value where CC* drops to

0.5, which corresponds to 2.1 Å in our case.

A more direct validation of our reconstruction comes from

the comparison of our reconstructed intensities with those

calculated from the indexed peaks using the Monte Carlo

integration approach by Martin-Garcia et al. (2017). Dividing

the reciprocal space into shells of equal spacing, we calculated

the correlation coefficient between the unique peaks from the

two sets of Bragg intensities in each shell. Also shown in Fig. 6,

the correlation coefficient stays well above zero until the

resolution cutoff of 2.1 Å, which demonstrates the consistency

between the Bragg intensities solved from the two different

approaches. When the indexed peaks sufficiently sample

crystals of various shapes, sizes and orientations, the Bragg

intensities computed by the Monte Carlo method would in

principle correspond to the true signals. In that case, the curve

of the correlation coefficient calculated here should move

towards the curve of CC* in Fig. 6.

3.3. Model building, refinement and structure solution

Model-building and refinement steps were carried out in a

manner similar to those performed by Martin-Garcia et al.

(2017), with the intent of validating the EMC approach by a

direct comparison with the structure solved from the

indexed frames, PDB entry 5uvj. The French–Wilson correc-

tion (French & Wilson, 1978) was executed to estimate the

structure-factor magnitudes from the reconstructed weak or

negative Bragg intensities. The phases of the structure factors

were built from the same template as used by Martin-Garcia et

al. (2017), PDB entry 4zix (Fromme et al., 2015), using

molecular replacement with MOLREP (Vagin & Teplyakov,

2010).

The structure solution was then iteratively refined and

inspected using REFMAC5 (Kovalevskiy et al., 2018) in the

CCP4 suite (Potterton et al., 2018) and Coot (Emsley &

Cowtan, 2004), respectively. The structure was refined to 2.1 Å

resolution, with Rwork/Rfree of 22.2%/28.2%, an average B

value of 39.8 Å2, and root-mean-square deviations (r.m.s.d.s)

for bonds and angles of 0.013 Å and 1.21�, respectively. Most

of the side-chain conformations were determined exactly,

though some solvent-exposed side chains show multiple

conformations. A sodium atom was added, as judged by the

electron density within the known octahedral coordination of

the four residues of the sodium ion (see also Fig. 9). The
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Figure 5
The central slice of the high-resolution three-dimensional intensity
model, W, perpendicular to the l axis of the crystal, on the same scale as
Fig. 4(a). Negative reflections were thresholded to zero for rendering.

Figure 6
The correlation coefficients that validate the quality of our reconstruc-
tion. The values of CC1/2 show the correlation between Bragg intensities
reconstructed independently from two halves of the data frames. Using
equation (10), the values of CC*, the correlation coefficient between
reconstructed intensities and the underlying true signals, are estimated
from the values of CC1/2. The other correlation coefficient,
CCemc vs. indexed , measures the consistency between our reconstructed
intensities and those obtained by Martin-Garcia et al. (2017) from the
indexed frames.



refinement statistics for the EMC-reconstructed structure

solution and the structure solved by Martin-Garcia et al.

(2017) are summarized in Table 1 for comparison.

3.4. Structural comparison with PDB entry 5uvj

In this section, we compare our structure solution with the

structure solved from the indexed frames by Martin-Garcia et

al. (2017; PDB entry 5uvj). The electron-density maps of the

structures were analyzed and rendered using PyMOL

(Schrödinger LLC, 2015). Fig. 7 shows ribbon representations

of the backbone chains of our molecular model (blue) and the

structure of 5uvj (red). The C� atoms between the two struc-

tures have an r.m.s.d. of 0.131 Å, which is visible as an occa-

sional change between the red and blue colors along the

backbone chain. Deviations greater than this value occur

mostly in the solvent-exposed regions, with a maximum

deviation of 0.337 Å. The r.m.s.d. value for the entire protein

molecule between the two structures is 0.138 Å, with a

maximum deviation of 0.338 Å. More specifically, Fig. 8

displays the disulfide bonds (yellow) within two superimposed

structures, the EMC-reconstructed one (light red) and that of

PDB entry 5uvj (light blue), showing insignificant deviations

between the structures within the more radiation-damage-

prone bonds. The average deviation for the atoms of the thiol

groups is 0.12 Å. Fig. 9 shows the 2Fo � Fc electron-density
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Table 1
The refinement statistics of our structure solution and the structure
solved by Martin-Garcia et al. (2017) (PDB entry 5uvj).

EMC 5uvj

Resolution (Å) 22.52–2.10 35.00–2.05
Reflections 7417 7164
Atoms 1019 1023
Protein atoms 1002 1002
Water, ligands and ions 17 21
Rwork/Rfree (%) 22.2/28.2 22.8/26.8
R.m.s.d.s for bonds (Å) 0.013 0.013
R.m.s.d.s for angles (�) 1.211 1.306
Average B value (Å2) 39.8 34.9
Ramachandran plot statistics (%)
Favored 96.3 97.6
Allowed 1.3 2.4
Disallowed 0 0
Rotamer outliers 0.93 1

Figure 7
Superposition of the ribbon representations of the backbone chains of
our structure solution (blue) and the structure of 5uvj (red) solved by
Martin-Garcia et al. (2017), showing insignificant differences in structure.
The C� atoms between the two structures have an r.m.s.d. of 0.131 Å.
Deviations greater than this occur mostly in the solvent-exposed regions,
with a maximum deviation of 0.337 Å, though the deviations are only
apparent by occasional changes in color from red to blue along the
backbone.

Figure 8
Superpositions of the four disulfide bonds (yellow) between our structure
solution (light red) and the structure of 5uvj (light blue) solved by Martin-
Garcia et al. (2017). (a) Cys6–Cys127, (b) Cys30–Cys115, (c) Cys64–Cys80
and (d) Cys76–Cys94. The average deviation for the atoms of the thiol
groups is 0.12 Å. Changes are mostly insignificant, and only apparent in
splits from light red to light blue.

Figure 9
The 2Fo � Fc electron-density map (blue) contoured around the sodium-
ion binding pocket, where Fo represents the observed structure-factor
magnitudes, and both Fc and the phases were calculated from the initial
model for phasing (PDB entry 4zix). Also shown is the alignment of our
structure solution (yellow) and the structure of 5uvj (red) solved by
Martin-Garcia et al. (2017). Small deviations are seen more clearly
between the structures near the solvent-exposed regions in the yellow and
red representations. Waters are seen as red crosses, the sodium ion as a
gray cross, and the residues coordinating the sodium atom (Ser60, Cys64,
Arg71 and Ser72) as red dashes. The oxygen atoms (in red) seen near the
top of the figure have the largest displacement of 0.13 Å among all the
atoms shown.



map in blue mesh, where Fo represents the observed structure-

factor magnitudes, and both Fc and the phases were calculated

from the initial model for phasing, PDB entry 4zix. Also

shown is the superposition of our structure solution (yellow)

and that of PDB entry 5uvj (red) around the sodium-ion

binding pocket. The largest discrepancy in atomic displace-

ments (with a deviation up to 0.33 Å) comes from the solvent-

exposed side chains.

4. Discussion

The major source of error that limits the quality of our

reconstruction is the high background scatter from the LCP

gel. Here the error refers to the statistical error arising from

background intensity fluctuations, which becomes substantial

and severe for weak reflections. From the estimated X-ray

beam size (different beam sizes of 5, 10 or 20 mm were used at

different times during the data collection), the diameter of the

LCP gel column (50 mm) and the reconstructed crystal

volumes (Fig. 4b), we can estimate the total number of

photons scattered by LCP to be tens to thousands of times

more than that scattered by the crystal in each data frame. In

Fig. 10, we compare the scattering profiles of LCP and water.

The scattering profile of LCP was estimated by the average of

the azimuthally symmetric background obtained in Section

2.1. Since the X-ray beam size and detector exposure time

were varied in different periods of beamtime, the background

signals in each frame were rescaled before the average to have

a nominal beam size of 10 mm and a detector exposure time of

0.1 s. Under the same experimental conditions, we simulated

the scattering profile from a water column of 50 mm diameter

using the experimentally measured pair-distribution function

(Narten & Levy, 1971; Skinner et al., 2013). In contrast with

water, LCP scatters a large number of photons within 3 Å

resolution.

The high background scattering from LCP has motivated

a search for sample-delivery media that scatter fewer

background photons. For example, Conrad et al. (2015) used

agarose to reduce background scattering, although the

agarose stream tends to be unstable under ambient pressure.

On the other hand, the sodium carboxymethyl cellulose

(NaCMC) and poly(ethylene oxide) (PEO) reported by

Kovácsová et al. (2017) and Martin-Garcia et al. (2017),

respectively, produce stable streams and lower background

scattering than LCP, and therefore may be good substitutes for

LCP. Another option for background reduction is to use the

fixed-target approach. As demonstrated recently by Roedig et

al. (2016) and Owen et al. (2017), rapid data collection can be

achieved by fast scanning through micro-patterned silicon

chips mounted with protein microcrystals. Nevertheless, the

challenge of the chip methods is to avoid preferential crystal

orientations. Other possible methods include microcrystal

droplets deposited on low-background tape carriers (Fuller et

al., 2017).

The structure solved by the EMC approach using sparse

frames compares very well with the structure solved by

Martin-Garcia et al. (2017) using indexed frames. Small

discrepancies in atomic positions between the two structures

reside mainly on the solvent-exposed side chains, and can be

attributed to multiple conformers. The higher average B value

of our structure suggests that the data frames we used may

have come from less ordered and possibly more weakly

diffracting crystals, which are exactly the features we expect

from sparse frames.

The ability to analyze sparse crystal diffraction data allows

the use of very small or weakly diffracting protein crystals at

storage-ring synchrotron sources. In order to keep these

crystals within the safe radiation dose, the resulting diffraction

patterns usually contain insufficient photons for the normal

indexing methods to succeed. From our previous proof-of-

concept studies, reconstruction is feasible for crystal sizes as

small as 1–2 mm within a tolerable radiation dose, given

sufficient reduction of background scattering (Wierman et al.,

2016; Lan et al., 2017). The successful application of the EMC

algorithm to data collected from such small crystals will be a

great advance in protein structure determination at storage-

ring sources, and at the same time will ease the high demands

for XFEL beamtime. An extension to include polychromatic

data, where only 1% of the frames are needed due to the 100-

fold increase in X-ray energy bandwidth, could dramatically

reduce the amount of sample needed as well as the compu-

tation time. Continued development of lower-background

microcrystal carrier methods would facilitate the application

of our method.

Extracting weak signals from diffuse background scattering

is not a task just limited to serial microcrystallography. When

crystals are disordered, continuous diffraction of the protein

molecules arises between the Bragg peaks (Ayyer et al., 2016;

Meisburger et al., 2017). Separating this continuous diffraction

from background scattering becomes nontrivial when the

signals are Poisson-limited. The analysis scheme recently

developed by Chapman et al. (2017) subtracts the azimuthally

symmetric background from the diffraction signal using the

‘noisy Wilson distribution’. It would be interesting to adapt the
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Figure 10
The scattering profiles of LCP and water, which were generated by the
weighted average of the background estimates obtained in Section 2.1
and simulation, respectively. The shaded region is within one standard
deviation of the average scattering profile of LCP. The large standard
deviation is mainly caused by jittering of the LCP stream.



EMC algorithm to this noisy Wilson distribution to analyze

unindexable diffraction patterns collected from disordered

crystals. Another application lies in single-particle imaging

(SPI), where each measurement is composed of the contin-

uous diffraction of a randomly oriented bioparticle super-

imposed on background noise. If the statistical model for the

intensity distribution in SPI is known, this information can be

incorporated into the EMC algorithm to reconstruct simulta-

neously the three-dimensional intensity of the bioparticle and

the initially unknown background.

5. Conclusion

In this study, we have developed an approach to analyze a

serial microcrystallography data set whose signals are too

noisy to be considered by the prior state of the art. In parti-

cular, weak crystal diffraction signals can be extracted from

diffuse background scattering to form a three-dimensional

intensity volume. This approach reduces sample consumption

by making use of all the available data frames. We have

demonstrated that a protein structure can be solved from the

data frames that are discarded by the current analysis work-

flow. The partial reflections are assembled by rescaling the

crystal diffraction signals in each data frame with the recon-

structed crystal volumes. The reconstruction of the crystal-

volume distribution may also be useful for the development of

sample-injection technology.

The source code for the EMC analysis approach is available

at https://github.com/tl578/EMC-for-SMX under the terms of

version 3 of the GNU General Public License (GPLv3). A

tutorial on the implementation details of the code can be

found at https://github.com/tl578/EMC-for-SMX/wiki.

APPENDIX A
Uncertainty estimation

We estimate the uncertainties of the integrated intensities

from the measurement Kik by error propagation. Let vector y

be a set of functions of vector x. Their covariance matrices, �y

and �x , can be related by the formula of error propagation,

�y ¼ J�x J T; ð11Þ

where J denotes the Jacobian matrix of y. When x and y are

related by an implicit function, f(x, y) = 0, the Jacobian matrix

is given by

J ¼ �
@f

@y

� ��1
@f

@x

� �
: ð12Þ

From equation (7), the implicit function that relates W 0ij and

Kik is

X
k

Pjk pi’k �
Kik

bik=ðpi’kÞ þW 0ij

" #
¼ 0; ð13Þ

the derivative of the function to be minimized with respect to

W 0ij. Since W 0ij is a scalar in equation (13), the Jacobian matrix

of W 0ij becomes a row vector with length Ndata , the number of

data frames, and its kth element is given by

J
ij
k ¼

Pjk

bik=ðpi’kÞ þW 0ij

�X
k0

Pjk0Kik0

½bik0=ðpi’k0 Þ þW 0ij	
2
: ð14Þ

The covariance matrix of the measurement, �fKikg
, is a diag-

onal matrix of size Ndata�Ndata , with the diagonal terms being

the photon counts Kik as a result of Poisson statistics. Substi-

tuting these matrices into equation (11), we obtain

the variance of W 0ij , denoted �2
W0

ij
.

The values of interest are the uncertainties of the integrated

intensities, Ihkl =
P

p2fphklg
W 0ðpÞ, where {phkl} represents the

three-dimensional grid points within the predefined radius rp

for the Bragg peak labeled by indices hkl. From equation (9),

the variance of W 0ðpÞ is given by

�2
W 0ðpÞ ¼

P
ij f p� Rj � qi

� � P
k Pjk’k

� �� �2
�2

W 0
ijP

ij f p� Rj � qi

� � P
k Pjk’k

� �� �2 : ð15Þ

Here, we assume that the tomogram values W 0ij contributing to

the same Bragg peak are independent variables. This

assumption is based on the observation that each data frame

only has non-negligible probabilities at a few orientations on

convergence, so the values of W 0ij with different indices are

mostly sampled by different data frames. For the same reason,

we also assume that the values W(p) for p, even sampling the

same Bragg peak, are independent variables. The variance of

Ihkl is hence given by

�2
hkl ¼

X
p2fphklg

�2
W 0ðpÞ: ð16Þ

APPENDIX B
Computational details

The reconstruction was performed on an Amazon Elastic

Compute Cloud (EC2) instance r4.16xlarge, which has 64

virtual CPUs and 488 GB memory. The low-resolution

reconstruction used 120 574 data frames with a resolution

cutoff of 4 Å, which give a data size of 570 GB. The high-

resolution reconstruction used 117 904 selected single-crystal

frames with a resolution of up to 2 Å, which give a data size of

2.3 TB. The low-resolution reconstruction, high-resolution

reconstruction and calculation of CC* took 41, 25 and 68 h,

respectively.
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