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Under almost all circumstances, electron diffraction patterns contain informa-

tion about the phases of structure factors, a consequence of the short wavelength

of an electron and its strong Coulombic interaction with matter. However,

extracting this information remains a challenge and no generic method exists. In

this work, a set of simple analytical expressions is derived for the intensity

distribution in convergent-beam electron diffraction (CBED) patterns recorded

under three-beam conditions. It is shown that these expressions can be used to

identify features in three-beam CBED patterns from which three-phase

invariants can be extracted directly, without any iterative refinement processes.

The octant, in which the three-phase invariant lies, can be determined simply by

inspection of the indexed CBED patterns (i.e. the uncertainty of the phase

measurement is �22.5�). This approach is demonstrated with the experimental

measurement of three-phase invariants in two simple test cases: centrosym-

metric Si and non-centrosymmetric GaAs. This method may complement

existing structure determination methods by providing direct measurements of

three-phase invariants to replace ‘guessed’ invariants in ab initio phasing

methods and hence provide more stringent constraints to the structure solution.

1. Introduction

1.1. Tackling the phase problem with electron diffraction

Solving a crystal structure requires knowledge of both the

magnitude and phase of the structure factors. The phases are

stronger constraints to a structure solution than the magni-

tudes (Ramachandran & Srinivasan, 1970); however, only

magnitudes can be measured directly from the intensities of

diffracted X-rays or neutrons (except under special experi-

mental conditions, for example, Weckert & Hümmer, 1997).

Specifically, under kinematic scattering conditions, the inten-

sities are proportional to the modulus squared of the structure

factors, so the phase cannot be measured experimentally

[unless ptychography is used (Hoppe, 1969)]. This is known as

the ‘phase problem’ in crystallography. The loss of phase

information can often be circumvented by the application of

the Patterson function (Patterson, 1934) or direct methods

(Woolfson, 1971; Hauptman, 1991), provided that a sufficient

number of structure-factor magnitudes are measured.

In the case of electron diffraction, the strength of the

Coulombic interaction between the incident electrons and the

crystal potential, means that the scattering cross section of

electrons is four to five orders of magnitude larger than that of

X-rays or neutrons, making dynamical scattering inevitable.

Furthermore, the wavelength of the electron is small (the

order of a picometre), so that the radius of the Ewald sphere is

large, resulting in a high probability that the Bragg condition
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will be satisfied simultaneously for more than one reciprocal

lattice vector. As a consequence, the intensities of diffracted

electron waves depend on the phases as well as the magnitudes

of the structure factors; however, the relationship is extremely

complicated.

One approach to structure determination using electron

diffraction is to develop techniques for mitigating the effects

of dynamical scattering, so that ab initio phasing techniques

available for kinematic diffraction data, such as direct

methods (Woolfson, 1971; Hauptman, 1991) and charge flip-

ping algorithms (Oszlányi & Süto��, 2004), can be applied with

some degree of validity, although the structure solutions are

usually less robust than those given by X-ray diffraction. An

example of such a technique is precession electron diffraction

(PED) (Vincent & Midgley, 1994; Gjønnes, 1997; Midgley &

Eggeman, 2015). As for X-ray diffraction, the success of these

methods improves with the number of structure-factor

magnitudes that are measured and special experimental

configurations, such as automated diffraction tomography

(ADT)-PED (Mugnaioli et al., 2009), have been devised to

facilitate this. Another approach to structure determination

using electrons is to embrace dynamical scattering and utilize

the additional structural information it generates. If the

dynamically diffracted intensities could be inverted, the phase

information could be obtained through direct measurement,

which can strongly confine structure solutions (Mo et al., 1996;

Weeks et al., 2000). However, owing to the complexity of n-

beam dynamic diffraction, no general analytical inversion (i.e.

a mathematical description of structure-factor phases in terms

of scattered intensities) under arbitrary conditions has been

derived. As a commentary article has pointed out, ‘a general

method of solving an unknown crystal structure with dynamic

electron diffraction is yet to be developed’ (Zuo & Rouviere,

2015).

For decades, there have been ongoing efforts to develop

methods that would enable the extraction of all of the

structural information that is present in dynamic electron

diffraction intensities. In one line of approach, structure

solutions from many-beam dynamic diffraction have been

pursued through numerical methods, where structure factors

(both the magnitudes and the phases) can be found through

optimization procedures that impose few restrictions on the

initial values of structure factors (Allen et al., 1998; Spence,

1998; Koch, 2008). However, the experimental implementa-

tion of these methods is challenging. So far, the retrieval of

structure factors from experimental data using this class of

methods has been limited to extremely thin specimens using

the large-angle rocking-beam electron diffraction (LARBED)

technique (Wang et al., 2016).

In another line of approach, analytical inversion of three-

beam dynamic electron diffraction equations has been

investigated, which has resulted in the determination of three-

phase invariants in centrosymmetric crystals (Moodie, 1979;

Moodie et al., 1996; Nakashima et al., 2007, 2008, 2013). For

non-centrosymmetric crystals, there have been some early

attempts at analytical inversion, but these are limited to some

special cases within three-beam electron diffraction, such as (i)

the weak scattering case (Bird et al., 1987; Bird & James, 1988),

(ii) the strong coupling case (Kambe, 1957a,b; Zuo et al., 1989)

and (iii) the case where Bethe’s approximation is valid (Bethe,

1928; Zuo et al., 1989). Analytical inversions, unlimited by

special conditions, have so far proved impractical to imple-

ment experimentally, as they require the identification of

features in the intensity distribution which cannot be easily

isolated experimentally (Moodie et al., 1998).

In the present work, we consider an analytical description of

three-beam dynamic electron diffraction, without recourse to

special conditions, which reveals a general method for the

qualitative determination of three-phase invariants in both

centrosymmetric and non-centrosymmetric crystals through

simple inspection of convergent-beam electron diffraction

(CBED) patterns.

1.2. A brief overview of three-beam electron diffraction

In this work, we will derive a method for using dynamic

electron diffraction at and near ‘three-beam conditions’ in

CBED patterns to determine three-phase invariants in both

centrosymmetric and non-centrosymmetric crystals. A three-

phase invariant �, is the sum of the phases ’, of three structure

factors whose reciprocal lattice vectors form a closed loop, i.e.

� ¼ ’g þ ’�h þ ’h�g. It is therefore appropriate to first review

three-beam electron diffraction here.

Under three-beam diffraction conditions, the crystal is

oriented with respect to the incident beam so that two, and

only two, reflections simultaneously satisfy their Bragg

conditions and no other reflections are excited. At and near a

three-beam condition, the eigenequation for dynamic N-beam

electron diffraction, which consists of an N� N matrix, can be

approximated by an eigenequation involving a 3� 3 matrix as

follows
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� . . .
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and can be approximately replaced by

 0 �Vg
� �Vh

�

�Vg 2��g �Vh�g
�

�Vh �Vh�g 2��h

! 
C0

Cg

Ch

!
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C0

Cg

Ch
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; ð2Þ

where Vg is the structure factor of the reciprocal lattice vector

g, � is the interaction constant, which depends on the accel-

erating voltage, �g is the excitation error for reflection g, �i is

the eigenvalue for the ith Bloch state (for three-beam

diffraction, i runs from one to three), and Cg is the excitation

amplitude of a certain Bloch state for reflection g. In equations

(1) and (2), only elastically scattered electrons are considered,

so the matrices are Hermitian.
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Equation (2) describes the dynamic diffraction of electrons

in a three-beam geometry. This is a valid approximation when

two, and only two, reflections satisfy their Bragg conditions

simultaneously while other beams are weakly excited. This

three-beam condition can often be achieved approximately in

an experiment. In the central disc of CBED or large-angle

CBED (LACBED) patterns, three-beam conditions can be

found at the intersections of two Bragg-condition lines [for an

introduction to CBED geometry see, for example, Spence &

Zuo (1992)]. Three-beam diffraction tends to be more

prevalent in smaller structures rather than large ones, as in the

latter case, many beams can be strongly excited simulta-

neously.

Now we consider situations where equation (2) holds

approximately. This will result in an intensity which can be

expressed in terms of only three structure-factor magnitudes

(jVgj; jVhj; jVh�gj), the thickness of the specimen (z), the

incident angle (in the form of two excitation errors, �g and �h)

and a three-phase invariant (�). Under these circumstances,

the equations describing dynamic diffraction are greatly

simplified and thus, the inverse problem (describing the

structure factors in terms of intensities) is made much easier.

So far, a complete inversion of the intensities which allows

for experimental determination of jVgj; jVhj; jVh�gj and � at

any thickness is achievable only for centrosymmetric crystals

(Moodie, 1979; Moodie et al., 1996; Nakashima et al., 2007,

2008, 2013), where � is either 0 or �. For non-centrosymmetric

crystals where � 2 ½��; ��, the expression for the intensities in

three-beam electron diffraction is lengthy and complicated

(Hurley et al., 1978, 1999; Moodie et al., 1998). To date, efforts

to invert these equations have involved making further

approximations to simplify the intensity expression so that

three-phase invariants can be determined in certain special

cases. For example, in the cases of weak scattering where the

specimen is very thin or only weak beams are included, three-

beam diffraction can be treated as a perturbation of kinematic

diffraction, where a Born series including only the first- and

second-order terms is used (Bird & James, 1988). However,

this approximation can fail, even for specimens as thin as

	300 Å, particularly for three-beam cases consisting of strong

reflections (Guo, 2017). In practice, it is not easy to judge

whether this approximation holds for a CBED pattern from an

unknown crystal structure recorded at an unknown thickness,

and the determination of the sign of three-phase invariants

can still be ambiguous (Marthinsen, 1993). Bethe’s (1928) and

Kambe’s (1957a) formulations treated three-beam electron

diffraction equations as perturbations of two-beam dynamic

diffraction. However, these approximate formulations cannot

distinguish the sign of � (Zuo et al., 1989), even though the

three-beam diffraction intensities indeed contain the sign.

Therefore, none of the existing theories are applicable to

general cases of three-beam electron diffraction in non-

centrosymmetric crystals.

1.3. An outline of the current work

The current work starts from the equation describing the

intensity arising from diffraction by an arbitrary crystal

potential and makes two approximations: (i) that the three-

beam approximation is valid and (ii) the scattered electrons do

not lose or gain energy (inelastic scattering is ignored). From

two sets of reduced forms of intensity expressions, we can

derive rules for determining if sin� and cos � are >0, ’0 or <0

(there are eight combinations), from different regions of the

CBED patterns. Therefore, the octant in which the three-

phase invariant lies can be determined, i.e. the uncertainty of

the phase measurement is �22.5�. We show that phase-

invariants can be determined just from observations of

indexed CBED patterns, without additional structural infor-

mation or quantitative measurement of the thickness of the

TEM specimen.

2. Theory

Commencing from the formulation derived from projection

operators (Hurley et al., 1978), we are able to derive the

intensity expression for three-beam electron diffraction (see

S1 of the supporting information). Then, we reduce the

intensity expression to,

Ig

�
�g; �h; z

�
� Ig

�
�g; �h; z

�
¼ 16 sin� �3

jVgjjVhjjVh�gj

�
Y3

i¼ 1

sin
�
�iz=2

�
�i

� �
; ð3Þ

and

Ig

�
�g ’ 0;�j�hj; z

�
Ig

�
�g ’ 0; j�hj; z

� ’ sin2
�
�3z=2

�
sin2

�
�1z=2

� ; ð4Þ

where �i is the difference between two eigenvalues, such that

�1 ¼ �2 � �3; �2 ¼ �3 � �1, �3 ¼ �1 � �2. The sign conven-

tion of the three-phase invariant, � 
 ’g þ ’h�g þ ’�h, is

defined in this paper such that the reciprocal lattice vectors g,

h�g and �h form a closed loop in the counter-clockwise

direction. The symbols �g and �h, represent the excitation

errors for reflections g and h, respectively, which together

specify the angle of incidence of the electron beam with

respect to the crystal. Since every point within a CBED disc

corresponds to a certain angle of incidence, a coordinate

system in which the two axes are �g and �h can be constructed

in each disc (see Fig. 1), and the coordinate of a point can be

written as (�g; �h). It is important to emphasize that

(�g ¼ 0; �h ¼ 0) denotes the exact three-beam condition and

g and g form a Friedel pair. The symbol, Ig �g ’ 0;�j�hj; z
� �

,

denotes the intensity of reflection g near its Bragg condition

on the negative side of �h. The difference between two

eigenvalues �i, is a function of the three structure-factor

magnitudes, two excitation errors and cos�. As a convention

in this paper, the three branches of the dispersion surface

(which is a three-dimensional plot of the eigenvalue �i versus

the angle of incidence; a cut view of the dispersion surfaces or

dispersion curves is given in Fig. S1) are labelled as �1, �2 and

�3, such that �1 > �2 > �3, and thus �1 > 0, �3 > 0 and

�2 = �(�1 + �3) < 0.

Equations (3) and (4) expose the nature of the dependence

of the three-beam scattered intensity distribution on the
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three-phase invariant and enable the identification of simple

methods to measure this, as described step by step in the

following sections.

2.1. Qualitative measurement of sin ���� from equation (3)

We first consider how to measure sin� from equation (3),

which is identical to equation (23) in the work by Hurley et al.

(1999) except for the right-hand side which is factorized. The

left-hand side represents the intensity difference between a

Friedel pair of reflections, g and g (which can also be h and h),

at the same thickness. Two Friedel pairs, one with g and g and

the other with h and h, form two separate three-beam

conditions, 0=g=h and 0=g=h. If the zone axis is set perpendi-

cular to the plane formed by the reciprocal vectors g and h

(which is also formed by �g and �h), the centres of the Laue

circles for the three-beam conditions 0=g=h and 0=g=h are on

the opposite side of each other (see Fig. 1). The two three-

beam conditions are typically tens of mrad (or equivalently

	0.5 Å�1 at 200 kV) apart. To achieve this experimentally,

two CBED patterns from different incident angles or a single

large-angle CBED pattern are/is needed. The right-hand side

of equation (3) is the product of three structure-factor

magnitudes, sin�, and the product of three thickness-

dependent terms. The benefit of factorizing the right-hand side

is to determine the maximum thickness, below which, the sign

of the intensity difference depends only on the sign of sin�, i.e.

when

z<
2�

j�2j
; ð5aÞ

we have

Y3

i¼ 1

sin �iz=2ð Þ

�i

> 0: ð5bÞ

In the vicinity of the three-beam conditions, (�g ¼ 0; �h ¼ 0),

inequality (5a) can be satisfied for a broad range of specimen

thicknesses, which makes the measurement feasible. In this

case,

z < �3-beam ¼
2�

j�2ð�g ¼ 0; �h ¼ 0Þj
; ð6Þ

where we define �3-beam as the ‘three-beam extinction

distance’, that is the thickness z = �3-beam when the intensity

difference at the three-beam condition vanishes. The range of

thicknesses that satisfy the inequality (6) is very large in many

cases (to gain an impression of typical values of the three-

beam extinction distances, see Appendix A). Nevertheless, we

have derived a rule (which will be stated in the following
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Figure 1
The schematic of a pair of three-beam CBED patterns that involve two Friedel pairs, g and g, and h and h, which are used to determine the octant of the
three-phase invariant (the uncertainty of the phase measurement is �22.5�). The pair of three-beam CBED patterns share the same zone axis that is
perpendicular to the plane (and we define it as the ZOLZ plane) formed by the reciprocal lattice vectors g, h,�g and�h, but have different Laue circles,
where the projections of the incident wavevector onto the ZOLZ plane, Kt (pointing from the centre of Laue circle to a point of interest in the central
disc), are in opposite directions. In the magnified view of disc g, two loci, �g ¼ �h and �g ¼ 0 are labelled, and the intersection is the exact three-beam
condition (�g ¼ 0; �h ¼ 0). Different parts in the three-beam CBED patterns which are marked with circles and rectangles are compared in order to
determine the signs of sin� and cos�. These, together with whether sin � (or cos�) is zero, can be used to constrain the three-phase invariants to within
an octant (i.e. � 22.5�).

Table 1
Table for determining the three-phase invariants.

sin� cos�
Estimated � (�)
(with an error of �22.5�)

’0 >0 0
>0 >0 45
>0 ’0 90
>0 <0 135
’0 <0 180
<0 <0 �135
<0 ’0 �90
<0 >0 �45



section) for checking if the inequality (6) is satisfied for an

unknown thickness.

Instead of comparing a Friedel pair from two CBED

patterns, we can compare the two diffracted beams within a

single three-beam CBED pattern if they have the same

structure-factor magnitudes, for example, if they form a

Bijvoet pair such as hkl and hkl. In this case, only a single

three-beam CBED pattern is needed to determine the sign of

sin�. If sin� = 0, Friedel’s law will be preserved for all

thicknesses according to equation (3).

2.2. Qualitative measurement of cos���� from equation (4)

Equation (4) is formulated to enable the practical identifi-

cation of the sign of cos�. Equation (4) holds only approxi-

mately for the regions that are close to the two-beam

condition, however, away from the three-beam condition (as

discussed in section S1.3 of the supporting information), the

approximation is valid for the purpose of determining the sign

of cos �.

By solving equation (2) for �i (which gives a cubic equa-

tion), it can be proven analytically that the sign of cos � has a

direct dependence on the relative magnitudes of �3(�|�h|) and

�1(|�h|), which are on opposite sides of the three-beam

condition in each CBED disc, such that

cos�> 0, �3 �j�hjð Þ >�1ðj�hjÞ ; ð7aÞ

and

cos �< 0, �3 �j�hjð Þ<�1ðj�hjÞ: ð7bÞ

Therefore, for a specimen that is not very thick, i.e.

z<Min ½�=�1ðj�hjÞ�; ½�=�3ðj � �hjÞ�
� �

, one can decide the sign

of cos� by direct comparison of the intensities between the

negative and the positive sides of �h within reflection g or 0

(Figs. 1 or 5). For a thicker specimen, we are also able to

determine the sign of cos� by comparing the same two regions

as mentioned above: the factorized form of

Ig �g ’ 0; j�hj; z
� �

has a thickness-dependent factor of

{[sin2(�i z/2)]/�i
2}, which is similar in form to the two-

beam intensity expression. Therefore, in the regions

where equation (4) is valid, oscillating ‘thickness

fringes’ can be observed and the spacings of the

thickness fringes are different on different sides of the

three-beam condition. The difference in the spacing

depends on the relative magnitudes of �3(�|�h|) and

�1(|�h|), and thus depends on the sign of cos �.

When cos� = 0, a centre of inversion is present in

the three-beam condition at all thicknesses.

2.3. Determination of ����

Once we have determined if sin� and cos � are

positive, negative or approximately zero, we are then

able to determine the octant in which the three-phase

invariant � lies (i.e. the uncertainty is �22.5�)

according to Table 1.

3. Practical procedures for determining three-
phase invariants (����)

In the previous section, we explained the theoretical

basis for the phase determination with equations and

schematics. These theories lead to simple criteria for

determining the signs of sin� and cos � (and also

whether they are zero) by qualitative observations of

the CBED patterns. In particular, these signs can be

determined without the need for quantitative

measurement of diffracted intensities or numerical

simulation. In this section, we state these criteria

explicitly and illustrate with examples using simulated

CBED patterns in three-beam orientations. These

criteria are collated into a flowchart which provides

step-by-step instructions for using three-beam CBED

to determine three-phase invariants by inspection (the

flowchart is shown in Fig. 7 after summarizing

all of the criteria). In order to emulate realistic
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Figure 2
Illustration of Criterion 2 with simulated CBED patterns from alpha-quartz (space
group P3121) near [�11�33�77] at 200 kV. Condition I is satsified in (a) but not in (b). The
yellow lines label the width of the first bright fringe relative to the second one.
Condition II is satisfied in (c) but not in (d). The intensity profiles along the dashed
red arrows in (c) and (d) are shown in (e) and ( f ), respectively. In the calculation of
(c) and (d), the same set of parameters as those in the calculation of (a) and (b)
were used except that the coupling structure factor, Vh�g, was artifically increased
to produce a strong coupling case of three-beam diffraction as opposed to the
weak/moderate coupling case in (a) and (b).



experimental data, the simulations of CBED patterns were

performed using JEMS (Stadelmann, 2004) using the Bloch

wave formalism, incorporating more than 100 beams and

including absorptive potentials to model the effect of inelastic

scattering (i.e. the approximations used in deriving the

analytical expressions were not employed in the simulations).

For practical purposes, users of the present three-beam

method can refer to the current section alone without

concerning themselves with the mathematics in the previous

section.

From equation (3), we can directly establish the following

criterion.

Criterion 1. To decide whether |Vh�g| sin� = 0. At any

thickness, if Igð�g; �h; zÞ ¼ Igð�g; �h; zÞ, i.e. Friedel’s law is

preserved, then jVh�gj sin� ¼ 0.

To determine the sign of sin� by inspection only, it needs to

be ensured that the thickness cannot exceed a certain value,

the so-called three-beam extinction distance �3-beam.

Criterion 2. To decide if z < �3-beam. When both of the

following conditions are satisfied, then z < �3-beam.

Condition I. In disc g, the excess Bragg line away from the

three-beam condition has a central bright fringe that is more

than 1.6� wider than the neighbouring bright fringes (Fig. 2a).

Condition II. In disc 0, the intensity profile along the locus

�g ¼ �h has no maximum but a local minimum at or near the

exact three-beam condition, i.e. ðd2I0Þ=ðd�
2
hÞ > 0 (Figs. 2c and

2e).

The detailed derivations of Criterion 2 can be found in

section S2 of the supporting information.

By comparing a Friedel pair of reflections, g and g, from the

couple of three-beam conditions that consist of two Friedel

pairs, 0=g=h and 0=g=h, the sign of sin� can be determined as

follows.

Criterion 3. To determine the sign of sin�. If z < �3-beam, and

Igð�g ¼ 0; �h ¼ 0; zÞ> Igð�g ¼ 0; �h ¼ 0; zÞ, then sin�> 0

(Figs. 3a, 3b and 4a); if z < �3-beam, and Igð�g ¼ 0; �h ¼ 0; zÞ

< Igð�g ¼ 0; �h ¼ 0; zÞ, then sin� < 0 (Figs. 3c, 3d and 4b).

If a Bijvoet pair exists, we can also apply Criterion 3 to

determine the sign of sin�, with the exception of replacing

Ig �g ¼ 0; �h ¼ 0; z
� �

with Ih �g ¼ 0; �h ¼ 0; z
� �

, see examples

in Fig. 4.

Now we come to the criteria for the determination of cos �.

Criterion 4. To determine if |Vh�g| cos � = 0. At any thick-

ness, if Ig ��g;��h

� �
¼ Ig �g; �h

� �
, i.e. a centre of inversion is

present in the three-beam condition, then jVh�gj cos� ¼ 0

(Fig. 4). Otherwise, jVh�gj cos � 6¼ 0.

By comparing the two regions, ð�g ’ 0;�j�hjÞ and

(�g ’ 0; j�hj), labelled as rectangles with dashed (green) and
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Figure 3
An illustration of Criterion 3 using simulated CBED patterns of alpha-
quartz near [�11�33�77]. Two different types of alpha-quartz which belong to
different space groups are used: the structure in (a) and (b) is in the space
group P3221, the structure in (c) and (d) is in the space group P3121. The
two structures are enantiomorphs of each other. The yellow circles
enclose the three-beam conditions and their neighourhoods. For the
structure in (a) and (b), � ¼ ’2;3;1 � ’1;2;1 þ ’3;1;0 = 103�. For the
structure in (c) and (d), � ¼ ’2;3;1 � ’1;2;1 þ ’3;1;0 = �103�.

Figure 4
Illustrations of Criteria 3 and 4 in CBED patterns with Bijvoet pairs
satisfying the three-beam conditions. The CBED patterns were simulated
for GaAs in the zone axes (a) [109] and (b) [109]. The three-beam
conditions of interest are circled. An enlarged view of reflections g and h
(yellow boxed region) is also shown. Note that �1 ¼ ’9;1;1
þ ’0;2;0 � ’9;1;1 ¼ 90� and �2 ¼ ’9;1;1 þ ’0;2;0 � ’9;1;1 = �90�.



solid lines (red) in both Figs. 5 and 6, one can determine the

sign of cos� for both thin and thick specimens by checking

Figs. 5 and 6, respectively.

Criterion 5. To determine the sign of cos� for thin speci-

mens. Ig(� |�h|) > Ig(|�h|) or I0(� |�h|) < I0(|�h|) ) cos � > 0

(Fig. 5a)

Ig(� |�h|) < Ig(|�h|) or I0(� |�h|) > I0(|�h|)) cos � < 0 (Fig. 5b)

Criterion 6. To determine the sign of cos � for thick speci-

mens. The thickness fringes, which are located near the Bragg

condition lines for g but away from the three-beam condition

in disc g, are inspected.

If the fringe spacing on the negative side is less than that on

the positive side, then �3ð�j�hjÞ > �1ðj�hjÞ ) cos� > 0 (Fig.

6a), otherwise �3ð�j�hjÞ < �1ðj�hjÞ ) cos� < 0 (Fig. 6b).

Criterion 6 can be applied to thick specimens, typically up to

2000 Å thick for most inorganic crystals (2000 Å is generally

much thicker than most TEM specimens of inorganic crystals).

The six criteria are assembled into a flowchart in Fig. 7 which

summarizes the procedure for determining three-phase

invariants.

4. Experimental demonstration

In this section, we demonstrate the procedures in Section 3,

with experimental data as a proof of concept. Electron

diffraction experiments are carried out on a centrosymmetric

crystal (Si) and a non-centrosymmetric crystal (GaAs) to

demonstrate the feasibility of direct measurement of three-

phase invariants.

The experiments were conducted on a JEOL 2100F trans-

mission electron microscope (TEM) and the patterns were

recorded on a Gatan Ultrascan 1000 CCD camera. Commer-

cial software, QED (HREM Research Inc., 2012) as a plug-in

for DigitalMicrograph (Gatan Inc., Pleasanton, CA), was used

to generate large-angle rocking-convergent-beam electron

diffraction (LARCBED) patterns to measure the three-phase

invariants, as the large angular range increases the opportu-

nities for capturing several different three-beam conditions in

a single pattern. LARCBED is similar to large-angle rocking-

beam electron diffraction (LARBED) (Koch, 2011) except

that convergent illumination is used instead of parallel illu-

mination. In LARCBED, the incident beam is tilted about a

spot on the specimen and CBED patterns are recorded

sequentially over a grid of different beam tilts. Through

cutting and stitching CBED discs for each reflection from the

patterns recorded at all of the beam tilts, a large-angle CBED

pattern can be reconstructed. An analogous approach for

achieving large-angle CBED patterns from nano-sized areas

has also been demonstrated by Beanland et al. (2013). Unlike

LACBED (Tanaka et al., 1980), where the probe is not focused

in the specimen plane, a reconstructed LARCBED pattern

can be obtained from a smaller specimen volume because all

the CBED patterns that contribute to the LARCBED pattern

are obtained from a probe focused on the same

position on the specimen. The tilt-induced beam shift

is compensated for by the application of QED soft-

ware to keep the probe on the same specimen area.

Nevertheless, there is still a residual beam shift, the

size of which depends on the electron-optics of a

given microscope and was approximately 10 nm in the

present case. The large angular range provided by

these LARCBED patterns significantly improves the

likelihood of satisfying the three-beam conditions.

Usually, a LARCBED pattern can cover several

three-beam diffraction conditions, among which, a

pair of three-beam conditions that involve two

Friedel pairs (0=g=h and 0=�gg= �hh) can be found. This

allows for the comparison of a Friedel pair satisfying

three-beam conditions that are tens of mrad

(equivalent to 	0.5 Å�1 at 200 kV) apart at the same

thickness, which makes it experimentally feasible to

apply Criteria 1 and 3.

4.1. The experimental procedures

First, standard alignments for CBED were

performed using a convergence angle that avoided

overlap between adjacent discs. Then, the deflection

system was calibrated and the aberration-induced

beam shifts were compensated for in CBED mode by

using QED software to minimize beam shift on the

specimen as the beam was tilted. Third, the data
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Figure 5
Illustrations of Criterion 5 for determining the sign of cos� for thin specimens. The
examples are simulated CBED patterns from (a) real and (b) artificial structures of
ZnS in a [137] zone axis orientation. An approximate three-beam condition is
located in the centre of each disc. Following the convention in Fig. 1, the regions
with negative and positive �h are labelled with equally sized rectangles with dashed
(green) and solid (red) lines, respectively. In order to facilitate an inspection, the
rectangles are located away from the exact three-beam condition by the same
distance. In the simulations, the following values for the three-phase invariant and
the thickness were used: (a) � = 2.5�, z = 700 Å; (b) � = �140�, z = 700 Å. In the
calculation of (a), the three-phase invariant was adopted from the structure itself
whereas in the calculations of (b), the three-phase invariant was artificially adjusted
in order to produce a situation such that cos� < 0. In this adjustment, the phase of
V�4;6;�2 is changed to �140� and the phase of its complex conjugate, which is
equivalent to V4;�6;2, is changed to +140� simultaneously.



collection was initiated by QED. When the data

collection was finished, a LARCBED pattern could

be reconstructed from the set of CBED patterns.

The LARCBED patterns in Figs. 8(a) and 8(b)

were reconstructed from 121 CBED patterns

recorded from Si near the [118] zone axis and GaAs

near the [510] zone axis, respectively.

4.2. Application of the reconstructed LARCBED
patterns

The reconstructed central beam is useful for

searching for three-beam conditions, which can be

found at the intersection of lines defining two Bragg

conditions (usually two dark lines at low thicknesses)

where no other Bragg condition lines for strong

reflections lie in the neighbourhood. Then, the

corresponding three-beam conditions in the

diffracted beams can be located as they lie in the same

position as in the central beam. For example, in Fig.

8(a), a pair of three-beam conditions (including the

neighbourhoods), 000=�55�331=�33�551 and 000=53�11=35�11, are

labelled in the reconstructed LARCBED pattern

with green and red circles, respectively. All the three

green circles enclose the same three-beam condition

for 000=�55�331=�33�551 and its neighbourhood. In the same

place in the other diffracted beams such as reflection
�4440, the diffraction pattern is comparatively dark and

featureless, simply because the three-beam interac-

tion amongst 000, �55�331 and �33�551 dominates in this

orientation.

4.3. Practical examples of determining the three-
phase invariants

Once we have circled the regions of three-beam

conditions, we can proceed to determine the three-

phase invariants following the flowchart in Fig. 7.

4.3.1. Example 1, Si. First, consider the experi-

mental LARCBED pattern from Si (Fig. 8a) as an

example.

(i) According to Criterion 2, the thickness of the

specimen satisfies the condition, z < �3-beam, which

means we are allowed to determine the sign of the

three-phase invariant from inspection.

(ii) By comparing the Friedel-pair reflections, �55�331

and 53�11, there is centrosymmetry/twofold symmetry

between the intensity distributions within the

green circle in the �55�331 disc and within the red

circle in the 53�11 disc. According to Criterion 1,

jV2;2;0j sin ð’5;3;1 þ ’2;2;0 � ’3;5;1Þ ’ 0.

(iii) According to Criterion 4, jV2;2;0j 6¼ 0, and thus

sin ð’5;3;1 þ ’2;2;0 � ’3;5;1Þ ’ 0.

(iv) According to Criterion 5, intensity asym-

metry about the three-beam conditions reveals

cos ð’5;3;1 þ ’2;2;0 � ’3;5;1Þ > 0.

research papers

760 Yueming Guo et al. � Three-beam convergent-beam electron diffraction IUCrJ (2018). 5, 753–764

Figure 6
Illustrations of Criterion 6 for determining the sign of cos� for thick specimens. The
examples are simulated CBED patterns from ZnS [137] near a three-beam
condition which is located in the centre of each disc. Following the convention in
Fig. 1, the regions with negative and positive �h are labelled with equally sized
rectangles with dashed (green) and solid (red), respectively. In order to facilitate an
inspection, the rectangles are located away from the exact three-beam condition by
the same distance. In the simulations, the following values of the three-phase
invariant and the thickness were used: (a) � = 2.5�, z = 1720 Å; (b) � = �140�, z =
1980 Å. In the calculation of (a), the three-phase invariant was adopted from the
structure itself whereas in the calculations of (b), the three-phase invariant was
artificially adjusted in order to produce a situation such that cos� < 0. The same
adjustment as in Fig. 5 has been performed.

Figure 7
A flowchart that summarizes the procedures for determining the three-phase
invariants from three-beam CBED patterns.



(v) From Table 1 we can conclude that

’5;3;1 þ ’2;2;0 �’3;5;1 ’ 0. This agrees with the

known value for Si of 0�.

4.3.2. Example 2, GaAs. Here we take the

experimental LARCBED pattern from GaAs

(Fig. 8b), as a non-centrosymmetric example.

(i) According to Criterion 2, the thickness of

the specimen satisfies the condition z < �3-beam.

(ii) By comparing the Friedel-pair

reflections 1�551 and �115�11, we can see that

sinð’1;5;1 þ ’0;0;2 � ’1;5;1Þ > 0 from the intensity

difference according to Criterion 3.

(iii) According to Criterion 4, since there is a

centre of inversion at the exact three-beam

condition, cos ð’1;5;1þ ’0;0;2 � ’1;5;1Þ ’ 0.

(iv) According to Table 1,

’1;5;1 þ ’0;0;2 � ’1;5;1 ’ þ90�. The result of

this qualitative measurement agrees approxi-

mately with the known value for GaAs of +88�.

5. Potential applications

5.1. Improvement in ab initio phasing

If the ‘guessed’ three-phase invariants in

direct methods (Woolfson, 1971; Hauptman,

1991), which are based on probability, are

replaced by three-phase invariants measured

directly from three-beam diffraction, then the

success rate and accuracy of ab initio phasing

can be greatly improved: a small set of

measured three-phase invariants with a mean

error of � 22.5� (Mo et al., 1996) (i.e. which is

equivalent to finding the octant of the three-

phase invariants as achieved in this article) or

even 40� (Weeks et al., 2000) may enable a

structure solution where it would otherwise be

impossible. In such cases, fewer structure-

factor magnitudes would need to be measured.

Therefore, one application of the current

three-beam method is to combine it with X-ray

diffraction data or with electron-diffraction

data based on quasi-kinematic diffraction such

as PED (Vincent & Midgley, 1994) to improve

ab initio phasing. Importantly, combining this

three-beam method with PED may help to

solve structures for nano-sized crystals which

can be most readily studied using the <1 nm

probes that are routinely available in TEMs.

5.2. Resolution of enantiomorphs

For a pair of enantiomorphically related

structures (L and R), the same three-phase

invariants have opposite signs, i.e.

�R
0=g=h ¼ ��

L
0=g=h, and the three-phase invar-

iants for the opposite three-beam conditions

have the same sign, i.e. �R
0=g=h ¼ �

L
0=�gg= �hh

.
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Figure 8
Reconstructed LARCBED patterns of a few selected reflections for (a) Si [118] and (b)
GaAs [510] at 200 kV. In each figure, a pair of three-beam conditions that involve two
Friedel-pair reflections are labelled with circles in red (dark in greyscale) and green (light in
greyscale). The sizes of the circles are chosen such that the three-beam conditions and their
closest neighbourhoods are included while the neighbouring Bragg conditions are avoided.



Therefore, to identify the chirality of a structure, both the

signs of the indices (of reflections g and h) and the sign of the

three-phase invariant, �0=g=h, have to be determined consis-

tently. Since three-beam diffraction alone involves three

reciprocal lattice vectors that are coplanar, it is impossible to

identify chirality, which is three-dimensional, unless a fourth

beam that is not in the same zone axis (non-coplanar) is

present in the field of view (Spence et al., 1994). Therefore, at

least one three-beam condition and one HOLZ reflection

should be present in the same diffraction pattern.

Within the bright-field component of a reconstructed

LARCBED pattern, a pair of three-beam conditions that

involve two Friedel pairs and deficit HOLZ lines can be found

simultaneously. Based on the positions of the deficit HOLZ

lines relative to the three-beam conditions in the bright field, a

Friedel pair can be indexed without ambiguity. The sign of

three-phase invariants can be determined from direct obser-

vations following the present method. Therefore, chirality can

be clearly identified from just a single LARCBED pattern

(with both the central and diffracted beams) where a Friedel

or Bijvoet pair of reflections satisfies three-beam conditions.

6. Challenges and limitations

6.1. Applicability to large structures

The three-beam approximation in equation (2) can hold

very well if the excitation errors of the reflections other than

reflections g and h are much larger than any structure-factor

magnitude, i.e.

minf2��g0 ; 2��h0 . . .g � maxf�jVg

��; �jVh

��; �jVh�g

��; �jVg0

��;
�jVh0

��; �jVg0�g

��; �jVh0�gj . . .g;

ð8aÞ

and thus,

maxfCg0 ;Ch0 . . .g ’ 0: ð8bÞ

It is easy to find three-beam diffraction conditions in struc-

tures with small unit cells (say, with cell volumes less than a

few thousand Å3) because their reciprocal lattice points are

sparsely spaced and reflections other than g and h tend to be

weakly excited near the three-beam condition for 0/g/h. In

contrast, the projection of the reciprocal lattice for large

structures is dense and other reflections g0, h0 . . . , tend to be

strongly excited at the same time (their excitation errors,

�g0 ; �h0 . . . ; tend to be small). Three-beam conditions can be

difficult to isolate in large structures and the influence of

many-beam diffraction effects is difficult to avoid. Never-

theless, if the structure-factor magnitudes relevant to a parti-

cular three-beam diffraction condition, jVgj; jVhj and jVh�gj,

are much larger than those of the other excited reflections

(like jVg0 j; jVh0 j; jVh0�gj, etc.), then many-beam diffraction can

still be treated as a perturbation of the three-beam approx-

imation. This has been shown by studies in three-beam X-ray

diffraction (Weckert & Hümmer, 1997). Three-beam diffrac-

tion of X-rays has been demonstrated in some small protein

crystals such as myoglobin (Hümmer et al., 1991), tetragonal

lysozyme and catalase oxidoreductase (Weckert et al., 1993).

Since the Ewald sphere for high-energy electron diffraction

is much ‘flatter’ than that of soft X-ray diffraction, which

results in many more reflections being excited simultaneously,

the applicability of three-beam electron diffraction to large

structures like protein crystals may be very limited. Never-

theless, the applicability of three-beam electron diffraction to

moderately complex structures (a unit cell with dozens to a

few hundred atoms) can be expected. Feasibility may be

increased with the use of the new generation of very low

voltage TEMs (>30 kV), offering large electron wavelengths

and hence increased curvature in the Ewald sphere.

6.2. Applicability to beam-sensitive structures

Under standard operating conditions, with no effort to

minimize electron dose, the total dose can be large and

unsuitable for beam-sensitive structures. For example, the set

of 121 CBED patterns at 200 kV (which gave the LARCBED

patterns in Fig. 8) was estimated to use a total dose of

105 e Å�2. However, it is important to note that the three-

beam method described here relies only on a qualitative

inspection of features in the CBED patterns, rather than

quantitative measurement of absolute intensities. It can

therefore tolerate a high noise level in the diffraction data, so

that low-dose CBED methods, such as those used by Wu &

Spence (2003), can be used. Coupled with a new generation of

high-sensitivity and fast detectors, low-dose three-beam

measurements of three-phase invariants in beam-sensitive

materials is likely to be very feasible.

7. Clarifying points

7.1. Crystallographic phase versus phase of the exiting
electron wave

The current three-beam method provides direct measure-

ment of three-phase invariants (which is the phase informa-

tion of structure factors) rather than the phase of exiting

electron waves, which can be measured by electron holo-

graphy (Gabor, 1948), through focal series methods (Schiske,

1968, 2002; Kirkland, 1984) or electron ptychography

(Rodenburg, 2008; Humphry et al., 2012). Under dynamical

scattering conditions, there is no direct or general analytical

relationship between the phase of the exit wavefunction and

the phase of the structure factors.

7.2. Comparison with electron ptychography for structure-
factor phase determination

Apart from the current three-beam CBED approach,

electron ptychography can also provide a measurement of

structure-factor phases (Nellist et al., 1995) and thus, three-

phase invariants, provided the single scattering condition

prevails. Therefore, it requires extremely thin and weakly

scattering specimens. Electron ptychography uses the

coherent interference in overlapping CBED discs and hence

requires an effective source that is spatially coherent over the

research papers

762 Yueming Guo et al. � Three-beam convergent-beam electron diffraction IUCrJ (2018). 5, 753–764



angular range of the disc and a probe-forming lens system that

does not introduce significant coherent aberrations within this

range. In contrast, three-beam CBED is based on dynamical

scattering and is thus valid for thicker specimens. Further-

more, as the discs do not overlap, it is independent of coherent

aberrations [such an independence can be simply proven by

deriving the dynamical intensities in CBED without coherent

interference, from the exit wavefunction which contains the

initial phase of the probe, such as equation 14.87 in the book

by Zuo & Spence (2017); for an earlier reference, see Spence

& Cowley (1978)].

7.3. Comparison with quantitative CBED

The current three-beam CBED method is an ab initio

approach where no structural model is assumed. This is in

contrast to quantitative CBED for refining structure factors

and three-phase invariants within a given structural model

(Goodman & Lehmpfuhl, 1967; Spence, 1993; Nakashima,

2017). A quantitative analysis of experimental three-beam

CBED patterns has been used to refine three-phase invariants

to an accuracy of within one degree (for example, Høier et al.,

1999). However, the quality of an experimental pattern for

quantitative CBED needs to be much higher than required by

the current method, where only qualitative inspection is

involved.

8. Conclusions

This article has introduced an ab initio method using three-

beam convergent-beam electron diffraction (CBED) for the

practical determination of three-phase invariants in

non-centrosymmetric as well as centrosymmetric crystals. It

can readily be applied to nano-sized crystals. Starting from the

exact solutions to three-beam electron diffraction, we have

derived a theory which allows for the inversion of the

diffracted intensities to determine the signs of sin � and cos�
(and also whether they are close to zero). Based on this theory,

we have provided instructions for determining the octant of

three-phase invariants (i.e. the uncertainty in the determina-

tion of three-phase invariants is �22.5�) by qualitative

inspection of indexed CBED or LARCBED patterns.

Importantly, only qualitative inspection of the diffraction

patterns is required, without any need for quantitative inten-

sity measurement or numerical pattern matching or refine-

ment. No additional knowledge about the structure or the

specimen thickness, is needed (except for the pattern indices).

LARCBED experiments on a centrosymmetric crystal of Si

and a non-centrosymmetric crystal of GaAs have been carried

out to demonstrate the current method.

Three-beam CBED can be combined with X-ray and

precession electron diffraction data to improve ab initio

phasing. Also, the enantiomorph ambiguity can be eliminated

by observations of the LARCBED patterns where HOLZ

reflections and three-beam conditions are present in the same

pattern. Furthermore, the three-beam method may have the

potential to measure three-phase invariants in beam-sensitive

structures using the latest generation electron detectors with

high speed and sensitivity.

Note added in proof. It is with great sadness that we learned

of the passing of Professor Alexander Moodie FAA on 8 July

2018, a pioneer in the field of electron crystallography. Among

his many distinguished contributions, is the unique analytical

inversion of three-beam electron-scattering equations. We

dedicate this work to a brilliant scientist, inspiring colleague

and generous mentor.

9. Related literature

The following references are cited in the supporting infor-

mation: Blackman (1939); Wolfram Research, Inc. (2014).

APPENDIX A
Typical values for the three-beam extinction distance,
n3-beam

Here we show that the validity of the condition, z < �3-beam, is

not restricted to very thin specimens. The three-beam

extinction distance, �3-beam, decreases with increasing struc-

ture-factor magnitudes, so the range of the thickness that

satisfies the condition, z < �3-beam, becomes narrower with

larger structure-factor magnitudes. One may think that the

specimen needs to be very thin for a three-beam case with

large structure factors. However, it can be shown that even if

the three-beam case involves large structure factors, the three-

beam extinction distance is still large. For example, a three-

beam case, 000=311=311, in zinc blende ZnTe, where

jV3;1;1j ¼ jV3;1;1j = 4.2 V and V0;2;0j
�� = 2.5 V, may serve as an

example of three-beam cases with three fairly large structure-

factor magnitudes since a fairly heavy element (Te) is present

in the structure, and jV3;1;1j and jV0;2;0j are among the largest

structure-factor magnitudes in this structure. In this case, the

three-beam extinction distance, �3-beam, at 200 kV is about

650 Å, which is sufficiently large to allow specimen thicknesses

less than �3-beam to be accessed practically in TEM. In general,

a typical value of the three-beam extinction distance, �3-beam,

at 200 kV for inorganic crystal structures is above 1000 Å and

for organic crystal structures it is above 2000 Å.

This relatively large range of validity may seem surprising in

the context of previous methods based on the special weak

scattering case [(Bird et al., 1987), see comment by Marthinsen

(1993)]. However, the present general three-beam method is

not restricted to weak scattering, ensuring it has validity over a

much wider range of thicknesses. To get a sense of the

difference in the validity ranges between the kinematic

approximation and current approach, the Mathematica code

from the website https://github.com/DrYGuo/3-beam-project

can be used.
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Hümmer, K., Schwegle, W. & Weckert, E. (1991). Acta Cryst. A47,

60–62.
Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg,

J. M. (2012). Nat. Commun. 3, 730.
Hurley, A. C., Johnson, A. W. S., Moodie, A. F., Rez, P. & Sellar, J. R.

(1978). Inst. Phys. Conf. Ser. 41, 34–40.
Hurley, A. C., Moodie, A. F., Johnson, A. W. S. & Abbott, P. C. (1999).

Acta Cryst. A55, 216–219.
Kambe, K. (1957a). J. Phys. Soc. Jpn, 12, 13–25.
Kambe, K. (1957b). J. Phys. Soc. Jpn, 12, 25–31.
Kirkland, E. J. (1984). Ultramicroscopy, 15, 151–172.
Koch, C. T. (2008). arXiv: 0810.3811v1.
Koch, C. T. (2011). Ultramicroscopy, 111, 828–840.
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Oszlányi, G. & Süto��, A. (2004). Acta Cryst. A60, 134–141.
Patterson, A. L. (1934). Phys. Rev. 46, 372–376.
Ramachandran, G. N. & Srinivasan, R. (1970). Fourier Methods in

Crystallography. New York: Wiley-Interscience.
Rodenburg, J. M. (2008). Adv. Imag. Elect. Phys. 150, 87–184.
Schiske, P. (1968). Proceedings of the 4th Regional Congress on

Electron Microscopy, edited by D. S. Bocciarelli, Vol. 1, pp. 145–
146. Rome: Tipografia Poliglotta Vaticana.

Schiske, P. (2002). J. Microsc. 207, 154.
Spence, J. C. H. (1993). Acta Cryst. A49, 231–260.
Spence, J. C. H. (1998). J. Microsc. 190, 214–221.
Spence, J. C. H. & Cowley, J. M. (1978). Optik 50, 129–142.
Spence, J. C. H. & Zuo, J. M. (1992). Electron Microdiffraction. New

York: Plenum Press.
Spence, J. C. H., Zuo, J. M., O’Keeffe, M., Marthinsen, K. & Høier, R.

(1994). Acta Cryst. A50, 647–650.
Stadelmann, P. A. (2004). JEMS-EMS Java version. CIME-EPFL,

Lausanne, Switzerland.
Tanaka, M., Saito, R., Ueno, K. & Harada, Y. (1980). J. Electron

Microsc. 29, 408–412.
Vincent, R. & Midgley, P. A. (1994). Ultramicroscopy, 53, 271–282.
Wang, F., Pennington, R. S. & Koch, C. T. (2016). Phys. Rev. Lett. 117,

015501.
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