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It is shown that the average signal-to-noise ratio (SNR) in the three-dimensional

electron-density distribution of a sample reconstructed by coherent diffractive

imaging cannot exceed twice the square root of the ratio of the mean total

number of scattered photons detected during the scan and the number of

spatially resolved voxels in the reconstructed volume. This result leads to an

upper bound on Shannon’s information capacity of this imaging method by

specifying the maximum number of distinguishable density distributions within

the reconstructed volume when the radiation dose delivered to the sample and

the spatial resolution are both fixed. If the spatially averaged SNR in the

reconstructed electron density is fixed instead, the radiation dose is shown to be

proportional to the third or fourth power of the spatial resolution, depending on

the sampling of the three-dimensional diffraction space and the scattering power

of the sample.

1. Introduction

The tomographic form of coherent diffraction imaging (CDI)

is typically concerned with the reconstruction of the three-

dimensional spatial distribution of electron density in a sample

from a set of X-ray diffraction patterns collected in the far

(Fraunhofer) region at different rotational positions of the

sample (Sayre et al., 1998; Robinson et al., 2001; Marchesini et

al., 2003; Chapman et al., 2006). The issue of sample damage,

as a result of the X-ray dose delivered to the sample in the

process of imaging, is central to this method, particularly when

high-resolution imaging of biological samples is considered. It

has been shown that when the signal-to-noise ratio (SNR) in

the reconstructed electron-density distribution is fixed, the

X-ray dose delivered to the sample is proportional to the third

(Bergh et al., 2008) or fourth (Howells et al., 2009) power of

the spatial resolution. For single non-crystalline biological

samples, this limits the spatial resolution to approximately

10 nm (Howells et al., 2009). More recently, it has been

demonstrated that the use of ultra-short pulses (<100 fs) at

X-ray free-electron laser (XFEL) sources allows one to

‘outrun’ the radiation damage by collecting many diffraction

images from identical samples, each image being produced

before the sample is destroyed by the X-ray pulse (Chapman

et al., 2011; Quiney & Nugent, 2011; Martin et al., 2015). As a

result, the dose limits established for biological samples with

synchrotron sources (Howells et al., 2009) do not apply for

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252518010941&domain=pdf&date_stamp=2018-09-15


XFEL experiments (Chapman et al., 2011). There is an active

effort to push XFEL imaging of single biological particles to

atomic resolution and compete with X-ray crystallography and

cryo-electron microscopy (Miao et al., 2015). Despite the

extreme intensity of XFEL pulses, they scatter as few as 102–

103 photons per protein and the measured diffraction images

are extremely noisy. The SNR is improved when a large

number of diffraction images are assembled into a three-

dimensional set, and it is predicted that 105–106 diffraction

patterns will be required for the three-dimensional imaging of

a protein (Tegze & Bortel, 2012). However, a number of

challenging problems exist in this form of CDI, such as finding

the unknown orientation of each imaged sample from the low-

SNR diffraction patterns and reconstructing the phase distri-

bution from diffraction intensity measurements. The questions

of signal, noise and spatial resolution are central to these

problems (Elser, 2009; Kirian et al., 2011).

In CDI, the three-dimensional diffraction intensity volume

(produced by an orientation-determination algorithm in the

case of XFEL-type CDI) serves as the input for a phasing

algorithm which ultimately recovers the real-space electron

distribution in the sample. The SNR of the three-dimensional

diffracted intensity volume impacts the accuracy of the

recovered image. The impact of noise on popular CDI phasing

algorithms has been characterized (Williams et al., 2007) and

several innovations to improve robustness-to-noise have been

proposed (Loh et al., 2010; Dilanian et al., 2010; Martin et al.,

2012). Since phase retrieval is generally a non-linear problem,

the impact of noise has diverse effects ranging from reduced

resolution through to the failure of phasing algorithms to

converge in more challenging cases. In the present paper, we

do not study the noise tolerance of orientation-determination

or phasing algorithms, which has been considered elsewhere

(Loh & Elser, 2009; Giannakis et al., 2012; Williams et al., 2007;

Loh et al., 2010; Dilanian et al., 2010). Rather we consider SNR

limits that can be reached assuming particle orientation and

phases are known. In this sense, our results provide an upper

limit for the maximum achievable SNR in the electron-density

distribution in the sample reconstructed at a certain spatial

resolution if the particle orientation and phases are accurately

determined by suitable algorithms. The obtained results hold

under the assumption that there is no prior information about

the sample, which is often not the case.

The impact of noise in XFEL diffraction imaging has been

previously studied for the determination of particle orienta-

tion (Loh & Elser, 2009; Giannakis et al., 2012) and for phase

retrieval (Williams et al., 2007; Loh et al., 2010; Dilanian et al.,

2010). In the case of orientation determination, Bayesian

methods (Loh & Elser, 2009) and manifold-based methods

(Giannakis et al., 2012) have been developed to overcome the

low SNR of individual images by analysing the data as an

ensemble. Many ensemble approaches avoid assigning each

measurement a specific orientation. Instead, they use prob-

abilistic or geometric methods to merge the ensemble of two-

dimensional tomographic projections into a three-dimensional

diffraction intensity volume. A one-dimensional proof-of-

principle demonstration of a Bayesian orientation algorithm

was successful with only 2.5 photons per pattern on average

(Philipp et al., 2012) and there are information-theoretic

arguments that the XFEL signals for individual proteins will

be sufficient for orientation determination (Loh et al., 2010).

However, it is critical to accurately estimate the number of

required diffraction patterns, which, in turn, determines the

experimental requirements for sample preparation, delivery

and data collection.

We investigate the limits for SNR and spatial resolution in

three-dimensional CDI from the point of view of the noise–

resolution uncertainty principle (Gureyev et al., 2014, 2016).

This principle states that, at a fixed radiation dose, the SNR

and spatial resolution can almost always be traded for each

other, but the square of their ratio, normalized by the incident

photon fluence, is limited from above by the scattering power

of the sample, i.e. the fraction of incident photons that are

scattered by the sample (Gureyev et al., 2016). ‘Naive’

considerations tell us that, when the noise in the collected CDI

data is dominated by Poisson-distributed photon-shot noise

and, therefore, the squared SNR in a detector pixel is

proportional to the number of collected photons, the squared

SNR in the three-dimensional tomographic data should in

principle be proportional to the third power of the spatial

resolution �r in the reconstructed sample. Indeed, when the

linear dimension of a voxel in the sample is reduced twofold

from �r to �r /2, its volume is reduced eightfold, from �r
3 to

�r
3/8, and the number of photons scattered by the volume will

generally also decrease by a factor of eight. It transpires that

this ‘naive’ view is correct in the case of CDI data uniformly

sampled in reciprocal space, in which case the squared SNR in

the reconstructed sample is indeed proportional to �r
3. More

precisely, as the SNR is a dimensionless quantity, its square is

actually inversely proportional to the total number, M, of

resolution voxels in the reconstructed sample, M = V/�r
3,

where V is the reconstructed volume. In a real experiment

however, when the sample is effectively rotated during a

tomographic CDI scan and the corresponding image planes in

the diffraction space rotate accordingly, the sampling is usually

not uniform, as the distance between the data points on the

periphery of the diffraction space is larger than the sampling

distance in a close vicinity of the centre of rotation. In fact, the

sampling distance generally increases in proportion to the

radial variable in the cylindrical coordinates in reciprocal

space. The fact that the corresponding sampling is closer to

cylindrical than spherical will be discussed in detail later in the

present paper. This spatially non-uniform sampling has a

strong effect on the SNR in the reconstructed electron density.

For a typical sample and planar illumination, the number of

scattered photons would normally decrease as a function of

the diffraction angle, and hence also as a function of the radial

coordinate in reciprocal space. Therefore, the SNR in the

collected CDI data, being equal to the square root of the

number of registered photons, will also decrease as a function

of the radial coordinate. On the other hand, the effect of non-

uniform sampling density of the experimental data implies

that, in the reconstruction process, the high-angle diffraction

data has to be multiplied by a factor proportional to the radial
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variable of the cylindrical coordinates (Fig. 1). The combina-

tion of these two factors leads to the fact that, overall, the low-

SNR diffraction data have higher weights in the reconstructed

image compared with high-SNR data. In other words, the

noise is amplified in the reconstruction more strongly relative

to the useful signal. This effect is well known in computed

tomography (CT), where the singular values of the inverse

X-ray and Radon transforms increase in proportion to the

square root of the radial order of the corresponding basis

functions, making these inverse operators (moderately)

unstable with respect to noise in the input data (Natterer,

1986). This noise amplification makes the squared SNR in the

reconstructed data proportional to the fourth (rather than the

third) power of spatial resolution, i.e. proportional to

M�4/3 = �r
4/V4/3 (Howells et al., 2009; Gureyev et al., 2016).

As should be clear from the above considerations, the

‘fourth power law’: SNR2
’ M�4/3 = �r

4 /V 4/3 is likely to be

dependent on two conditions. First, the sampling density in the

diffraction space has to decrease in proportion to the radial

variable in the cylindrical coordinates. As illustrated by the

behaviour of the singular values in CT, this is a fundamental

effect which cannot be overcome by a clever resampling of the

registered data onto a uniform Cartesian grid, as part of the

reconstruction process. Indeed, the corresponding interpola-

tion of the data would inevitably increase the noise at least to

the same degree as in an optimal reconstruction using the data

on the original non-uniform sampling grid (Natterer, 1986).

Second, in order for the fourth-power law to hold, the

diffraction intensity must be a decreasing function of the

radial coordinate. When this is not so, for example, for ‘sharply

peaked’ samples that generate a near-flat distribution of

diffraction signal in reciprocal space, the fourth-power law is

replaced by the ‘third-power law’, SNR2
’ M�1 = �r

3 /V, the

same as in the idealized case of spatially uniform sampling

considered above. When the signal and noise have the same

spatial distribution, it does not matter that the registered

intensity data is multiplied by a factor proportional to the

cylindrical radial coordinate in the reconstruction process,

because this multiplication affects the signal and the noise in

equal measure and the relative amplification of noise does not

take place. These facts are studied in detail in Section 4 of the

present paper, after the basic model of CDI image formation is

considered in Section 2 and a corresponding generic expres-

sion for the SNR in the reconstructed electron density is

derived in Section 3. Section 5 of the paper contains a brief

investigation of the intrinsic imaging-quality characteristic

(Gureyev et al., 2014, 2016) and Shannon’s information

capacity (Shannon, 1949; Cox & Sheppard, 1986) of CDI

imaging systems. Appendix A contains a mathematical deri-

vation of the expectation value of the square root of a Poisson-

distributed random variable, which is used to obtain the key

result of Section 3. Appendix B contains a list of the main

symbols used in this paper.

2. Signal-to-noise ratio in diffracted intensity data

Here we briefly outline some well known mathematical

formulae describing image formation in CDI that are relevant

to our analysis. Let

IRðx; yÞ � lim
T!1

IR;T ðx; yÞ ¼ hIR;T ðx; yÞi ð1Þ

be the average intensity measured at point (x, y, R) in the

image plane z = R, where IR;T ðx; yÞ ¼ T�1
R T=2

�T=2 jURðx; y; tÞj2dt

is the instantaneous light irradiance averaged over the expo-

sure (or the illuminating pulse) time T, UR(x, y; t) is the

complex wave amplitude (viewed as a wide-sense stationary

stochastic process) in the image plane and the angular

brackets denote the ensemble average. The variance of the

intensity registered by a photon-counting detector with

quantum efficiency � is approximately equal to (Goodman,

1985; Mandel & Wolf, 1995; Gureyev, Nesterets et al., 2017)

VR;h;T ðx; yÞ ffi ��1h�2T�1IRðx; yÞ; ð2Þ

where VR,h,T(x, y) � hI2
R,h,T(x,y)i � hIR,h,T (x, y)i2 is the

variance of the intensity, IR,h,T (x, y), registered in a single

effective detector pixel with linear size h (more precisely, h is

the width of the point-spread function of the detector) and

centered at the point (x, y, R). Equation (2) has been derived

under the assumption that the average intensity IRðx; yÞ

spatially varies slowly over distances comparable with h, and

therefore is approximately invariant with respect to the

convolution with the point-spread function of the detector.

research papers

718 Timur E. Gureyev et al. � Signal-to-noise, spatial resolution and information capacity IUCrJ (2018). 5, 716–726

Figure 1
Sampling geometry of the diffraction space in a CDI experiment. The
vector p(�) is normal to the detector plane and extends from the centre of
a fixed sphere, enclosing the sample to its surface with the angular
coordinate � parametrizing the curve � drawn by p(�) on the surface of
the sphere when the sample is rotated. The Cartesian coordinates (s, �) in
the detector plane are fixed by the requirement that s is parallel to the
vector dp(�) tangential to �. Sampling volumes |�q| = s�s���� around
two different diffraction data points are indicated by greyscale shading (a
more detailed description can be found in Section 4).



In the semiclassical model of photodetection (Goodman,

1985; Mandel & Wolf, 1995), the quantity

nR;h;T ðx; yÞ � � h2 T IRðx; yÞ ð3Þ

represents the mean number of photons detected over time T

within the detector ‘pixel’ area h2 centered at the point

(x, y, R). Defining the squared SNR in the usual way as the

ratio of the squared intensity to the intensity variance,

SNR2
R;h;Tðx; yÞ � ½IRðx; yÞ�2=VR;h;T ðx; yÞ; it is easy to verify

from equations (1)–(3) that

SNR2
R;h;Tðx; yÞ ffi nR;h;T ðx; yÞ; ð4Þ

as expected in the case of Poisson photon counting statistics.

The above derivation of equation (4) assumes that the

exposure time T is much larger than the coherence time Tc and

the number of registered photons per pixel is not very large, so

that nR;h;T ðx; yÞ � T=Tc (Gureyev, Nesterets et al., 2017), as

is the case in a typical CDI experiment. If the latter condition

is not satisfied, for instance, if the beam has a very high degree

of temporal coherence, then the SNR may depend not only on

the photon counting statistics inherent to the photodetection

process, but also on the photon statistics intrinsic to the

radiation source (‘self noise’) (Mandel & Wolf, 1995). Finally,

equation (4) also ignores the effect of sample damage, which

can lead to a variation of the scattering potential during the

exposure time. This type of effect has been considered

previously in a CDI context in a number of publications

(Quiney & Nugent, 2011; Martin et al., 2015).

Let us now describe how the SNR is related to the prop-

erties of the sample in the quasi-monochromatic case, within

the constraints discussed in the previous paragraph. We

assume that the incident beam is a plane wave propagating

along the optic axis z, having spatially uniform intensity

distribution, I(x, y, 0) = Iin, and a flat phase, ’(x, y 0) = 0 in the

object plane z = 0. We also assume that the scattering of the

radiation by the sample is time-independent and weak, so that

the standard first Born approximation can be applied to

describe the scattering. Finally, we assume that the scattered

beam is paraxial, allowing us to use the Fresnel diffraction

integral for the propagated amplitude. Under these assump-

tions, the beam intensity in the far (Fraunhofer) field,

R� A2/�, where A is the diameter of the sample and � is the

mean wavelength of the radiation, can be described by the

expression

IRðx; yÞ ffi Iinðre=RÞ
2
jðF3�eÞ½x=ð�RÞ; y=ð�RÞ; 0�j2; ð5Þ

where ðF3f Þð�;�;&Þ=
RR

exp½�i 2� ð�xþ�yþ&zÞ�f ðx;y;zÞdxdydz

is the three-dimensional Fourier transform of f(x, y, z), re is the

classical electron radius and �eðrÞ is the electron-density

distribution in the sample (Cowley, 1995). As the primary

unperturbed beam is typically blocked from the detector in

this type of experiment, the diffracted intensity in the vicinity

of the origin of coordinates may be unknown.

Substituting the expression for the diffracted intensity from

equation (5) into equation (3), and then into equation (4), we

obtain

SNR2
R;h;Tðx; yÞ ffi Finh2

ðre=RÞ
2
jðF3�eÞ½x=ð�RÞ; y=ð�RÞ; 0�j2;

ð6Þ

where Fin = �TIin is the uniform incident photon fluence

(number of detected photons per unit area, which is assumed

to be known) in the object plane, corresponding to the

exposure time T and the detector efficiency �. Using the

terminology from the work by Gureyev et al. (2014, 2016), we

can state that the two-dimensional ‘direct’ intrinsic imaging

quality of the considered CDI setup is equal to

QSðx; yÞ �
SNRR;h;T ðx; yÞ

F
1=2
in;T h

ffi
re

R

� �
jðF3�eÞ½x=ð�RÞ; y=ð�RÞ; 0�j:

ð7Þ

The quantity QS characterizes the efficiency of utilization of

incident photons by the imaging system in terms of achieving a

certain SNR and spatial resolution (the latter two can be

traded for each other at a fixed radiation dose delivered to the

sample). However, as CDI imaging is mainly concerned with

the quality of reconstruction of the unknown internal struc-

ture of a sample, rather than that of the diffraction images, it is

more interesting in this case to investigate the behaviour of

the SNR and spatial resolution in the reconstructed electron

density as a function of the radiation dose and other essential

parameters.

3. Signal-to-noise ratio and spatial resolution in
reconstructed electron density

According to equation (5), the diffracted intensity IRðx; yÞ

contains information about the distribution of the three-

dimensional Fourier transform of the electron density,

ðF3�eÞð�; �; &Þ in a plane (�, �, 0) passing through the centre of

the coordinates in reciprocal space. If the sample is rotated

prior to exposure, equation (5) transforms into

IRðqÞ ffi Iinðre=RÞ
2
jF3�ej

2
ðqÞ; ð8Þ

where IRðqÞ � Iinðre=RÞ2jF3�eðWrÞj2ð�; �; 0Þ ¼ Iinðre=RÞ2

	 jF3�eðrÞj
2
½Wð�; �; 0Þ� denotes the mean intensity distribu-

tion IRðx; yÞ measured in the plane z = R after the sample has

been rotated according to the orthogonal matrix W, q �

W(�, �, 0), � = x/(�R) and � = y/(�R). Here we used the fact

that the rotation of the sample coordinate space is equivalent

to the rotation of the reciprocal space owing to the linearity of

the Fourier transform and the orthogonality of rotation

matrices.

According to equation (8), if the diffracted intensity

distributions are collected for a sufficiently broad range of

rotational positions of the sample (the conditions that such a

range must satisfy are discussed below), then the whole three-

dimensional reciprocal space, except for a vicinity of the point

(0, 0, 0), of the sample electron density can be probed.

Furthermore, if the phase-retrieval problem can be solved for

equation (8) in the sense that a unique complex amplitude,

URðqÞ � I
1=2

R ðqÞ exp½i ’RðqÞ�; can be found on the basis of

appropriate assumptions about the sample and the imaging
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setup, then the electron-density distribution in the sample can

be obtained by three-dimensional inverse Fourier transform of

the complex amplitude (Sayre et al., 1998; Robinson et al.,

2001; Marchesini et al., 2003; Chapman et al., 2006),

�eðrÞ ffi ðR=reÞI
�1=2
in ðF

�1
3 URÞðrÞ: ð9Þ

However, as the registered intensity is a stochastic distribu-

tion, then the reconstructed electron density is also going to be

stochastic. In general, the random character of the measured

diffracted intensity is determined by the properties of the

X-ray source, the sample and the detector. We have assumed

that the probabilistic properties of the source and the sample

do not affect the random behaviour of the measured intensity,

and the detector behaves as an ideal photon-counting

detector. Consequently, we assume that the data measured at

each pixel of the detector is a Poisson-distributed random

variable nR,h,T (q) with the mean defined in equation (3). This

random variable corresponds to the number of photons

registered over the exposure time T by a photon-counting

detector located on the optic axis at distance R from the

sample, having quantum efficiency � and effective pixel area

h2, with IR;h;T ðqÞ corresponding to the local radiation flux

incident on the detector pixel during the exposure time. The

electron-density distribution reconstructed from this random

registered photon fluence data also represents a random

variable, �eðrÞ ¼ ðR=reÞI
�1=2
in ðF

�1
3 UR;h;TÞðrÞ; where the complex

amplitude, UR,h,T(q), is obtained from the measured intensity

IR,h,T (q)� (�h2T)�1nR,h,T (q) with the help of a suitable phase-

retrieval procedure.

We would like to determine the SNR and the spatial reso-

lution in the reconstructed electron-density distribution �e(r),

corresponding to SNR described by equation (4) and spatial

resolution h in the collected diffraction intensity data. We

estimate the following spatial average form of the squared

SNR (Gureyev, Kozlov et al., 2017) in the reconstructed

density distribution,

SNR2
a½�e� �

R
h�eðrÞi

2drR
½h�2

eðrÞi � h�eðrÞi
2
�dr
; ð10Þ

where angular brackets denote the ensemble average.

First, note that according to Parseval’s theorem and equa-

tion (8), we have
R
h�2

eðrÞidr ¼h
R
�2

eðrÞ dri ¼ h
R
jF3�eðqÞj

2 dqi ¼

ðR=reÞ
2
I�1

in

R
IRðqÞ dq ffi ðR=reÞ

2
ðM=NinÞ

PM
m¼1nR;h;T ðqmÞj�qmj,

where Nin ¼ M nin;h;T ¼ M�h2TIin is the total number of

incident photons irradiating the sample volume during the

scan, M is equal to the total number of the detector pixels

multiplied by the number of projections in the scan and the

integral of the mean intensity distribution over the scanned

area of reciprocal space has been approximated by a sum over

discrete voxels with volume |�qm| centered at the measure-

ment points qm. Estimation of the quantity
R
h�eðrÞi

2dr ¼R
jhF3�eðqÞij

2dq ¼ ðR=reÞ
2
I�1

in

R
j hUR;h;T ðqÞij

2dq; appearing in

the numerator and denominator of equation (10), is more

complicated technically than the evaluation of the integralR
h�2

eðrÞidr above. The corresponding mathematical details can

be found in Appendix A. Applying equation (24) from

Appendix A to equation (10), we obtain

SNR2
a½�e� 
P

m2fM1g

nR;h;T ðqmÞ � ð1=4Þ
� �

�qm

�� ��þ P
m2fM2g

n2
R;h;TðqmÞ �qm

�� ��
ð1=4Þ

P
m2fM1g

�qm

�� ��þ P
m2fM2g

nR;h;T ðqmÞ � n2
R;h;TðqmÞ

� �
�qm

�� �� ;

ð11Þ

where M1 is the number of voxels in the subset {M1} corre-

sponding to all data points in which the mean number of

registered photons per pixel is larger than or equal to 1/2, and

{M2} is the complementary subset corresponding to M2 voxels,

where the mean number of registered photons per pixel is

smaller than 1/2.

Consider first the case where the mean number of registered

photons per pixel is smaller than 1/2 in almost all pixels, so that

M1�M2ffiM. Then, because n2
R;h;TðqmÞ<ð1=2ÞnR;h;T ðqmÞwhen

nR;h;T ðqmÞ< 1=2, and
P

m2fM2g
nR;h;T ðqmÞ �

P
m2fM2g

n2
R;h;TðqmÞ

>
P

m2fM2g
n2

R;h;TðqmÞ; it follows from equation (11) that

SNR2
a[�e] < 1. This is clearly an undesirable case, as one would

normally want to achieve a reconstruction of the electron-

density distribution with an average SNR of at least 5,

according to Rose criterion (Rose, 1948). If, on the other hand,

the vast majority of pixels contain 1/2 or more photons on

average, corresponding to M2�M1ffiM, then we obtain from

equation (11) that SNR2
a½�e� 
 4

PM
m¼1 nR;h;T ðqmÞj�qmj=PM

m¼1 j�qmj � 1, where the right-hand side is always larger

than unity. This result represents a ‘tight’ upper bound for

SNR2
a[�e] in CDI in the sense that

SNR2
a½�e� 
 SNR2

a;max½�e� �

4
PM
m¼1

nR;h;T ðqmÞj�qmj

PM
m¼1

j�qmj

� 1; ð12Þ

where the maximum value defined by the right-hand side of

equation (12) can be reached for certain classes of diffracted

intensities. In particular, this maximum is reached when

nR;h;T ðqmÞ � 1=2 for all values of m and the reconstructed

phase distribution is the same for all members of the ensemble

of measured CDI scans (and hence the phase does not

contribute to the variance of the complex amplitude) (see

Appendix A).

4. Effects of the scanning geometry and sample
scattering strength on the SNR

In the case of uniform voxel size in reciprocal space, for

example, sampling on a regular Cartesian grid, we have |�qm|

= |�q| = V�1 = (M�r
3)�1, where �r � (V/M)1/3 is the corre-

sponding spatial resolution in the object space. Therefore,PM
m¼1 nR;h;T ðqmÞj�qmj ¼ M�1��3

r NR, and equation (12)

becomes SNR2
a;max½�e� ffi 4ðN=MÞ � 1, where N �PM

m¼1 nR;h;T ðqÞ is the mean total number of registered photons

in the diffraction images collected at all diffraction angles in

one complete three-dimensional scan of the sample. Note that
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ð4N=MÞ � 1 � ð2M=MÞ � 1 ¼ 1, so that the SNR here is

always larger than or equal to unity. Furthermore, when

nR;h;T ðqmÞ> 1 for all m, then 4N=M> 4, and it could be

possible to approximate equation (13) further as

SNR2
a;max½�e� ffi 4ðN=MÞ: ð13Þ

We will use this slightly less precise approximation below.

The fact that the squared SNR in equation (13) is propor-

tional to the third power of the spatial resolution

�r � (V/M)1/3, where V � |�q|�1 is the reconstructed volume

in the object space, rather than to the fourth power, as shown

previously (Howells et al., 2009), is the consequence of our

(unrealistic) assumption that the voxel volume, |�qm|, is

uniform throughout the diffraction space. This would be the

case if the diffraction intensity data were collected on a

regular Cartesian grid qm�m�m&
� ðm�h;m�h;m&hÞ in the

diffraction space, where m�, m� and m& are integers, each

spanning the set f0; 1; 2; . . . ;L� 1g, L3 = M. However, this is

difficult to achieve in a real CDI experiment. When the

diffraction data are collected on a regular cylindrical grid,

which is the case when the sample is rotated around a fixed

axis, similar to conventional parallel-beam computed tomo-

graphy (CT), the average squared SNR is known to be

proportional to the fourth power of the spatial resolution

(Natterer, 1986), and is given by

SNR2
a;max½�e� ffi 4	N=M4=3; ð14Þ

where 	 is a dimensionless constant of the order of unity,

which depends on the sampling and interpolation schemes, but

not on the collected diffraction intensities (numbers of

photons) (Gureyev et al., 2016). Compared with equation (13),

here the additional power of �r in the expression

�r
4 = (V/M)4/3, appears as a consequence of the ‘ramp’ filtering,

arising from the multiplication of the collected diffraction

intensity data nR;h;T ðqmÞ by coefficients proportional to s =

(�2 + &2)1/2 in the reconstruction process (Gureyev et al., 2016).

In turn, the presence of the ramp filter in the reconstruction

process is a direct consequence of the linear non-uniformity of

the elemental voxel volume as a function of the radial coor-

dinate in the cylindrical case. Indeed, the elemental volume in

cylindrical coordinates is equal to |dq| = sdsd�d�, assuming

that the sample is rotated around the y axis (which is parallel

to the � axis) during the scan (Fig. 1). This means that the

higher order diffraction orders are actually being measured

with lower precision (higher noise) when the detector pixels

are uniform in size, because the sampling density linearly

decreases as a function of the radial coordinate, s. In terms of

the singular value decomposition (SVD) of the relevant

reconstruction operator (which implements the inverse

parallel-beam X-ray transform in three dimensions), the same

effect leads to the singular values being equal to


lm�m�
¼ ðl þ 1Þ1=2=ð4�Þ, s = lh, which increase in proportion to

the square root of the radial order l of the corresponding basis

functions (Natterer, 1986). Such behaviour of the SVD usually

results in the amplification of noise relative to the useful signal

in the collected intensity data, and hence in lower SNR in the

reconstructed sample, as in equation (14), compared with

equation (13). This happens because the magnitude of a

typical diffraction signal decreases as a function of |q|, and

hence the relative amount of shot noise increases with |q|.

Therefore, when the reconstruction amplifies high-order

diffraction components, relative to the low-order ones, it

effectively amplifies the noise with respect to the signal. This

effect is demonstrated explicitly below.

Considering the case where the imaged sample is rotated in

an arbitrary continuous way in three-dimensions, we note first

that in order to provide a unique reconstruction of the sample,

the set of all sample orientations used during the scan must

satisfy the Orlov condition (Natterer, 1986; Orlov, 1975;

Defrise et al., 1993). It is easier to describe this condition by

specifying that the sample is stationary, while the source and

the detector are synchronously rotated around the sample (as

e.g. in medical CT), instead of the equivalent real situation

where the source and the detector are fixed and the sample is

rotated (as in synchrotron-based CDI). Let S2 be a fixed

sphere enclosing the sample, and p denote a vector extending

from the centre of the sphere to its surface and orthogonal to

the detector plane. In the continuous case, the Orlov condition

states that the line �, drawn on S2 by the vector p while

the detector is rotated during the scan, must intersect all

great (equatorial) circles on S2 (Fig. 1). For example, when

the detector is rotated by 180� around the y (�) axis, as in

conventional parallel-beam CT, the line � simply coincides

with an equatorial semicircle. The Orlov condition is obviously

satisfied in this case, because all equatorial circles on a sphere

intersect any fixed equatorial semicircle. In general, when the

detector is rotated arbitrarily around S2, the line � does not lie

in a single two-dimensional plane. However, it is still possible

to introduce curved coordinates in a three-dimensional solid

sphere enclosed by S2, where the ‘rotation angle’ parameter ’
parameterizes the line � on the surface, while two other

coordinates (s, �) determine a position within the plane �(�)

through the centre of the sphere with the normal vector

pointing to �(�) (Fig. 1). If Orlov’s condition is satisfied, the

plane, �(�), sweeps the whole solid sphere, while the normal

vector travels along the line �. If s is parallel to the vector

dp(�) tangential to line � at point �, and � is perpendicular to

s within the two-dimensional plane �(�), then the elemental

three-dimensional volume in these coordinates will be the

same as in the cylindrical case, i.e. |dq| = sdsd�d�. Therefore,

in the case of optimal Shannon sampling, the SNR here will be

the same as in the cylindrical case above, i.e. as in equation

(14). Finally, if the rotational positions during the ‘scan’ are

discrete (and can be random in the XFEL-type CDI), a

sufficient condition for Shannon sampling can be formulated

in the following way. Mapping all rotational positions �m of

the sample as points on S2, it should be possible to draw a

continuous line � through all or a subset of the points �m in

such a way that: (i) the line � satisfies the Orlov condition; (ii)

the distance between points �m along the line � does not

exceed R�� = 2R/L, where L2 is the total number of pixels in

the detector (assuming that detector pixels are square and do

not have gaps between them). The condition �� = 2/L is

further discussed below.
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One might think that the difference between equations (13)

and (14) is artificial, as any diffraction data collected on a

cylindrical, spherical or other sufficiently dense and regular

grid can be readily interpolated onto a suitable Cartesian grid,

which would then lead to equation (13), rather than equation

(14). However, it is known that the corresponding interpola-

tion tends to amplify the noise in the measured data (Natterer,

1986), thus leading to a higher power of M in the denominator

of equation (14). This is also true for random orientations of

the sample, where the corresponding normal vectors p

uniformly sample the whole sphere S2. According to the Orlov

condition, such sampling may be overdetermined (e.g. a

sufficiently dense set of points on a single equatorial semicircle

already provides optimal sampling). Therefore, the behaviour

of the SNR will be expected to depend on the interpolation

scheme employed for remapping the sampling points from the

original scan grid points to a regular grid used in the recon-

struction. Some methods may actually skip this remapping

step and utilize the original grid points directly (Elser, 2009),

but the stability of the method, and hence the SNR in the

reconstructed electron-density distribution, will still inevitably

depend on the geometry of the sampling grid, as demonstrated

on a fundamental level by the behaviour of the singular values

of the X-ray transform (Natterer, 1986). An estimate of the

number of CDI projections required to provide Shannon’s

sampling, in the case of random orientations of the sample

uniformly distributed on a sphere, was given in Ekeberg et al.

(2015). This number is consistent with the Orlov condition and

the optimal angular sampling requirement in CT (Natterer,

1986), as discussed below.

Let us make the above arguments more precise by explicitly

calculating the SNR in the case of cylindrical sampling of

reciprocal space. Here we have j�qmj ¼ sl�s ���� ¼
lh3ð�=L�Þ; where sl = (l � 1)h, �s = �� = h, �� ¼ �=L�,

m ¼ ðl;m�;m�Þ, l ¼ 1; 2; . . . ;L=2, m� ¼ 1; 2; . . . ;L�, m� ¼

1; 2; . . . ;L, L� is the number of rotational positions (i.e. the

number of projections) in the scan, L2 is the number of pixels

in the detector, so that L�L2=2 ¼ M is the total number of

data points in the scan. It is known (Natterer, 1986) that the

optimal (Shannon) sampling is achieved when L� ¼ �L=2.

The corresponding number of diffraction patterns, (�/2)L,

also agrees well with the estimate given for the XFEL-type CDI

case in the work by Ekeberg et al. (2015). Assuming optimal

sampling conditions, we have �� = 2/L, M = (�/4)L3
ffi L3 and

|�qm| = 2(l/L)h3. As a consequence,
PM

m¼1 nR;h;TðqmÞj�qmj

ffi 2h3L�1
PL=2

l¼1 l
PL

m�¼1

PL�
m�¼1 nR;h;T ðqmÞ = 2h3L�1

PL=2
l¼1 l Nl,

where Nl �
PL

m�¼1

PL�
m�¼1 nR;h;T ðqmÞ is the mean number

of photons collected in the cylindrical shell with radius

sl. Similarly,
PM

m¼1 j�qmj = 2h3L�1
PL=2

l¼1 l
PL

m�¼1

PL�
m�¼1 1

ffi 2h3L�1�ðL=2Þ4, when L/2 � 1. Substituting these expres-

sions into equation (12), we find that, in the case of cylindrical

sampling of the diffraction space, the maximum SNR achiev-

able in CDI under conditions defined at the end of Section 3,

when nR;h;T ðqmÞ> 1 and the reconstructed phase is the same

or all members of the ensemble of intensity measurements, is

equal to

SNR2
a;max½�e� ffi 16M�4=3

XL=2

l¼1

l Nl: ð15Þ

Let us consider two extreme cases.

(i) ‘Sharply peaked samples’ with a spatial distribution of

electron density consisting of one or several very narrow

peaks. For such samples, the distribution of diffracted intensity

is almost flat (spatially uniform), nR;h;T ðqmÞ ffi N=M ¼ const,

Nl ¼
PL

m�¼1

PL�
m�¼1 nR;h;T ðqmÞ ¼ ð�=2ÞðN=MÞL2 and

PL=2
l¼1 l Nl

¼ ð�=8ÞðN=MÞL3ðL=2þ 1Þ ffi NL=4: Substituting this into

equation (15), we see that SNR2
a;max½�e� is described by

equation (13), which was obtained earlier for arbitrary

samples and uniform Cartesian sampling of the diffraction

data. In particular, here SNR2
a, max[�e] is also proportional to

the third power of the spatial resolution, �r
3 = V/M. The

cylindrical non-uniform sampling does not reduce SNR in this

case compared with the uniform Cartesian sampling, because

the ramp filter, involving multiplication by l in the discrete

form, affects the noise and the signal equally.

(ii) ‘Spatially flat’ samples with ‘slowly varying’ electron-

density distributions which produce sharply peaked distribu-

tions of diffracted intensity. Let us assume that the dominant

contribution to the total mean number of registered photons is

provided by the first radial order, such that N1 �
PL=2

l¼2 lNl. In

this case, we have
PL=2

l¼1 lNl ffi N1 ffi N. Substituting this into

equation (15), we arrive at SNR2
a;max½�e� ffi 16N=M4=3, in

agreement with equation (14) with 	 = 4. Cylindrical non-

uniform sampling does decrease SNR in this case, because the

ramp filter amplifies the noise in the higher diffraction orders

much more strongly than the signal which predominantly

comes from the first diffraction order.

It is logical to conclude that any real sample will belong

somewhere in the range between the extremely sharp sample

case (i) and the extremely flat sample case (ii) and, as a

consequence, the squared SNR in the electron-density distri-

bution reconstructed from CDI data collected from such a

sample will satisfy the inequality 4	N=M4=3 
 SNR2
a;max½�e�


 4N=M:
Note that the above results have been obtained with respect

to the spatially averaged signal and noise variance in the

reconstructed data. However, as for a typical sample, much

fewer photons are scattered to high diffraction angles

compared to small angles, the SNR in the high-order spatial

frequencies of the reconstructed electron density is likely to be

much lower compared with the SNR in the low-order spatial

frequencies (except for very low-order frequencies, for which

the diffraction data may not be registered at all, as it is masked

by the unscattered transmitted beam and is blocked from the

detector in a typical CDI experiment). In order to evaluate a

true spatial resolution in the reconstructed sample, it may be

necessary to estimate the SNR in the reconstructed high-order

spatial frequencies. A relevant estimate can be readily

obtained similarly to equation (12), in view of the one-to-one

correspondence between the diffraction-intensity data

collected at a particular q value and the spatial frequency of

the same order in the reconstructed electron density according
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to equation (8). One only needs to replace the mean number

of photons registered during the scan in all pixels by the

corresponding mean number of photons registered in the

pixels within the required range of q values. In particular, we

can estimate the SNR in Fourier harmonics of radial order l of

the reconstructed electron density. The following relationship

can be derived similarly to equation (15):

SNR2
l;max½�e� ffi 8Nl=ð�L2

Þ: ð16Þ

Consider, for example, the case of rapidly decreasing diffrac-

tion intensity, Nl ¼ l��C� , where 2 < � < 1 and C� is a

constant. The total mean number of photons is equal to

N ¼
PL=2

l¼1 Nl ¼C�

PL=2
l¼1 l�� ffi C��ð�Þ; when L/2� 1, where

�(�) is the Riemann zeta function. This allows us to

approximate C� ffi N=�ð�Þ. Then at l = L/2 we obtain

NL=2 ffi ðL=2Þ��C� ffi ðL=2Þ��N=�ð�Þ and SNR2
L=2;max½�e� ffi

23þ� ½��ð�Þ��1N=Mð2þ�Þ=3: In a model case with � = 4, this gives

SNR2
L=2;max½�e� ffi 38N=M2. The last equation indicates that in

order to maintain a fixed SNR in the highest radial order of

spatial frequencies of the reconstructed electron density, it is

necessary in this case to increase the total number of regis-

tered scattered photons in proportion to the sixth power of the

spatial resolution, �r
6 = (V/M)2. This is a very demanding

requirement indeed, making the high-resolution CDI imaging

rather challenging in this case and calling for the use of high-

intensity X-ray sources, such as XFELs.

At the other extreme, when the diffraction intensity is flat,

nR;h;T ðqmÞ ffi N=M ¼ const, we have previously calculated

that Nl ¼ ð�=2ÞN=L for any l. Substituting this into equation

(16) with l = L/2, we obtain SNR2
L=2;max½�e� ffi 4N=M. This

result coincides with equation (13) as expected, because, in the

case of a flat intensity, the SNR of any spatial Fourier

frequency coincides with the average SNR. Consequently, in

this case, in order to maintain a fixed SNR in the highest

reconstructed Fourier frequencies, the number of scattered

photons N should be proportional to the third power of spatial

resolution,

�r
3 = V/M.

5. Imaging quality characteristic and information
capacity of CDI

Let us consider further the case corresponding to equation

(13), where SNR reaches the maximum possible value for CDI

at a given radiation dose (which corresponds to the mean total

number of diffracted photons N) and a given spatial resolution

[which corresponds to the total number of voxels M, with the

spatial resolution �r � (V/M)1/3]. The three-dimensional

reconstructive imaging quality characteristic of such a CDI

system is equal to

QS;a;max½�e� �
SNRa;max½�e�

~FF1=2
in �3=2

r

ffi
2ðN=MÞ

1=2

ðNin=VÞ
1=2�3=2

r

¼ 2ðN=NinÞ
1=2;

ð17Þ

where F̃in = Nin/V is the uniform three-dimensional incident

photon fluence (number of photons per unit volume in the

sample space, accumulated during the whole three-

dimensional scan). The quantity � � N=Nin represents the

scattering power of the imaged sample. Equation (17) is a

remarkable result, given that it has been previously proven

that for intensity-linear imaging systems the (two-dimensional,

direct) imaging quality characteristic cannot exceed

�1/2 (Gureyev et al., 2016). This is also the case in equation (7)

above. The extra factor of 2 in equation (17) can be traced

back to the factor of 4 in the numerator of equation (12),

which in turn appeared as a consequence of the statistics of the

denominator of equation (10) in the most favourable case, i.e.

when the noise in the collected CDI data had Poisson statistics,

the mean number of photons in each pixel was larger than or

equal to 1/2, and the reconstructed phase distribution in each

two-dimensional diffraction image was the same for all

members of the statistical ensemble. Ultimately, this effect is

the consequence of the quadratic dependence of the regis-

tered diffraction intensities on the electron density in the

sample, as described by equation (5). When the registered

intensity is Poisson-distributed, the reconstructed electron

density behaves as a square root of a Poisson-distributed

random variable, and hence the ratio of the squared mean

electron density to its variance is approximately equal to

n=ð1=4Þ ¼ 4n, when n > 1=2, as shown in Appendix A. For

comparison, when measured intensities linearly depend on the

electron density, as in the model case considered by Gureyev

et al. (2016), the ratio of the squared mean to the variance is

equal to n2=n ¼ n, which is four times smaller than in the

‘quadratic case’. Note however, that the actual value of the

imaging quality characteristic in equation (17) is always small,

as N=Nin � 1 in accordance with the validity conditions of the

first Born approximation used in the derivation of equation

(17).

In cases where the SNR is proportional to the fourth power

of the spatial resolution, as in equation (14), the imaging

quality characteristic is equal to

QS;a;max½�e� �
SNRa;max½�e�

~FF1=2
in �3=2

r

ffi
2	N

1=2
M�2=3

N
1=2
in M�1=2

¼ 2	ðN=NinÞ
1=2

M�1=6:

ð18Þ

Therefore, in this case, the imaging quality characteristic

decreases as a function of the number of resolution voxels.

This is a direct consequence of the relative amplification of

noise with respect to the useful signal in the case when both

the sampling density and the number of scattered photons are

decreasing as a function of the radial coordinate in reciprocal

space.

The Shannon information capacity of an imaging system

with M voxels and average SNR 2ðN=MÞ1=2 > 1, is equal to

DðM;NÞ ’ 0:5M½log2ð4N=MÞ þ oð1Þ�; ð19Þ

where the term o(1) is much smaller than unity when the ratio

N=M is large (Shannon, 1949; Cox & Sheppard, 1986; Gureyev

et al., 2016). This result indicates that a CDI system with M

pixels, each one collecting more than one photon on average

and N photons in total across all the pixels used in a scan, is
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capable of distinguishing between approximately ð4N=MÞM=2

different samples, where each sample is represented by its

electron-density values in M distinct voxels of equal size. In

the case of communication systems, the same number repre-

sents the total of different messages that can be encoded by a

system with a given number of channels and a given SNR

(Shannon, 1949). Using the analogy with communication

systems for the case of CDI, we state that the average SNR,

2ðN=MÞ1=2 is approximately equal to the number of different

levels of electron density that can be distinguished at each one

of M voxels in the reconstructed sample, in the presence of

Poisson photon shot noise in the registered diffraction inten-

sities. Thus, we have a simple description of the maximal set

of distinct objects that can be reconstructed from the data

collected by a CDI system using Nin ¼ N=� incident

photons: each such object is represented by one of

P � 2ðN=MÞ1=2 possible electron-density levels in each of M

independent ‘resolution voxels’ within volume V in the object

space.

6. Conclusions

We have derived simple approximate expressions for the

average SNR, intrinsic imaging quality and Shannon’s infor-

mation capacity of CDI systems in terms of the total number

of scattered photons collected in a three-dimensional scan and

the number of resolution voxels in the reconstructed volume.

We found that, at a fixed radiation dose delivered to the

sample, the SNR may be proportional to the third or fourth

power of the spatial resolution, depending primarily on the

scattering characteristics of the sample. These results can help

to estimate the upper bounds on the SNR of the electron

density that can be achieved in CDI experiments if the phases

and particle orientation are accurately determined. Such

bounds are expected to be useful for the design of future

XFEL experiments, especially when they are pushed to

smaller particles or single protein molecules that scatter very

weakly.

In the present study, we have only taken into account the

noise in the CDI data which appears as a result of photon

counting statistics in an ideal detector. Critical factors

contributing to noise in experimental CDI data, such as

sample damage during the exposure, fluctuations of the inci-

dent radiation between different exposures and variability in

the sample configurations, have not been taken into account

here. Discussions of the role of these factors in CDI experi-

ments can be found in the previously cited publications (see

e.g. Chapman et al., 2011; Quiney & Nugent, 2011; Martin et

al., 2015; Miao et al., 2015). However, a further analysis of the

effect of these factors on SNR and spatial resolution in the

reconstructed samples, using the approach taken in the

present paper, may still be of interest. We believe that such

analysis could potentially provide some new insights into these

important problems and contribute to simplified guidelines for

the planning of future XFEL experiments. We plan to obtain

and present the relevant results in a related subsequent

publication.

APPENDIX A
Expectation value of the square root of Poisson-
distributed variable

In this Appendix we derive a sharp upper bound for the

expression in the numerator of equation (10).

First, we consider the expectation value of the square

root of the Poisson distribution, f ðnÞ � n1=2 ¼ expð�nÞ

	
P1

n¼0 n1=2ðn n=n!Þ, and find an approximation for its square

value, f 2ðnÞ ¼ n1=2
� �2

at any n.

Following the suggestions at Mathematics StackExchange

(2018), we can derive analytical approximations for the

expectation value

n1=2 �

Z
x1=2pðxÞ dx; pðxÞ ¼ expð�nÞ

X1
n¼0

nn

n!

ðx� nÞ; ð20Þ

when n� 1 and n� 1. In the first case, we expand the

function g(x) = x1/2 into the Taylor series around the point

x ¼ n; gðxÞ ¼ n1=2 þ ½ðx� nÞ=2n1=2� � ½ðx� nÞ
2=8n3=2� þ

O½ðx� nÞ
3=n5=2�, when n!1. Substituting this into equation

(20), we obtain

n1=2 ¼ n1=2 � ð1=8Þn�1=2 þOðn�3=2Þ; when n!1; ð21Þ

and hence n1=2
� �2

ffi n� ð1=4Þ, when n � 1.

When n� 1, we can approximate expð�nÞ¼1� nþOðn2Þ,

when n! 0, and substitute this into the expression for p(x)

in equation (20),

pðxÞ ¼ ½1� nþOðn2Þ�½
ðxÞ þ n
ðx� 1Þ

þ ðn2=2Þ
ðx� 2Þ þOðn3
Þ�

¼ ½1� nþOðn2Þ�
ðxÞ þ ðn� n2Þ
ðx� 1Þ

þ ðn2=2Þ
ðx� 2Þ þOðn3
Þ; n! 0:

Therefore,

n1=2 ¼ n� n2
½1� ð2Þ1=2=2� þOðn3

Þ; when n! 0; ð22Þ

and hence n1=2
� �2

ffi n2, when n� 1.
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Figure 2
Numerically calculated values of f ðnÞ ¼ n1=2 as a function of n (triangles),
and the corresponding asymptotes, f0ðnÞ ¼ n (dotted line) and
f1ðnÞ ¼ n1=2 (dashed line), all plotted on a log–log scale.



Let us now estimate the error between the asymptotic

approximations equations (21) and (22) and the exact value of

n1=2 for different values of n. Fig. 2 shows a comparison

between the numerically calculated values of n1=2, as a func-

tion of n, i.e. the function f ðnÞ � expð�nÞ
P1

n¼0 n1=2 ðnn=n!Þ,
and the corresponding asymptotes, f0ðnÞ � n and f1ðnÞ � n1=2.

It is easy to see from Fig. 2 that the two asymptotes

approximate the function f ðnÞ quite well, not just when n� 1

and n� 1, but also when n 
 1 and n � 1, respectively. In

order to estimate the accuracy of these approximations, we

calculated numerically the values of the function f ðnÞ ¼ n1=2 in

the range 0.001 
 n 
 100, and then evaluated the relative

errors "0ðnÞ � n=n1=2 � 1 and "1ðnÞ � n1=2=n1=2 � 1 within the

same range. The graphs of these error functions are shown in

Fig. 3.

The numerical estimates also show that the difference

between the approximation

f 2
a ðnÞ ¼

n2; if n< 1=2

n� 1=4; if n � 1=2

	
ð23Þ

and the exact function f 2ðnÞ ¼ n1=2
� �2

, does not exceed 0.17,

while the relative error does not exceed 0.35, for any n.

Now consider the square modulus of the ensemble average

of a complex random variable U ¼ jUj expði’Þ, jhUij2 =

jJ�1
PJ

j¼1jUjj expði’jÞj
2. We can apply the Cauchy–Schwarz

inequality with the factors |Uj|
1/2 and jUjj

1=2 expði’jÞ to

the last expression and obtain jhUij2 
 J�2
PJ

j¼1 jUjj

	
PJ

j¼1 jUjjj expði’jÞj
2
¼ hjUji2:Using this inequality, we then

arrive at the following result,
R
h�eðrÞi

2dr ¼
R
j hF3�eðqÞij

2dq

¼ ðR=reÞ
2
I�1

in

R
j hUR;h;T ðqÞij

2dq 
 ðR=reÞ
2
I�1

in

R
hI

1=2
R;h;TðqÞi

2dq

¼ ðR=reÞ
2
ðM=NinÞ

PM
m¼1 hn

1=2
R;h;TðqmÞi

2
j�qmj: It is easy to see

that if the phases ’j are the same for all j, then |hUi|2 = h|U|i2; in

this case the last inequality for the integral of the square of the

mean electron density also becomes an equality.

We can now use the approximation from equation (23) for

the function f 2ðnÞ ¼ n1=2
� �2

to obtain

Z
h�eðrÞi

2dr 
 ðR=reÞ
2
ðM=NinÞ

	

	 X
m2fM1g

½nR;h;T ðqmÞ � ð1=4Þ�j�qmj

þ
X

m2fM2g

n2
R;h;TðqmÞj�qmj



; ð24Þ

where M1 is the number of elements in the subset {M1}

consisting of all data points from one scan in which the mean

number of registered photons per pixel is larger than or equal

to 1/2, and {M2} represents the complementary subset

consisting of M2 data points where the mean number of

registered photons per pixel is smaller than 1/2.

APPENDIX B
List of the main symbols used in the paper

A, diameter of the sample.

F3f, three-dimensional Fourier transform of f.

Fin, uniform incident photon fluence (number of detected

photons per unit area).

F̃in, uniform three-dimensional incident photon fluence

(number of photons per unit volume).

h, detector pixel size.

Iin, spatially uniform incident intensity.

IR, average intensity in the image plane z = R.

IR,h,T, intensity measured over time T in a pixel of size h

located in the plane z = R.

L, square root of the total number of pixels in the detector.

L�, number of rotational positions (i.e. the number of

projections) in the scan.

M, total number of resolution voxels in the reconstructed

sample.

nR,h,T, number of photons detected over time T within area h2

in the plane z = R.

N, total number of photons collected at all diffraction angles in

one complete three-dimensional scan.

p, vector normal to the detector plane.

q = (�, �, &), Cartesian coordinates in the diffraction space.

q = (s, �, �), cylindrical coordinates in the diffraction space.

re, classical electron radius.

r = (x, y, z), Cartesian coordinates in the object space.

R, distance between the sample and the detector.

s = (�2 + &2)1/2, cylindrical radial coordinate in the diffraction

space.

SNRa[�e], spatially averaged signal-to-noise ratio in the

reconstructed electron density.

T, exposure time.

U ¼ I1=2 exp½i’�, complex wave amplitude.

VR,h,T, variance of IR,h,T.

V, reconstructed volume.

�r, spatial resolution in the reconstructed sample.

�qm, discrete voxel centered at the measurement point with

index m.

�, quantum efficiency of the detector.

�, radiation wavelength.
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Figure 3
Numerically calculated values of the relative errors "0ðnÞ � n=n1=2 � 1
(dotted line) and "1ðnÞ � n1=2=n1=2 � 1 (dashed line) as a function of n,
plotted on a log–log scale.



�, cylindrical angular coordinate in the diffraction space.

�, curve drawn by the end of normal vector p while the sample

is rotated.

’, phase of an electromagnetic wave.

�e, electron-density distribution in the sample.

�, scattering power of the sample.
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