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The origin of diffuse X-ray scattering from protein crystals has been the subject

of debate over the past three decades regarding whether it arises from

correlated atomic motions within the molecule or from rigid-body disorder.

Here, a supercell approach to modelling diffuse scattering is presented that uses

ensembles of molecular models representing rigid-body motions as well as

internal motions as obtained from ensemble refinement. This approach allows

oversampling of Miller indices and comparison with equally oversampled diffuse

data, thus allowing the maximum information to be extracted from experiments.

It is found that most of the diffuse scattering comes from correlated motions

within the unit cell, with only a minor contribution from longer-range correlated

displacements. Rigid-body motions, and in particular rigid-body translations,

make by far the most dominant contribution to the diffuse scattering, and

internal motions give only a modest addition. This suggests that modelling

biologically relevant protein dynamics from diffuse scattering may present an

even larger challenge than was thought.

1. Introduction

X-ray crystallography has been the main method for solving

macromolecular structures for several decades. With the

advent of highly brilliant X-ray sources and photon-counting

pixel-array detectors, it has evolved into a highly automated

technique, even for very small micrometre-sized crystals of

large molecular complexes; this has allowed its widespread use

by structural biologists. Crystallography makes use of the

enhancement of X-ray scattering caused by the periodic

arrangement of molecules in a lattice, and data-collection and

structure-solution techniques focus on obtaining the inten-

sities of the Bragg reflections and using them to refine a

structural model. Any background scattering is removed in the

integration process and is treated as a nuisance rather than

as a carrier of information. However, correlated motion or

disorder of atoms in the crystal causes diffuse scattering

outside the Bragg peaks (note that X-ray diffraction experi-

ments cannot distiguish between static and dynamic disorder).

While amplitudes of motion result in the B factors, it is the

correlation in motion that is exclusively contained in the

diffuse scattering. It is estimated that for a protein crystal with

a modest B factor of 20 Å2 the total diffuse scattered intensity

exceeds that of the Bragg intensity beyond a resolution of

3.8 Å (Clarage et al., 1992). Access to information on corre-

lated motion of biomolecules could provide insight into their

dynamics, which are generally considered to be crucial to their

function (Henzler-Wildman & Kern, 2007). Understanding

and modelling the diffuse scattering potentially adds valuable

information to what we can learn from Bragg scattering

(Meisburger et al., 2017).
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The first attempts at interpreting diffuse scattering in terms

of protein-molecule motions or internal mobilities were made

in the 1980s and 1990s. In a seminal paper, Caspar et al. (1988)

developed a liquid-like model to explain the observed varia-

tional diffuse scattering features of rhombohedral insulin

crystals (see Section 2 for a description of the various types of

diffuse scattering). They found that the two main features that

were observed, broad cloudy scattering and narrower halos

around the Bragg peaks, could be modelled by two displace-

ment correlation functions with coupling distances of 6 and

20–30 Å, respectively. They ruled out the possibility that the

diffuse scattering was caused by low-frequency lattice vibra-

tions which would give rise to thermal diffuse scattering

(TDS), as these would produce much narrower halos. In

contrast, their observations indicated significant correlation

between nearest-neighbour molecules. In a later paper by

Clarage et al. (1992), this approach was further extended and

applied to triclinic and tetragonal lysozyme crystals. Again, for

each crystal two components of the diffuse scattering could

be modelled: a short-range correlation of internal movements

with a coupling distance of 6 Å, which was interpreted as

changes of torsion angles in the backbone or neighbouring

side-chain displacements, and long-range lattice-coupled

displacements of 50 Å in distance. In contrast to these findings,

Pérez et al. (1996) concluded that rigid-body movements are

the major contribution to the diffuse scattering of tetragonal

lysozyme crystals. Their model reproduced the shape of the

observed diffuse patches (speckles) with roughly equal

contributions from translational and rotational displacements.

A further argument for this model is that the B factors of C�

positions are reproduced. Molecular-dynamics simulations of

orthorhombic lysozyme (Héry et al., 1998) further supported

rigid-body translations, although it was suggested that only the

backbone atoms form the rigid core, with the side chains

forming separate rigid bodies.

In the following years, Wall and coworkers (Wall, Clarage et

al., 1997; Wall, Ealick et al., 1997) published methods to extract

three-dimensional diffuse scattering maps from experimental

data. Until then, all data had been extracted from single (still)

images and mapped onto the two-dimensional detector plane

by intersection with the Ewald sphere. They applied their

techniques to staphylococcal nuclease and calmodulin crystals

and fitted the diffuse scattering in both cases using Caspar’s

liquid-like motional models, although in the latter case there

were additional streaks in the scattering data caused by

nearest-neighbour coupling that required an anisotropic

treatment.

The debate on whether the variational diffuse scattering is

caused by internal correlated motion or rigid-body transla-

tions and rotations became dormant for some time, but has

recently been revived, starting with a series of papers by Van

Benschoten and Wall (Van Benschoten et al., 2015, 2016; Wall,

2018). In the first paper, diffuse scattering maps are generated

from translation–libration–screw (TLS) models as used in the

structural refinement of protein crystal structures. However,

different selections of TLS groups produced markedly

different diffuse patterns. In a very enlightening paper, Van

Benschoten et al. (2016) showed that three-dimensional

diffuse scattering data can be obtained from routine data

collections from protein crystals using the highly brilliant

X-ray sources that are currently available and modern pixel-

array detectors (PADs). They analysed the diffuse scattering

of cyclophilin A (CypA) and trypsin using various models and

concluded that TLS models did not agree well with the data,

but that normal-mode (NM) analysis and liquid-like motion

(LLM) models gave much better agreement. In contrast,

Ayyer et al. (2016) concluded that the continuous scattering

visible as a speckle pattern in XFEL data beyond the 4.5 Å

Bragg limit from crystals of the integral membrane-protein

complex photosystem II is caused by translational lattice

disorder. The diffuse scattering then becomes the incoherent

sum of many (rotationally) aligned single-molecule diffraction

patterns. Iterative phasing of the continuous diffraction gave

Fourier amplitudes and phases to 3.3 Å resolution and much-

improved electron density. This method is further detailed in

Chapman et al. (2017). Recently, Peck and coworkers showed

evidence for longer-range intermolecular correlated motions,

i.e. longer than the size of one molecule, in three different

protein crystals (Peck et al., 2018), and Polikanov and Moore

suggested displacements arising from acoustic lattice vibra-

tions in ribosome crystals, implying low-frequency motions of

whole molecules (Polikanov & Moore, 2015). Previously, this

long-range order had also been observed by Doucet & Benoit

(1987) for orthorhombic lysozyme.

Models for diffuse scattering from protein crystals can be

subdivided into those that use analytical expressions with only

a few parameters, such as the liquid-like motion model, and

those that use molecular model coordinates, such as normal-

mode analysis, TLS models and molecular-dynamics simula-

tions. None of these approaches has given a conclusive

structural interpretation of the correlated motion that is

responsible for diffuse scattering. A comprehensive review

containing an excellent section on diffuse scattering can be

found in Meisburger et al. (2017). The quality indicators that

should be used to quantify the agreement between modelled

and experimental diffuse data have not yet been well estab-

lished in the field. For Bragg data, Rwork and Rfree in structural

refinement and real-space electron-density correlation coeffi-

cients between model and observed data are well accepted.

In this work, we study how diffuse scattering is built up from

various structural contributions in the full three-dimensional

reciprocal space. We simulate diffuse scattering from an

ensemble of molecular models that represent disorder in

crystals through rigid-body motions and/or internal motions.

For this, we sampled rigid-body translations and rotations

from Gaussian distributions based on the refined B-factor

fingerprint or sampled poses from motions described by TLS

models, and generated ensembles from ensemble refinement

of the crystal structures (Burnley et al., 2012) to model internal

motions. The diffuse maps were calculated by our newly

developed supercell method, allowing sampling of reciprocal

space in between integer Miller indices. We extracted diffuse

scattering intensities from experimental diffraction data of

CypA and lysozyme and converted these to full three-
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dimensional reciprocal-space maps. Since the diffuse signal is

continuous through reciprocal space, sampling only on Bragg

spots can lead to a loss of information. The size of the pixels

and the rotation scan width of the images allows oversampling

of the Miller indices by a factor of 5–10, i.e. 53–103 more voxels

can be assigned than just those belonging to integer Miller

indices. We will show that rigid-body contributions to diffuse

scattering are dominant by analysing different aspects. (i) We

calculate linear correlation coefficients (CCs) between the

maps and compare these with literature values. (ii) We visually

inspect intensity distributions (speckle patterns) in both the

calculated and experimental two-dimensional and three-

dimensional diffuse maps. (iii) We calculate the contribution

of internal motion to the diffuse features. (iv) We make an

unbiased estimate of the structural unit that is responsible for

the diffuse scattering by calculating the Patterson map of the

experimental diffuse data.

2. Theory of diffuse scattering from disordered crystals

Diffuse scattering caused by static or dynamic disorder can be

understood by considering the general equation for the total

scattering of a crystal in terms of a lattice summation of unit

cells containing the scattering atoms,

ItotðQÞ ¼
P

N

P

N0
expf2�i½Q � ðRN � RN0 Þ�g

�
P

j

P

k

fjfk expf2�i½Q � ðrNj � rN0kÞ�g: ð1Þ

The first double summation is over all periodic lattice points

with positional vectors RN in three dimensions; the second

term runs over the positional coordinates of atoms in the unit

cells. Q is the vectorial difference between the incident and

scattered wavevectors and has length 1/d = 2sin�/�. If the

crystal were strictly ordered, the total diffracted intensity1

would be

ItotðQÞ ¼ NaNbNcFðQÞ � F�ðQÞ; ð2Þ

where Na is the number of unit cells along the a axis, and

likewise for Nb and Nc, and F is the structure factor of every

unit cell. Let us consider deviations of atoms from their ideal

positions in the unit cells. Each atom j will be displaced by a

vector dj from its average position hrji . The total scattering

then becomes

ItotðQÞ ¼
P

N

P

N0
expf2�i½Q � ðRN � RN0 Þ�g

�
P

j

P

k

�
fjfk expf2�i½Q � ðhrji � hrkiÞ�g

� expf2�i½Q � ðdNj � dN0kÞ�g
�
: ð3Þ

The variation of atom positions produces diffuse scattering

and is dependent on the type of motion or disorder. Four

classes can be distinguished.

(i) The weak spherical scattering around the incident beam

caused by uncorrelated random displacements.

(ii) Broad cloud-like features between the Bragg peaks

caused by correlated motions within the unit cell, and often

called very diffuse or variational scattering (Caspar et al.,

1988). The correlation between atoms can either be the result

of the internal flexibility of protein molecules, e.g. global

variations in domain secondary structure or side-chain

conformations, or be caused by rigid-body motions of entire

molecules, or any combination of these.

(iii) Halos around the Bragg peaks caused by correlation

over several unit cells.

(iv) Sharp features such as streaks, rings or triangles from

long-range correlations.

(3) is the general equation for describing diffuse scattering and

can be expanded in several ways. We follow James (1958) in

deriving the results for random, independent and isotropic

displacements of atoms. Averaging over the unit cells reduces

the last exponential to exp{�2�2[(hdj� dki)�Q]2} (where use is

made of a Taylor expansion, cut off after the quadratic term)

and in addition hdj � dki
2
’ hdj

2
i + hdk

2
i.

(3) then becomes

ItotðQÞ ¼ Nt

P

j

f 2
j ½1� expð�4�2hd2

j i �Q
2
Þ�

þ
P

N

P

N0

P

j

P

k

expf2�i½Q � ðRN � RN0 Þ�g

� fjfk expf2�i½Q � ðhrji � hrkiÞ�g

� exp½�2�2
ðhd2

j i þ hd
2
kiÞ �Q

2
�; ð4Þ

where Nt is the number of unit cells in the crystal. The last

term is the usual Bragg intensity modulated with the Debye–

Waller factor, and peaks at Miller indices because of the lattice

sum. The first term is the diffuse scattering of type (i) that is

spherical around the incident beam, and the reduction in

intensity by the Debye–Waller factor from the Bragg part

reappears in the diffuse scattering.

Now, suppose that the unit cell contains one molecule (P1

symmetry) and that the molecules have random isotropic

translational displacements. The atomic displacements are

thus fully correlated and all atoms within a unit cell are

displaced over the same vector dN. The subscripts j and k in (3)

can be dropped and, following the same reasoning as above,

we obtain

ItotðQÞ ¼
P

N

P

N0
expf2�i½Q � ðRN � RN0 Þ�g

� exp½2�iQ � ðdN � dN0 Þ� � Ft½h�ðrÞi� � Ft�½h�ðrÞi�

¼
�
Nt½1� expð�4�2hd2

i �Q2
Þ

þ
P

N

P

N0
expf2�i½Q � ðRN � RN0 Þ�g

� expð�4�2
hd2
i �Q2

Þ
�
� Ft½h�ðrÞi� � Ft�½h�ðrÞi�; ð5Þ

where Ft[h�(r)i] is the Fourier transform of the average

electron density and hdi is the average displacement. We see

that the diffuse scattering is proportional to the squared

Fourier transform of the unit-cell density. In the case of

symmetry-related molecules that are displaced independently,

Ayyer et al. (2016) have shown that the diffuse scattering is

proportional to the incoherent sum of the squared Fourier
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N2, after integration over the Bragg peak volume it is proportional to N.



transforms of the independent rigid units. This principle was

exploited by Ayyer et al. (2016) and Chapman et al. (2017),

who used continuous scattering from translationally disor-

dered crystals for phasing beyond the Bragg diffraction limit.

The diffuse scattering is that of type (ii). It is important to note

that the maximum diffuse scattered intensity is achieved by

these rigid-body translations as all atoms move in a correlated

fashion and the Fourier transform of the whole molecule

appears in (5). Also note that increasing the average displa-

cement hdi (i.e. increasing the disorder of the crystal) does not

change the diffuse pattern (the Fourier transform) but only

scales the intensties.

An effort to derive such equations to incorporate rotational

disorder was undertaken by Moore (2009). It followed from

his paper that the diffuse scattering caused by rotational

disorder looks completely different from that of translation

disorder. If atomic displacements are correlated in a complex

way, including rigid-body rotations, it is easier to rearrange (3)

by incorporating all atomic displacements into the varying

structure factors (Welberry, 1985; Moss et al., 2003),

ItotðQÞ ¼
P

N

P

N0
expf2�i½Q � ðRN � RN0 Þ�gFN � F

�
N0

¼ Nt

P

M

hFN � F
�
MiN exp½2�iðQ � RMÞ�; ð6Þ

where RM is the difference vector between unit-cell origins. (6)

can be rewritten as

ItotðQÞ ¼ Nt

P

M

hFi2 þ ðFN � hFiÞðFM � hFiÞ
�

� �
N

� �

� exp½2�iðQ � RMÞ�: ð7Þ

The first part is the Bragg scattering; the second part, which

contains a possible correlation between unit cells RM apart, is

responsible for the diffuse scattering. When correlations exist

between atom motions on length scales larger than the unit

cell, sharp diffuse scattering of types (iii) and (iv) is observed.

It is convenient to rewrite the second part of (7) in terms of

correlation coefficients (Moss et al., 2003). In this paper, we

are only concerned with diffuse scattering of type (ii). Thus, if

no correlations across unit cells exists, (7) reduces to

ItotðQÞ ¼ N2
t hFi

2
þ Nt jðFN � hFiÞj

2
� �

N
: ð8Þ

The first part is the Bragg scattering, which becomes NthFi
2

after integration over the peak width resulting from the finite

size of the crystal. The second part is the diffuse scattered

intensity and is commonly rewritten as

IdiffðQÞ ¼ Nt½hF
2i � hFi2�; ð9Þ

the well known Guinier equation for modelling diffuse scat-

tering caused by motions within the unit cell and which we

exploited in this work. Thus, for such motions it is sufficient to

calculate the variance in structure factors.

3. Materials and methods

3.1. Diffraction data for CypA and hen egg-white lysozyme

Experimental data for cyclophilin A (CypA) were obtained

from the SBGrid Data Bank (https://data.sbgrid.org/dataset/

68; Fraser, 2015). The data were recorded on beamline 11-1 at

Stanford Synchrotron Radiation Light source using a Dectris

PILATUS 6M pixel-array detector, a rotation range of 180�, a

rotation scan width of 0.5� and an exposure time of 0.2 s. The

data were from a single crystal at an ambient temperature of

293 K with minimal surrounding mother liquor. The data were

indexed with DirAx (Duisenberg, 1992); unit-cell and instru-

ment parameters were refined with Peakref (Schreurs, 1999b).

A significant offset from the horizontal orientation of the

spindle axis was found with some 5� of reorientation of the

crystal during the scan. Refined unit-cell matrices were used

for reciprocal-space reconstruction. The structural models

were generated based on refinement by Van Benschoten et al.

(2016) and deposited as PDB entry 5f66.

Crystals of hen egg-white lysozyme (Sigma–Aldrich,

Schnelldorf, Germany) were obtained using the hanging-drop

vapour-diffusion method with a protein concentration of

25 mg ml�1. The crystals had dimensions of 100 � 100 �

20 mm. Data were collected on beamline ID-30A-3 at the

European Synchrotron Radiation Facility (ESRF) using a

Dectris EIGER X 4M detector. One crystal was mounted on a

MicroMesh Crystal Mount (MiTeGen) and kept at constant

humidity using the HC1 Humidity Control Device (Sanchez-

Weatherby et al., 2009) and ambient temperature (293 K).

Images were recorded over a rotation range of 180� and were

fine-sliced in 0.1� per image with 0.01 s exposure. Images were

merged into 1� frames prior to indexing with DirAx. The unit-

cell matrix was refined with Peakref (Schreurs, 1999b) and

reflection data were processed with EVAL15 (Schreurs et al.,

2010) to 1.3 Å resolution (Supplementary Table S1) and scaled

using SADABS (Sheldrick, 1996). The structure was refined

against these data using phenix.refine (Adams et al., 2010;

Supplementary Table S1).

3.2. Reconstruction of diffuse scattering maps in reciprocal
space

All of the software used to generate diffuse scattering maps

forms part of the EVAL software suite (Adams et al., 2010;

Schreurs, 1999a). For each image, bad-pixels masks were

generated. These comprise panel gaps (indicated by a pixel

value of ‘�1’ in the image file) and a user-defined beam-stop

shadow. To remove parasitic scattering of air and solvent

surrounding the crystal and inelastic Compton scattering, a

circularly averaged profile was subtracted. This profile was

constructed using pixels with values of less than 0.5 of the

maximum pixel intensity in the image and was corrected for

polarization of the synchrotron beam. When subtracting the

radial profile the polarization was reintroduced. To isolate the

diffuse scattering, Bragg spots had to be removed. Methods

have been described in the literature that use knowledge

of Bragg peak positions. Masks are located at predicted
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reflection positions and, within these, pixels are removed only

if they deviate significantly from the background (Polikanov &

Moore, 2015; Peck et al., 2018). An alternative method that is

not dependent on predicting reflection positions and that is

often used to remove sharp features in images is mode filtering

(Wall, Ealick et al., 1997). The most common value of the pixel

intensities in a box around every pixel replaces its value. We

took this approach and investigated how well Bragg reflec-

tions were removed depending on the kernel size. We found

that a kernel size of 21 � 21 pixels was needed to remove the

Bragg spots completely. Background and Bragg peak removal

is implemented in VIEW (Schreurs, 1999a). Examples of the

resulting images containing only diffuse scattering for CypA

and lysozyme are shown in Fig. 1. Once the radial scattering

and Bragg peaks have been removed, the pixels are trans-

formed to reciprocal space by the software IMG2HKL, which

is part of the EVAL package (Schreurs, 1999a). In fact, every

pixel represents a voxel extending in the rotation direction

over the scan width. The eight corners are mapped to reci-

procal space and the intensity is divided over the voxels that

are touched in the new grid. We chose to define the new grid in

terms of supercell (hs, ks, ls) indices for easy comparison with

the simulated diffuse maps (see Section 3). The supercell

indices correspond to rational fractions of Miller indices of the

original unit cell. For CypA we used a 9 � 8 � 5 supercell,

allowing sub-Miller-index sampling in multiples of 1/9, 1/8 and

1/5 in the a*, b* and c* directions, respectively. For lysozyme

we used a 5 � 5� 10 supercell. In both cases the target voxels

represent roughly the same dimension in Å�1. The resolution

limit of the pixel data we used was 2.0 Å in both cases. During

the mapping, image voxel intensities are corrected for Lorentz

and polarization factors and accumulated in the target voxels

(hs, ks, ls). Thus, the final values are proportional to squared

structure factors. However, a particular region in reciprocal

space can occur twice in a rotation scan ranging over less than

360�: one time left and one time right of the rotation axis.

Target voxel intensities are corrected for these number of

occurrences; voxels not being hit stay blank.
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Figure 1
Experimental diffraction detector images for (a) CypA and (d) lysozyme after mode filtering and radial subtraction. The reconstructed hk0 reciprocal-
space slice for CypA (b) after intensity merging with Friedel symmetry (�1) and (c) after merging with Laue symmetry (mmm). The hk0 reciprocal-space
slice of lysozyme (e) after intensity merging with Friedel symmetry (�1) and ( f ) after merging with Laue symmetry (4/mmm). The slices comprise voxels
between l =�1/5 and 1/5 and l =�1/10 and 1/10 for CypA and lysozyme, respectively. The slices range from h =�22 to 22, k =�27 to 27 for CypA and h
= �40 to 40, k = �40 to 40 for lysozyme.



3.3. Molecular ensembles for modelling disorder

All calculations were performed with custom-made scripts

using cctbx (Grosse-Kunstleve et al., 2002). Four types of

motion models, three rigid-body motion models and one rigid-

body plus internal motion model, were generated for

comparison with the measured and extracted experimental

diffuse scattering. The three rigid-body-only models (Fig. 2,

top panels) were fitted to the C� B-factor fingerprint of the

refined structure (target B in Fig. 2). Rotation angles were

selected from a one-dimensional normal distribution, while

translation vectors were extracted from a three-dimensional

multivariate distribution. The rotation axis is a randomly

generated vector. The variances of normal distribution, from

which the rotation angles and translational displacements

were generated, were fitted by a simplex minimization

(scitbx.simplex) on the difference between the C� B-factor

trace and the B factors obtained from the root-mean-square

fluctuation (r.m.s.f.) of 100 asymmetric units generated from

the distributions. The disorder models then consist of 100

asymmetric units created with the fitted variances of either the

translational distribution, the rotational distribution or a

mixture of the two.

To model the internal motion of a protein in a crystal,

ensemble refinement as implemented in phenix.refine (Burnley

et al., 2012; Adams et al., 2010) was used. A parameter sweep

over pTLS, dTMP and �x was performed (Burnley et al., 2012).

The ensemble with the lowest Rfree is chosen as the ‘best’

ensemble and used for further calculations (Supplementary

Table S1). Before ensemble refinement is started, it is common

practice to fit TLS matrices to the B factors of the input model

(a refined crystal structure) and to subtract their contribution

(B-TLS) from the B-factors columns. This prevents the

refinement from sampling large-scale motion and forces the

sampling of internal atomic fluctuations (Burnley et al., 2012).

For the diffuse scattering calculations presented here, these

per-molecule TLS motions are reintroduced to the generated

ensemble models. This is performed by fitting the rotation and

translation variances to the C� B-TLS trace found in the

B-factor column of the ensemble models, similar to the

method described above. The resulting translation and rota-

tion operations are then randomly applied to asymmetric unit

models from the ensemble refinement to create asymmetric

units describing internal motion and B-TLS (Fig. 2, bottom

panels).

As performed previously by Van Benschoten et al. (2015),

we also calculated diffuse scattering from TLS models that

were fitted to refined anisotropic displacement parameters Uij.

The eigenvalues of (input Uij� fitted Uij) were restricted to be

positive. The S-matrix components were always set to zero.

Fitted TLS matrices were used to generate ensembles of

structures using phenix.tls_as_xyz (Urzhumtsev et al., 2015).

3.4. Calculation of diffuse scattering from molecular
ensembles

We use supercells to sample diffuse scattering in reciprocal

space in between the Bragg peaks at fractional Miller indices.

The supercell crystals are of very limited size (5–10 unit cells in

each dimension). However, all of the equations in Section 2

hold for these small crystals as long as FN = Ft[�(r)N] is

calculated at (hs, ks, ls) values that are integer multiples of

fractional (h, k, l). Otherwise shape transform ripples will

dominate the diffuse pattern (Neder & Proffen, 2008), which

does not occur in the observed diffraction patterns unless the

crystal are truely nanometre-sized (Chapman et al., 2011).

Thus, we implement (9) by calculating the structure-factor

variance of Ns supercells,

Idiffðhs; ks; lsÞ ¼ hFðhs; ks; lsÞ
2
iNs
� hFðhs; ks; lsÞi

2
Ns
; ð10Þ

Itotðhs; ks; lsÞ ¼ hFðhs; ks; lsÞ
2
iNs
: ð11Þ

Ns is 100 throughout this paper. The asymmetric units

describing the disorder are prepared for diffuse scattering
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Figure 2
C� B-factor traces of the disorder models used for diffuse scattering calculations: (a) for CypA and (b) for lysozyme. The top panels show the target
B-factor trace from the classically refined structures (Supplementary Table S1) and rigid-body models. The bottom panels show the target B factor, the
B-TLS subtracted before ensemble refinement and the final fluctuation from ensemble refinement recombined with the B-TLS (ER+B-TLS).



calculation by setting all B factors to 0 and all occupancies to

1. Supercell parameters are chosen in such a way that the

supercell crystals are close to cubic, and the smallest supercell

is five unit cells in a row. This ensures that the reciprocal-space

voxels in the final map will be close to cubic as well. Once

the supercell dimensions have been chosen, the symmetry

operations of the space group and unit-cell translations of the

crystal are determined, forming a complete set of operations

to fill the supercell. For each of the elements in the set, an

asymmetric unit from the disorder model is chosen at random

and the corresponding operation is applied. The supercell

coordinate file, space group P1 and supercell size are passed

on to mmtbx.utils.fmodel_from_xray_structure to be Fourier

transformed to a resolution of 2 Å. A bulk-solvent model is

used to represent the solvent. The structure factors and phases

are written to a binary structure-factor file (.mtz). This is

repeated 100 times in order to sample the full disorder that we

want our supercells to represent. The process is performed in

parallel using the easy_mp functionality in cctbx. hF(hs, ks, ls)i
2
100

and hF(hs, ks, ls)
2
100i are then calculated, after which a final

.mtz file is written containing the Miller indices from the

supercell and the columns IBragg, Itot and Idiff (Itot� IBragg) that

follow from (10) and (11).

The final diffuse intensities were placed in an array after

applying Friedel symmetry to all supercell Miller indices. This

array was written to a CCP4 .map-style file with supercell

constants in Å�1 describing the reciprocal-space dimensions.

No other symmetry operations were applied. The supercells

are built with the space group of the crystals and thus the

calculated diffuse maps should have the corresponding point-

group symmetry.

For large supercells these calculations can become compu-

tationally intensive. For example, for the lysozyme diffuse

scattering calculations discussed in this paper, the 5 � 5 � 10

supercell was a = b = 394.16, c = 382.32 Å, � = � = 	 = 90.0�.

This resulted in a supercell containing 250 unit cells, each filled

with eight molecules made up of 1000 non-H atoms. The FFT

resulted in a list of 15 550 023 Miller indices. The 100

temporary .mtz files took up 297 MB of disk space each and

the final .mtz file was 356 MB in size. The map file used for

further analysis had a file size of 230 MB.

3.5. Analysis of calculated diffuse scattering

To compare experimental and model maps, the origins of

the maps are aligned and a combined mask of unmeasured and

noncalculated voxels is constructed. Noncalculated voxels in

the model maps were set to 0. Calculated and experimental

maps are scaled by their total unmasked intensities. The maps

were displayed with UCSF Chimera (Pettersen et al., 2004)

for visual comparison. Linear correlation coefficients (CCs)

between all unmasked points are calculated using cctbx

array_family flex.linear_correlation. The correlation coeffi-

cients between voxels corresponding to the original Bragg

reflections are calculated by masking the non-Bragg voxels.

Radially averaged intensities of the scaled maps are calcu-

lated by masking everything that is not within the resolution

shell and calculating the mean in 20 resolution bins. Maps

containing the radial average per voxel are constructed, saved

and subtracted from the original maps. Correlation coeffi-

cients between these isotropic corrected maps are calculated

similarly as above.

Scripts are available on GitHub (https://github.com/

kroon-lab/scud).

4. Results

4.1. Experimental diffuse maps

The maps reconstructed from images as described in

Section 3 have point-group symmetry 1 and are subsequently

symmetrized using Friedel symmetry (linear correlation

coefficient CC of 0.86 for CypA and 0.78 for lysozyme) or the

Laue point group of the crystals, which is mmm for CypA (CC

= 0.74) and 4/mmm for lysozyme (CC = 0.53). The diffuse

maps for CypA [Figs. 1(b) and 1(c)] and lysozyme [Figs. 1(e)

and 1( f)] viewed along the l axis (c*) in the �1 and the higher

mmm and 4/mmm symmetries, respectively, show that in the

lower point group the the noise level is quite high and aver-

aging in mmm or 4/mmm improves the maps enormously. For

lysozyme, Figs. 1(e) and 1( f) show that the fourfold symmetry

is present in the lower point group. We verified that every

target voxel (hs, ks, ls) was hit multiple times: for CypA the

most frequent number of hits in a 9� 8 � 5 oversampled map

with point-group symmetry 1 was 44, but ranged from 0 to 507.

Zero hits occur from detector-panel gaps, the beam-stop

shadow and the cusp region of the rotation scan. For lysozyme,

in the 5 � 5 � 10 oversampled map these values were 78 and

0–502. Voxel dimensions in the rotation direction (’-range)

are large in the case of wide slicing. We investigated what the

consequence is for mapping into reciprocal space. When fine-

slicing the lysozyme data at 0.3�, instead of at 1� as we used

initially, the most frequent number of hits per target voxel

increased to 100 and ranged between 0 and 1467, which

implies that the subdivision of every voxel into 3.3 voxels does

not generate 3.3 times the number of hits, and that many of

them map to the same target voxel. The two maps look quite

similar (CC = 0.62). The original data were fine-sliced to 0.1�

but brought the diffuse scattering to the single-photon noise

level and no good diffuse maps could be obtained. We

conclude that a scan width of 0.5–1� is probably best for

obtaining sufficient signal in the diffuse maps in the usual

experimental setup at synchrotron beamlines. The subtraction

of radial mean background intensity leads to negative pixel

values in the diffuse maps. Chapman et al. (2017) have

developed an improved method for background subtraction

by using a discrete noisy Wilson distribution, by which average

background intensities and their variance are determined.

This method avoids the over-subtraction of background, while

getting rid of almost all negative intensities. We did not correct

the diffuse image intensities to obtain only positive intensities.

The speckle structure, the distribution of intensities and linear

correlation coefficient are not affected by the maps containing

negative intensities.
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We noticed that in projections of the complete three-

dimensional diffuse maps intensities accumulated on the

Bragg layers perpendicular to a* and b* in CypA and to c* in

lysozyme (Supplementary Fig. S1). Such features could not be

observed in individual slices as they are very weak. We

confirmed that the kernel in our mode filter (21 � 21 pixels)

was sufficiently large to not leave part of the Bragg spots

behind (judged after mapping to three-dimensional reciprocal

space), so we rule out these features being caused by Bragg

peaks. Similar observations were made by Polikanov & Moore

(2015). They found troughs between adjacent rows where the

Bragg reflections were removed in diffuse patterns of ribo-

some. These features must be related to the lattice disorder

rather than diffuse scattering caused by motion within the unit

cell. Polikanov and Moore were able to reproduce this type of

diffuse scattering using a model for acoustic displacement

waves. By writing diffuse scattering in terms of structure-

factor variances and structure-factor correlation coefficients

between unit cells [which corresponds to our equation (7) and

diffuse scattering of type (iii)], Moss et al. (2003) concluded

that in soft molecular crystals the correlation coefficients fall

off rapidly with q, the Brillouin zone vector, resulting in a

broad acoustic peak at the Bragg positions. Such weak

acoustic lattice vibrations must therefore be present in both

CypA and lysozyme.

4.2. Calculated diffuse maps

Molecules (asymmetric units) randomly picked from the

disorder models described previously were used to construct

supercells [Fig. 3(a); Section 3]. The Fourier transforms of

these supercells sample on and between the integer Miller

indices of the original unit cell (Section 3). A Fourier trans-

form of a single supercell [Fig. 3(b)] shows Bragg reflections of

the original unit cell and a weak diffuse scattering pattern.

When 100 supercells are Fourier transformed and the average

total intensities are calculated, this results in well defined

diffuse scattering under and between the Bragg reflections

[Fig. 3(c)]. The Bragg reflections obey the symmetry and

extinctions of the original space group (P43212; see the

systematic absences in the hs = 0 and ks = 0 directions). Diffuse

scattering is calculated as the difference between the total

scattering and the Bragg scattering.

4.3. Comparison of the diffuse scattering between models
and data

Linear correlation coefficients between all calculated maps

and the data were calculated (Table 1; Section 3). For CypA,

the modelled scattering from translational disorder has a

correlation coefficient (CC) of 0.46 with the measured diffuse

scattering; disorder modelled using a mix of translation and

rotation gives a CC of 0.47 (Table 1). Van Benschoten et al.

(2016) recorded the CypA data set and showed that diffuse

scattering fitted by a liquid-like motion model resulted in a

correlation coefficient of 0.518. However, the authors only

compared the anisotropic components of both the measured

and calculated diffuse scattering in their analysis. If we remove

the isotropic components from the data (very little is left

because of radially averaged background subtraction) and

models, we obtain a CC of 0.51 for our translation-only model

and a CC of 0.53 for a model from mixed rotation and

translation, and thus we obtain comparable agreement.

For lysozyme, lower correlations between rigid-body

models and the data were obtained than for CypA (CC = 0.29

for mixed translation and rotation). However, the agreement

improves when considering only the diffuse scattering at the

original Bragg positions (Table 1). The anisotropic compo-

nents of the data and the calculated maps show an even better

agreement: a CC of 0.45 for the mixed rigid-body disorder

model.

The addition of internal motion to the rigid-body disorder

models did not improve the correlation coefficients with the

data. For CypA these correlation coefficients are comparable
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Figure 3
(a) 5 � 5 � 10 supercell of lysozyme molecules; the ‘mixed’ rigid-body disorder model was used to construct this supercell. (b) F(hsks0)2 slice of the
Fourier transform of (a). (c) Itotal(hsks0) [= hF(hsks0)2

i] slice of diffuse scattering calculation from a ‘mixed’ rigid-body disorder model. 100 supercells
have been constructed and the squared structure factors have been averaged. The diffuse features become more well defined. (b) and (c) are coloured
from white (0) to black (75 � 106).
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Table 1
Linear cross-correlation values between all models and data for CypA and lysozyme.

CCall is calculated between all points in the map that are calculated or measured. CCbrg is calculated on positions corresponding to the integer Miller indices of the
original unit cell. CCaniso is calculated between all points in the maps that are measured or calculated after the isotropic component per resolution shell has been
subtracted; for this, 20 resolution shells were used.

Translation Rotation Mixed Ensemble+B-TLS

CypA Lysosyme CypA Lysosyme CypA Lysosyme CypA Lysosyme

Data CCall 0.46 0.27 0.28 0.07 0.47 0.29 0.47 0.20
CCbrg 0.49 0.34 0.28 0.15 0.50 0.37 0.48 0.29
CCaniso 0.51 0.43 0.36 0.39 0.53 0.45 0.52 0.45

Translation CCall 0.47 0.55 0.95 0.93 0.79 0.74
CCbrg 0.43 0.56 0.94 0.92 0.78 0.76
CCaniso 0.40 0.43 0.94 0.91 0.81 0.75

Rotation CCall 0.51 0.55 0.48 0.60
CCbrg 0.48 0.54 0.46 0.60
CCaniso 0.43 0.43 0.35 0.35

Mixed CCall 0.82 0.72
CCbrg 0.82 0.71
CCaniso 0.83 0.75

Figure 4
Slices through diffuse maps for (a) CypA and (b) lysozyme. Experimental data are coloured to obtain maximum contrast. We coloured the calculated
translational diffuse map likewise; the other calculated maps are coloured on the same scale.



to those of rigid-body models (CC of 0.47 for Ensemble+

B-TLS versus 0.47 for the mixed-disorder model), while for

lysozyme the coefficients become worse. Modelled diffuse

scattering maps show high correlation coefficients amongst

each other (Table 1). The only exception is the poor resem-

blance of translation- and rotation-calculated maps (CC <

0.55), which is consistent with the findings of Moore (2009).

We generated an ensemble of molecules from refined

TLS matrices, a method that was used previously by Van

Benschoten et al. (2015), and calculated linear cross-correla-

tions between the modelled scattering and the data. For CypA,

CCall and CCaniso are 0.46 and 0.51, which are comparable to

the translation CC values (CCall of translation versus TLS of

0.93). For lysozyme, the CC with data for TLS models

improved compared with translation models (CCall = 0.33,

CCaniso = 0.37). This shows that the anisotropic translation

matrix from the TLS model more accurately describes the true

(anisotropic) translation behaviour (Supplementary Fig. S3).

5. Discussion

Correlated motional disorder of atoms within the unit cells

produces diffuse scattering of type (ii) (see Section 2). Such

motions can be rigid-body movement of whole molecules or

internal conformational mobility, or combinations thereof. We

generated molecular models to describe such motions using

the supercell method and calculated full oversampled three-

dimensional diffuse maps. Diffuse maps from rigid-body

models have a remarkable resemblance to experimental

diffuse maps, as discussed below. Firstly, the linear correlation

coefficients are comparable to those in earlier work by Van

Benschoten et al. (2016) for CypA, but are lower for lysozyme.

The latter is likely to be caused by the more noisy experi-

mental data, as the CC between symmetrized and original

maps is only 0.53 and fine- and wide-sliced data sets from the

same image data produce maps with a CC of 0.62. Secondly,

the two-dimensional zero zone slices (Fig. 4) and three-

dimensional maps for both CypA and lysozyme (Supple-

mentary Fig. S2) clearly show that throughout reciprocal space

experimental diffuse features are reproduced by the mixed

rigid-body models. Thirdly, the introduction of internal motion

models in addition to rigid-body motions, which were obtained

from ensemble refinement and were not specifically optimized

to reproduce the diffuse scattering, does not improve the

agreement (Table 1). Internal motions appear to only modu-

late the rigid-body diffuse scattering (compare the two lower

rows in Fig. 4), although substantial motions occur (see, for

example, the ensembles representing internal motions of

CypA depicted in Fig. 5).

The crystals considered here have a moderate degree of

packing disorder (diffraction to 1.15 and 1.3 Å resolution for

CypA and lysozyme) but are still sufficient to produce this

type of diffuse scattering. Ayyer et al. (2016) and Chapman et

al. (2017) observed continuous diffraction in the XFEL data of

photosystem II (PSII) crystals that diffracted to only 4.5 Å

resolution. They assumed this to be caused by translational

displacements of individual molecules and showed that the

total diffuse scattering is the incoherent sum of that of

displaced symmetry-related molecules. This assumption

allowed them to use oversampling techniques as practiced in

coherent diffractive imaging and thereby to interatively phase

to higher resolution than the Bragg diffraction. An unbiased

estimation of the structural unit that is responsible for the

continuous scattering was obtained from the size of the

speckles in the diffraction pattern and its autocorrelation

function, which indicates that for PSII this is a dimer. To verify

our above results, we made such an independent estimation of

the structural unit responsible for the diffuse scattering in

CypA and lysozyme by calculating the autocorrelation func-

tion from our experimental diffuse maps. This is similar to

calculating a Patterson map from Bragg data, as is common

practice in crystallography. Indeed, we could feed the CCP4

Patterson module with our supercell (hs, ks, ks, Idiff) array

(Fig. 6). We found a size of 30–40 Å, corresponding to one

molecule for both CypA and lysozyme, and consistent with

our rigid-body models. A critical review (Wall et al., 2018)

questions the assumptions made by Ayyer and Chapman. We

discuss some of the issues raised below.

(i) What effect does the presence of Bragg peaks have on

phasing and resolution extension in the 4.5–3.5 Å range?

Bragg reflections do not oversample reciprocal space so they

would be hardly effective in iterative phasing.

(ii) Could the free-lunch effect be responsible for the phase

improvement? The continuous diffraction beyond what Ayyer

and coworkers call the Bragg limit is certainly not random; the

speckle intensities are proportional to the incoherent sum of

the squared Fourier transforms of the molecules and are quite

strong because of the large displacements that cause the low

Bragg limit and do provide useful information for phasing (see
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Figure 5
250 members of the ensemble for representing internal motion in CypA
as obtained from ensemble refinement with phenix.refine. The structures
are subsequently combined with rigid-body motion to calculate diffuse
scattering maps.



equation 5 and the discussion below it, and the role of the

displacements d in the strength of diffuse scattering).

However, the success of the free-lunch approach can only be

established by trying it.

(iii) Might an LLM model (or an ENM or an MD model)

more accurately describe the diffuse scattering than the rigid-

body translations of PSII dimers? Our results clearly show the

dominant contributions of rigid-body translations. Most of the

residue-wise B factor is caused by translation (the red base

line in Fig. 2, for example, is 15 Å2 for CypA and 20 Å2 for

lysozyme) and the variation from rigid-body rotations adds

only a small portion, while internal motions occasionally add

up to 10 Å2 (see the difference between the cyan and yellow

curves in Fig. 2). We stress again that rigid-body translations

are fully concerted motions and therefore their presence

readily dominates the diffuse scattering.

(iv) Can the model be improved by assuming that the rigid

units are coupled instead of independent? Such coupling

between molecule motions would give rise to halos around the

Bragg reflections, for which we indeed found evidence, but the

signal is very weak (see Supplementary Fig. S1).

(v) Can the model be improved by including rigid-body

rotations? Inspection of Fig. 4 shows that rotational diffuse

scattering has a blurred appearence: the speckle structure

fades at larger Q, much like the blurring in reciprocal space as

carried out by Chapman et al. (2017). Moreover, the intensities

in the simulated rotational diffuse maps are much lower, as

can be understood by the smaller contribution of rotations to

the r.m.s. deviations (the difference between the blue and red

curves in Fig. 2 is the contribution of rotation to the B factors),

as well as the fact that the atoms within the molecule do not all

undergo the same displacements. Thus, our analysis indicates

that assuming the main cause for continuous scattering to be

translational rigid-body disorder is realistic. Although our

mixed models are the best, the agreement with the translation-

only disorder is large (CC > 0.92).

Our conclusions are different from previous work, where

internal correlation motions were held to be responsible for

diffuse scattering. LLM models for CypA (Van Benschoten et

al., 2015; Peck et al., 2018) and tetragonal lysozyme (Clarage et

al., 1992) give fair agreement with diffuse scattering data, and

likewise elastic network models for other protein crystals

(Riccardi et al., 2010). In both approaches the diffuse scat-

tering is proportional to a convolution of the Fourier trans-

form of the Patterson of the displaced structure and the

Fourier transform of a displacement correlation function. This

leads to speckles distributed over all of reciprocal space. The

parameters in this model have been fitted to the diffuse

scattering, and indeed its global appearance resembles that

from the rigid-body translations (see Fig. 4 in Peck et al., 2018).

We have calculated from the Fourier transform of the expo-

nential displacement correlation function that a correlation

length of 7.1 Å, as Van Benschoten et al. (2016) found, leads to

a speckle size of 1/33 Å�1, which is roughly in agreement with

the size of the rigid unit as determined from the auto-

correlation function of our diffuse data. In contrast, our

ensemble structures that model internal correlated motions

make only a small contribution to the diffuse scattering maps.

Our models are from ensemble refinement of the Bragg data

and are not fitted to correlated motion, so may not be fully

representative, although we assume that the force field in the

ensemble refinement ensures at least some correlated motions.

Obviously, the motion that has the largest correlation between

atoms is rigid-body translation, as all atoms move in a fully

concerted manner, and therefore will always dominate the

diffuse scattering (see equation 5 and the discussion below it).

If only smaller structural units move in a correlated fashion

the variances in structure factors are not that large (equation

8) and the diffuse intensities are much smaller. Molecular-

dynamics simulations have been used to predict diffuse scat-

tering with some success, especially since it was realized that

long sampling times (>1 ns) were needed to reach conver-

gence (Clarage et al., 1995). Héry et al. (1998) concluded from

MD simulations of one unit cell that in orthorhombic lyso-

zyme crystals the molecules move only partially as rigid

bodies, i.e. only the backbone atoms move as such. However,

comparison with the data was only visual and on a single

detector image. 10 ns MD simulations of the staphylococcal
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Figure 6
Fourier transform of experimental diffuse scattering intensities for (a)
CypA and (b) lysozyme in the ab plane as calculated with the CCP4 FFT
for Patterson module. Graphs were made with MapSlicer in CCP4.
Gridlines are drawn at 1/10 of the supercell dimensions. Arrows indicate
the size of one grid unit in Å.



nuclease crystal by Meinhold & Smith (2005a,b) and subse-

quent principal component analysis (PCA) showed that the

five lowest frequency large-amplitude components reproduce

the main features of diffuse scattering. Whole-molecule

motion was found to only represent part of the mean-square

fluctuations, although these might be limited by periodic

boundary conditions in the simulations. This restriction was

overcome by Wall (2018) through MD simulations of 2� 2� 2

unit cells of the same protein. The agreement with diffuse

scattering in terms of CC (0.68) is better than before. Unfor-

tunately, limited insight is given into the three-dimensional

diffuse maps as only one intersection with the Ewald sphere

was shown and only averaged diffuse intensities in resolution

shells. Furthermore, it is left unclear whether rigid-body

translations occurred in the simulations, which is very possible

because only unit-cell centre-of-mass translations were

removed in the MD protocol, and with 32 molecules in the

supercell there is plenty of room for relative motions of the

molecules. In a recent paper, Peck et al. (2018) reanalysed the

diffuse scattering of CypA using the same data that we used

here and that was made public by Van Benschoten et al.

(2016). Their conclusion is that intermolecular correlations are

needed to explain the diffuse intensities that they extracted

from the data. The analysis was based on a liquid-like motion

model that was extended to include nearest-neighbour

motional correlations. Although in the current paper we noted

that evidence for longer range correlated motions is indeed

found, we believe that their data actually still contain parts of

the Bragg reflections and their large CC (0.71) can be attrib-

uted to these. Our diffuse maps look completely different, as

we did not rely on predicted locations and the size of the

Bragg reflections, but used mode filtering instead.

Simulated diffuse maps have an isotropic component that is

part of the correlated motion, which we would prefer not to

subtract. Clearly, the way we analysed the experimental data,

by subtracting radially averaged background scattering, leads

to the removal of all isotropic scattering, and as a consequence

CCaniso (Table 1) is larger than CCall. Improvements in this

step of data processing in order to obtain better estimates of

background scattering along the lines laid out by Chapman et

al. (2017) will most likely give better agreement. One might

question whether CC values in the range 0.45–0.6 are sufficient

to conclude that any of the motion models are correct. We

think that a large part of the disagreement comes from the

noisy data and the processing methods. It is only after

considering the features in full three-dimensional over-

sampled diffuse maps that we gained confidence in the validity

of the rigid-body motion model.

We believe that our current approach by forward modelling

of diffuse scattering in oversampled full three-dimensional

reciprocal space, from well defined ensembles with transla-

tional, rotational and internal correlated motions, clearly

shows the dominant influence of rigid-body translational

disorder in protein crystals. Despite this, correlated internal

motions could have an effect on the diffuse intensities. The

challenge will be to model their weak contribution in order to

reveal protein dynamics (Wall et al., 2014). We are currently

developing a supercell ensemble-refinement technique that

uses the total scattering, i.e. Bragg intensities and diffuse

scattered intensities. Realistic conformational motions, next to

the rigid-body motions, can potentially be obtained from this

kind of structural refinement.
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