
research papers

IUCrJ (2019). 6, 331–340 https://doi.org/10.1107/S2052252519001854 331

IUCrJ
ISSN 2052-2525

PHYSICSjFELS

Received 18 October 2018

Accepted 31 January 2019

Edited by H. Chapman, DESY/Universität

Hamburg, Germany

Keywords: X-ray free-electron lasers (XFELs);

single-particle imaging; classification algo-

rithms; electron-density map reconstruction.

Supporting information: this article has

supporting information at www.iucrj.org

Evaluation of the performance of classification
algorithms for XFEL single-particle imaging data

Yingchen Shi,a,b Ke Yin,c Xuecheng Tai,d Hasan DeMirci,e,f Ahmad Hosseinizadeh,g

Brenda G. Hogue,h Haoyuan Li,i,j Abbas Ourmazd,g Peter Schwander,g Ivan A.

Vartanyants,k,l Chun Hong Yoon,i Andrew Aquilai* and Haiguang Liub*

aDepartment of Engineering Physics, Tsinghua University, 30 Shuangqing Rd, Haidian, Beijing 100084, People’s

Republic of China, bComplex Systems Division, Beijing Computational Science Research Centre, 8 E Xibeiwang Rd,

Haidian, Beijing 100193, People’s Republic of China, cCenter for Mathematical Sciences, Huazhong University of

Science and Technology, Wuhan, Hubei 430074, People’s Republic of China, dDepartment of Mathematics, University of

Bergen, PO Box 7800, Bergen, 5020, Norway, eBiosciences Division, SLAC National Accelerator Laboratory, 2575 Sand

Hill Road, Menlo Park, CA 94025, USA, fStanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill

Road, Menlo Park, CA 94025, USA, gDepartment of Physics, University of Wisconsin–Milwaukee, Milwaukee,

Wisconsin USA, hBiodesign Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute at Arizona State

University, Tempe, 85287, USA, iLinac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill

Road, Menlo Park, CA 94025, USA, jDepartment of Physics, Stanford University, 450 Serra Mall, Stanford, CA 94305,

USA, kDeutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, D-22607, Germany, and lNational Research

Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, Moscow, 115409, Russian

Federation. *Correspondence e-mail: aquila@slac.stanford.edu, hgliu@csrc.ac.cn

Using X-ray free-electron lasers (XFELs), it is possible to determine three-

dimensional structures of nanoscale particles using single-particle imaging

methods. Classification algorithms are needed to sort out the single-particle

diffraction patterns from the large amount of XFEL experimental data.

However, different methods often yield inconsistent results. This study

compared the performance of three classification algorithms: convolutional

neural network, graph cut and diffusion map manifold embedding methods. The

identified single-particle diffraction data of the PR772 virus particles were

assembled in the three-dimensional Fourier space for real-space model

reconstruction. The comparison showed that these three classification methods

lead to different datasets and subsequently result in different electron density

maps of the reconstructed models. Interestingly, the common dataset selected by

these three methods improved the quality of the merged diffraction volume, as

well as the resolutions of the reconstructed maps.

1. Introduction

The ultrashort and bright X-ray pulses from free-electron

lasers (XFELs) make it possible to determine the structure of

single particles or even single molecules. Femtosecond

coherent X-ray pulses are used to take snapshots of individual

particles before the samples are destroyed by the intense

X-rays; this approach is known as ‘diffraction before

destruction’ (Aquila et al., 2015; Chapman et al., 2006; Neutze

et al., 2000; Reddy et al., 2017; Seibert et al., 2011). In these

experiments, reproducible particles (often assumed to be

identical) in random orientations are injected into the radia-

tion region and scattering signals of the particle can be

collected by detectors for one orientation each time. Three-

dimensional structure reconstruction requires a large number

of scattering patterns from particles in random orientations in

order to obtain sufficient sampling. The determination of

electron density maps from raw datasets needs to undergo a

procedure composed of single-particle scattering pattern
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classification, orientation recovery and phase retrieval. In this

article, we focus on the classification of scattering patterns to

find those patterns resulting from the scattering of single

particles; specifically, single virus particles.

Because of the small interaction region for single-particle

imaging (SPI), the probability of XFEL pulses hitting a sample

particle is low; more than 98% of XFEL pulses miss their

target particles and produce blank patterns with background

noise or scattering data from solvent droplets. It is also

possible for XFEL pulses to intercept more than one particle

during one exposure, producing scattering patterns with inter-

particle interference, often referred to as ‘multiple hits’, as

opposed to the ‘single hits’ that are the scattering patterns

from individual sample particles. The empty frames or data

from multiple-particle scattering must be filtered out because

they do not contain information that can be used for single-

particle reconstruction. The procedure of identifying the

scattering patterns is called ‘hit finding’. Several data reduc-

tion and analysis programs have been developed for hit

finding, such as Psocake based on the psana framework

(Damiani et al., 2016), CASS (Foucar et al., 2012) and Cheetah

(Barty et al., 2014). These programs are effective at filtering

out blank patterns or weakly scattering objects (such as small

water droplets) but the challenges in excluding multiple hits

remain along with other more complicated cases. Therefore,

advanced algorithms are needed to further classify the filtered

data and identify a clean set of single-particle scattering

patterns to improve data quality for structure recovery. Thus,

in this work, the term ‘pattern identification’ is used for hit

finding, or identifying the patterns with scattering signals

without distinguishing the scattering sources; while the term

‘pattern classification’ is used for sorting the patterns of single

sample particles or multiple particles. Here, three classification

algorithms were applied to pattern classification.

Unsupervised computational methods were developed in

recent years for SPI diffraction image classification, such as

principal component analysis (PCA) with spectral clustering

(Yoon et al., 2011), diffusion map (DM) manifold embedding

(Giannakis et al., 2012; Schwander et al., 2012) and particle-

size filters determined via image autocorrelation functions

(Andreasson et al., 2014; Bobkov et al., 2015). Pattern

decomposition methods used in image processing and

computer vision are also suitable for solving these kinds of

problems, such as isomap embedding (Yoon, 2012) and

t-distributed stochastic neighbour embedding (van der Maaten

& Hinton, 2008). These methods are generally based on

feature extraction and clustering in feature space. Features are

composed of a small set of parameters that describe the most

important characteristics of the original objects of interest.

Clustering methods for general purposes are well developed at

present, including k-means, spectral clustering and others.

However, in many cases, these decomposition algorithms

output different feature spaces when they are applied to

experimental data of different samples and thus clustering

methods must be designed in a problem-specific manner.

Furthermore, prior knowledge about the data distribution in

feature space may be needed to select the correct cluster that

corresponds with the desired single-particle scattering

patterns.

In this article, we introduce two supervised algorithms

based on the convolutional neural network (CNN) and graph

cut (GC) framework (Yin & Tai, 2018), then assess their

performance in single-particle scattering data classification.

The CNN method extracts features from data that are signif-

icant for distinguishing the classes by training the designed

network against a labelled dataset and then sorting the data to

the appropriate class based on the evaluation of the extracted

features. The GC method utilizes the measures of data simi-

larity to group the data in a similar manner to image parti-

tioning (or image segmentation). For each classification

application, the CNN method may need fine tuning of the

network architecture, such as the number of layers or how

these layers are connected. The GC method is based on the

similarity measured using conventional metrics, such as the

least-square difference among the original images, so it can be

generalized to the classification of datasets for different

samples without fine-tuning the parameters. Nonetheless, both

CNN and GC require a training step for the method to learn

the data properties so they depend on the quality of the

training dataset. The dataset used in this study is from an

X-ray scattering experiment conducted with LAMP instru-

ment (Osipov et al., 2018) at the AMO beamline of the Linac

Coherent Light Source (LCLS) at the SLAC National

Accelerator Laboratory. This dataset contains 64 511 scat-

tering patterns identified by Cheetah and Hummingbird

programs (Barty et al., 2014; Daurer et al., 2016) from millions

of raw data frames. The data were obtained from the scat-

tering of coliphage PR772, a DNA virus with an icosahedral

capsid shell (Coetzee et al., 1979). The two-dimensional

diffraction patterns have resolutions of 11.6 nm at the edge

and 8.3 nm at the corner of the detector, providing an over-

sampling rate of �40. The same dataset has been analysed by

other groups from the single-particle imaging initiatives with

different approaches (Aquila et al., 2015; Hosseinizadeh et al.,

2017; Kurta et al., 2017; Rose et al., 2018). In this study, we

compared the results of the classification methods and

analysed the differences in the final reconstructed models

from each individual dataset and the commonly selected

dataset.

2. Methods

2.1. Data preparation

The CNN and GC methods are supervised classification

approaches so a training dataset composed of manually

labelled patterns is needed. Data preparation is critical for

supervised methods, especially deep-learning methods, as the

training datasets directly affect the outcomes of the trained

model. Usually a large well-designed training set is required to

yield a general classifier that can be used robustly. However, in

XFEL experiments, it is very difficult to train a single CNN

model for scattering patterns from different types of samples.

One practical solution is to prepare training data for each type
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of sample. Considering the difficulties of

manually labelling a large number of patterns,

we labelled a small set of data composed of

200 randomly selected patterns from the

original dataset deposited in the Coherent

X-ray Imaging Data Bank (CXIDB). The

training data had 79 single-particle scattering

patterns and 121 patterns from other scatters

such as water droplets, multiple particles or

background noises, labelled as non-single-

particle scattering patterns. We did not

attempt to further classify the non-single-

particle scattering patterns as the major goal

was to distinguish the single-particle data

from others.

The scattering patterns were pre-processed before training

or classification, as summarized in Fig. 1. The original scat-

tering patterns were down-sampled by combining 4 � 4 pixels

into a single pixel (Reddy et al., 2017). Artefacts such as ‘bad’

pixels were fixed by using the values from their Friedel

symmetric pixels and the analogue digital unit (ADU) values

were converted to photon counts. The intensity values were

then subjected to logarithm operations to enhance the

features in regions with weaker signals. To avoid taking

logarithm on zero values, the intensities were increased by 1.0

prior to the logarithm operation. Finally, the resulting patterns

after the logarithm operation were scaled to have the same

mean value. This helps to achieve a good balance of weighting

factors through the resolution range of the compared images

because a chi-square type of measurement is regularly used to

quantify the data differences in CNN or GC methods. It

should be noted that these processed patterns were only used

as inputs for classification. The down-sampled data after

ADU-photon conversion were used for orientation recovery

and model reconstruction in the subsequent analysis.

2.2. Classification methods

2.2.1. CNN method. The CNN used in this study is based on

the sequential model. The functional components of a CNN

model are composed of three types of layers: convolutional

layer, pooling layer and dense layer. The convolutional layer

executes a convolution operation by swiping over each pattern

through kernel windows. The pooling layer executes a

zooming operation. Here we use 2� 2 max-pooling, where the

input feature patterns are resized to one-quarter of their

original size by choosing the maximum values of every 2 � 2

block of original patterns. The dense layer is comprised of a set

of neurons where each neuron is fully connected to all of the

neurons in the previous layer to form an M � N weighting

matrix. In CNN, the dense layer should be implemented

behind a flattened layer, which reshapes two-dimensional

feature maps into a one-dimensional array of neurons.

The CNN optimizes the parameters used in non-linear

transformations to reproduce known labels. The parameter

space is designed to avoid overfitting. As our training set is

small, the CNN model contains only three convolutional

layers and one hidden dense layer. After down-sampling the

original pattern to the size of 64 � 64 pixels, the whole CNN

network contains 316 parameters. The number of model

parameters is a little higher than the number of training

samples (316 versus 200). To reduce the chance of overfitting

and speed up parameter optimization, we randomly drop out a

subset of neurons in both the convolutional layers and the

dense layers (Srivastava et al., 2014) and normalize each batch

after every convolutional layer; thus, the mean and variance

are 0 and 1, respectively. The CNN architecture is described in

Section S1 of the Supporting information.

2.2.2. GC method. GC is an algorithm for semi-supervised

clustering of high-dimensional data (Yin & Tai, 2018). In this

method, the scattering patterns are modelled as vertices of a

weighted graph with the weights defined as the similarity

measurements of the connected vertices. Each vertex defined

with intensity values (x) is only connected to a small number

of the nearest vertices to make it a sparse graph. The similarity

measure w between the two vertices ðxi; xjÞ is defined

as a radial basis function used in spectral clustering

proposed in Zelnik-Manor & Perona (2004): wðxi; xjÞ ¼

expf�dðxi; xjÞ
2=½�ðxiÞ�ðxjÞ�g, where the distance d is the

Euclidean distance and �ðxiÞ denotes the standard deviation of

dðxi; xjÞ for fixed xi.

The labelling function ’ defined on each vertex takes values

from [0,1], which can be interpreted as the probability of

belonging to class 1 of single-particle patterns. The algorithm

is proposed as a minimization of a convex functional of the

labelling function. A variational method based on the Potts

model is proposed for the partitioning of the graph, where

each vertex is assigned a score between 0 and 1, indicating the

likelihood of belonging to a specific cluster. More specifically,

the convex functional consists of a data-fitting term (the so-

called region force) based on an estimate of the probability of

each vertex having a certain label and a regularization term

that characterizes the total variation of the labelling function.

This is formulated as the optimization problemX
x2V

rw’ xð Þ
�� ��þ � 1� 2p xð Þ½ �’ xð Þ; ð1Þ

where pðxÞ is the region force term modelling the prior

probability of the vertex x belonging to class 1 given the
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Figure 1
Pre-treatment of scattering patterns. (a) The original pattern, (b) after ‘bad’-pixel fixation
using Friedel symmetry and (c) after photon-count conversion. The intensities are shown in
logarithm scale to display the details. The apparent contrast difference between (b) and (c) is
caused by the removal of weak signals (negative or analogue signals smaller than one photon
were set to zero).



already labelled data. rw is the weighted gradient operator

acting on the scalar-valued functions defined on the graph.

The calculation of p xð Þ and rw are explained in detail in S2.

Once a solution ’ðxÞ is obtained from the above minimization

problem, the class of a vertex x is determined through a

threshold process, that is, we choose some threshold value �
and set ’ðxÞ to 1 for ’ðxÞ>� and to 0 otherwise. The term � is

chosen to be 0.5 unless specified otherwise. The integral of

jrw’j is then interpreted as the graph cut given the partition of

the graph indicated by the labelling function ’. For more

detailed information, see Yin & Tai (2018). The above convex

minimization can be interpreted as a min-cut problem on the

graph, whose dual is a max-flow problem, see Yuan et al.

(2010). The solution to this problem can be obtained through a

primal-dual algorithm. The details of this algorithm can be

found in Yuan et al. (2010) with an adaptation to our appli-

cation in Yin & Tai (2018). More details are also included in

Section S2.

2.2.3. DM manifold embedding. DM manifold embedding

is an eigenfunction-based feature extraction algorithm

(Coifman & Lafon, 2006; Giannakis et al., 2012). Assuming

that every pixel stands for a dimension in a data manifold, the

original patterns are embedded in a very high dimensional

space. Similar to other embedding methods, DM is of type

kernel-PCA and identifies principal components from the

eigenvectors of an affinity matrix. Eigenvectors associated

with the largest eigenvalues are used as features for classifi-

cation. More specifically, the normalized graph Laplacian of

the low-dimension manifold in feature space is used to

calculate the likelihood of diffusion from the centre of the

clusters. The procedures to calculate the DM kernel and the

classification of scattering patterns are described in Section S3.

It has been shown that the eigenvectors from DM embed-

ding can also represent orientation information of both cryo-

EM and XFEL single-particle data (Hosseinizadeh et al., 2014;

Schwander et al., 2012). The advantages of DM are very

notable because of its simplicity of implementation and good

orientation analysis performance. However, it has been shown

that DM eigenvalues are continuously distributed in eigen-

space (Hosseinizadeh et al., 2015, 2014) making it difficult to

do clustering using traditional algorithms without prior

information about the manifold.

2.3. Phase retrieval

Phase retrieval is an essential step to obtain real-space

electron density maps and to compare the differences

resulting from the classification methods. Two iterative

phasing methods were used for phase retrieval: error reduc-

tion (Bauschke et al., 2002) and difference map (Elser, 2003).

Each phasing cycle contains 100 iterations of error-reduction

phasing, 200 iterations of difference-map phasing and an

additional 200 iterations of the error-reduction-phasing

processes. The support region was updated by setting it to

consist of 2000 voxels with highest intensities in the phased

model at each iteration. The volume of the support region is

estimated from the particle size and the oversampling rate of

the input data. For every dataset, 40 independent phasing

retrievals were carried out to obtain the averaged model after

alignments as the final output models. The program is modi-

fied from the three-dimensional phasing program by Andrew

Morgan and collaborators (Morgan, 2016). The phase-

retrieval transfer functions (PRTFs) were calculated to eval-

uate the model resolutions,

PRTF kð Þ ¼
1

N

XN

k¼1

exp ði�kÞ

�����
�����; ð2Þ

where N is the number of independent phasing results and �k

is the phase angle of the kth phase retrieval.

A convergence value was used to describe the difference

between the current model and the one obtained in the

previous iteration [equation (3)]. The difference between the

calculated intensities and the input intensities is noted as the

modulus error [equation (4)].

Convergencek ¼

 P
pixels Mk�1 �Mk

�� ��2P
pixels Mk�1

�� ��2
!1=2

; ð3Þ

Mod Errork ¼

 
1P

pixels I

!1=2

; ð4Þ

where k is the kth iteration, Mk is the retrieved reciprocal

model and I is the merged scattering intensity using the

expansion–maximization–compression (EMC) algorithm im-

plemented in Dragonfly (Ayyer et al., 2016; Loh & Elser,

2009).

2.4. Testing dataset

The dataset used for testing in this study was downloaded

from the CXIDB (Maia, 2012). The data (CXIDB 58) were

collected from experiment amo86615 carried out at the LCLS,

the XFEL facility at the SLAC National Accelerator

Laboratory. For a detailed description of the dataset and

classification results using the DM manifold embedding

approach refer to the work by Reddy et al. (2017). There are

64 511 patterns containing significant scattering signals, 14 772

of which were selected as single hits using the DM method

(see Section S7).

3. Results

We applied two supervised methods described in the Methods

section to the same set of scattering data from the PR772 virus

particles. The classification results were compared with the

previously published results and the common subset from

these three datasets was identified. The computing speed was

evaluated to compare the analysis throughput. The single-

particle datasets obtained from these three methods were

compared from the perspectives of the reduced one-dimen-

sional radial profiles and the merged three-dimensional

diffraction volumes. Furthermore, phase retrievals were

performed for each merged diffraction volume to investigate
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the real-space electron density maps resulting from each

dataset.

3.1. Classification results

Both the CNN and GC output scores between 0 and 1 to

describe the likelihood of being single-particle diffraction

patterns, and 0.5 was used as the cutoff to label the outcome

classes. A validation dataset containing 500 manually labelled

patterns was used to evaluate the accuracy of the trained

models by computing the true positive rate at a cutoff of 0.5.

CNN has a prediction accuracy of 83.8%, and the accuracies

for GC and DM methods are 84.2 and 80.8%, respectively. It is

notable that mistakes in the manually selected training/vali-

dation data could not be completely avoided; thus, these

values are not the comparison results against the ground truth.

The CNN and GC methods were tested using simulation data

that are composed of scattering patterns from single particles

and multiple particles [see examples in Figs. S8(a) and S8(c)].

The accuracy rates for both CNN and GC methods are above

96% for simulation dataset classification.

Specifically, the CNN selected 14 552 patterns as single hits,

while the GC provided 22 793 single hits. In the published

dataset selected using the DM method, there were 14 772

single hits. The fiducial number and event time associated with

each pattern were used to identify the consensus and the

differences in the classification results, which are summarized

in a Venn diagram (Fig. 2). The common subset of selections

resulting from the three methods is composed of 9 404

patterns. This implies that each method utilizes different

properties of the patterns for the classification. The largest

overlap occurs between the sets selected using the GC and

DM methods, which contain 11 389 patterns in common.

As shown in Table 1, all three methods require a similar

amount of computing time for the classification of this parti-

cular dataset. The model training time is included for the CNN

method. CNN and DM are implemented using Python [CNN

uses the Theano package (The Theano Development Team et

al., 2016) to build neural network architecture], while GC is a

MATLAB program. The CNN used one CPU core for job

management and most computing was performed using one

NVIDIA K80 GPU.

3.2. Averaged intensity radial profiles

A virtual small-angle X-ray scattering (SAXS) pattern and

one-dimensional profile can be generated from the selected

single-particle scattering patterns. Because of the limited

numbers of patterns in each selected subset, the corresponding

one-dimensional radial profile can be treated only as an

approximation of the conventional SAXS profile, which is a

summed contribution of the scattering signals from a very

large number of particles. The three radial profiles exhibit

similar intensity distributions as shown in Fig. 3. The positions

of intensity minima in the three profiles are very consistent.

The most evident divergence of the three curves occurs

beyond q ’ 0.022 nm�1, where the signals from the GC

dataset are more similar to the CNN dataset. The common

subset composed of patterns selected by all three methods is

also converted to a one-dimensional radial intensity profile.

This common subset has a radial profile with a faster

decreasing trend, especially in the high-q region (q ’

0.022 nm�1). Because a measured SAXS profile for PR772 was

not immediately available for comparison, we computed a

simulated SAXS profile from an icosahedron model that

approximates the PR772 particles. Although the solid model

could not capture the electron density differences between the

protein capsid and the interior DNA molecules, the SAXS

profile can still serve as a reference to compare with the four

radial profiles. As shown in Fig. 3, the overall profiles are very

similar and the profile from the common dataset has better
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Figure 2
Venn diagram for the three sets of single-particle scattering patterns.
There are 10 016 commonly selected patterns between the CNN and DM,
11 124 patterns between the GC and CNN, and 11 389 patterns between
the GC and DM. A total of 9 404 patterns were tagged as single-particle
scattering patterns by all three methods.

Table 1
Computing-speed comparison.

Algorithm Hardware Time

CNN K80 GPU �5 min
GC Xeon CPU (ten cores) �15 min
DM Xeon CPU (ten cores) �20 min

Figure 3
Averaged intensity radial profiles. Here q is calculated by 2 sin �=2ð Þ=�,
where � is the scattering angle and � is the wavelength of the X-rays. The
profiles are overlaid by the matching intensities at the low-q region.



agreement in the high-resolution region to that of the icosa-

hedron model.

3.3. Orientation recovery and merging

We applied the EMC algorithm implemented in Dragonfly

to recover the orientations and merge the intensity to three-

dimensional reciprocal space (Ayyer et al., 2016; Loh & Elser,

2009). Because the EMC algorithm merges the two-

dimensional scattering patterns to the diffraction volume

iteratively from the random initial models, independent

reconstructions for the same dataset may have some differ-

ences. To evaluate the consistency of the merged results, two

independent reconstructions from the random initial models

with the same control parameters were carried out for each

selected dataset. The evaluation of the R factor after model

alignment (Fig. 4) shows high consistency between the inde-

pendent reconstructions for all three datasets. The overall R

factors of the merged results for the datasets selected using the

CNN, GC and DM are 0.076, 0.062 and 0.074, respectively. The

results from the CNN dataset have the largest R factors; yet,

the values are still under 10%, indicating good self-consistency

of the merged results with the independent starting models.

The merged diffraction volumes also have good correspon-

dence with individual single-particle scattering patterns, see

Fig. S5 for two representative patterns compared with their

best matched central slices from the merged data.

The comparisons of the merged intensities in the three-

dimensional diffraction volumes from the different datasets

were measured using R factors at discrete resolution shells

[Fig. 4(b)]. There are significant R-factor peaks among the

merged results for the three datasets. These regions corre-

spond to the intensity minimums as shown in the inset of Fig.

4(b) (see also Fig. 3).

As the EMC algorithm calculates the probabilities of

patterns at 50 100 different spatial orientations (including in-

plane rotations), we selected the most likely orientations that

had the largest probabilities (pmax) for each pattern and

studied the distributions of pmax values (Fig. 5). For a pattern

composed of random numbers, the expectation of probability

is approximately 2 � 10�5 (1/50 100). The dataset selected

using the GC method has a probability distribution centred

around 0.0115 with a relatively small number of ‘bad’ patterns

(�2.62%) whose orientations are uncertain (probability

<10�4). In the dataset selected using the CNN and DM

methods, the orientations for a relatively larger number of

patterns are not well determined (7.19 and 6.76%, respec-

tively) as indicated by the population with low probabilities in

Figs. 5(a) and 5(c). Quite interestingly, we found that the

common dataset has far fewer patterns whose orientations are

uncertain (28 out of 9404 patterns have their pmax < 10�4).

From Fig. 5, we can also see that only a small fraction of

patterns have their pmax values < 10�3 in the common dataset.

This strongly suggests that the combined selection power of

the three methods helps the exclusion of ‘bad’ diffraction

patterns.

The orientation distributions of the patterns were also

investigated. For each pattern, we selected ten orientations

with the highest probabilities. The in-plane rotations were not

explicitly considered in the distribution analysis so the

orientations could be displayed on the surface of a sphere. The

probabilities of each pattern being at each of the ten most

likely orientations were then summed to the corresponding

orientations, which were mapped to the spherical surface.

Then we obtained the probability for the patterns identified at

each given orientation as shown in Fig. S4. The large variation

of probabilities indicated by the size of the dots suggests that

orientation preferences exist in this dataset. In order to rule

out that this orientation anisotropy was introduced during the

merging or the orientation distribution analysis, we carried out

the orientation recovery using the same procedure on a

simulated dataset composed of 10 000 single-particle patterns

sampled at random orientations. The orientation distribution

for the simulated data is shown in Fig. S8(b), from which no

significant orientation bias could be observed. The variations

in probabilities for the simulated dataset are much smaller

than those of experimental data. Since all four datasets

exhibited similar orientation bias, it is plausible to be the

nature of the PR772 dataset.

3.4. Phase retrieval

Using the phase-retrieval algorithm described in the

Methods section, the real-space models were reconstructed for
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Figure 4
Self-consistency and cross-comparison of the merged results from the
three datasets. Here q is calculated in the same way as in Fig. 3. The two
graphs are (a) the R factors between the independent merged results
from the same dataset and (b) the R factors for the merged results from
the different datasets.



the merged data from patterns selected using the three

methods. The retrieved density maps are shown in Fig. 6. All

of the reconstructed models display icosahedral symmetry for

the virus capsid. However, the genetic materials (DNA

molecules) enclosed by the capsid are not located in the very

centre of the reconstructed models, coloured in red because of

this higher electron density compared with protein molecules.

As observed in the electron density maps, the CNN and DM

datasets yielded models with DNA molecules shifted toward

one of the fivefold vertices. Interestingly, the reconstructed

model from the common subset exhibited the least shift of the

enclosed DNA molecules [Fig. 6(d)]. The reconstructed map

similarities were assessed using the Fourier shell correlation

(FSC). All pairwise comparisons were carried out using

EMAN2 package (Tang et al., 2007). Using a cutoff value of

0.5, the consistency levels between maps reconstructed from

four datasets were summarized in Table 2 (see Fig. S9 for FSC

curves). In general, the maps are consistent with each other to

about 10.0 nm resolution, except for the case of the CNN

dataset which yielded a map that exhibited significant incon-

sistency at about 11.5 nm resolution compared with the maps

from GC or DM datasets.

Using 1/e, where e is the Euler number e = 2.71828, as the

PRTF cutoff, model resolutions from the datasets selected

using the CNN, GC and DM methods are 11.6, 9.2 and

11.8 nm, respectively (see Fig. S6). Although the commonly

selected dataset contains only 9404 patterns, the reconstructed

model has the highest resolution of 8.8 nm based on the same

criteria (nearly to the resolution corresponding with the

corner of the detector, 8.5 nm). This might be because the

common dataset is composed of data from particles with fewer

variations.

The shapes of the reconstructed virus particles were

examined using the eccentricity by fitting the cross-sections

with ellipses [Fig. 7(a)]. The cross-section planes were

uniformly selected based on Fibonacci sampling on a sphere

surface. The parameters for the optimally fitted ellipses were

then used to compute the eccentricity [e = c/a, where c is the
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Figure 5
The distributions of the largest probability for each pattern. For randomly sampled orientations, the expected probability should be approximately
2 � 10�5. For the CNN (a) , the GC (b) and the DM (d) methods, the percentage of patterns whose largest probabilities are smaller than 10�4 are 7.19,
2.62 and 6.76%, respectively. In comparison, the common dataset (d) has 9404 patterns, 28 of which have the largest probability smaller than 10�4

(�0.3%).

Figure 6
Contour display of the retrieved electron density maps. The maps for the datasets selected using the (a) CNN, (b) GC, (c) DM and (d) common dataset.



distance between foci and a is the length of the major axis, see

Fig. 7(b) for examples]. The distributions of the eccentricity

are summarized in Fig. 7(c) for the four reconstructed maps.

The results indicate that the reconstructed models have clear

deviation from a perfect sphere or icosahedron. The mean

values of the eccentricity are in the range between 0.358 and

0.407 for the four models. This is consistent with a discovery in

a recent report, where the authors found that the PR772 virus

particles deviated from ideal icosahedral symmetry (Rose et

al., 2018).

4. Discussion and conclusions

XFEL single-particle imaging is an alternative method for

determining structures of large biological particles and has

potential to visualize conformational changes of three-

dimensional nanoscale objects. Advanced data-analysis

methods are critical for the development of the XFEL single-

particle imaging method. Herein we evaluated the perfor-

mance of three classification methods and their impact on the

reconstructed models.

The supervised classification approach requires a training

dataset labelled by experts or other methods. In this study, the

performance of the algorithm is acceptable even with a small

training dataset. It is possible to manually label 200 single-

particle scattering patterns with a good signal-to-noise ratio

within a few minutes, so these methods can potentially be used

for real-time data classification during experiments. In prac-

tice, it is always better to include more labelled data as training

dataset to improve the accuracy and robustness of the classi-

fication methods.

Because of the conformation heterogeneity of the PR772

samples, the electron density inside the virus capsid of the

reconstructed models from each individual classification

method exhibited a clear deviation toward one of the fivefold

vertices. It is interesting to observe that the common dataset

leads to a model with a higher resolution and more centralized

genetic materials [Fig. 6(d)]. Arguably, the ‘bad’ patterns are

partially responsible for the lower resolution of individual

datasets. For those ‘bad’ patterns whose orientations are not

confidently recovered (pmax < 10�4, see Fig. 5), the signals

contribute to the background and the inclusion of such

patterns might affect the final model resolution. This indicates

that the data quality and sample heterogeneity issue can be

improved by combining several classification methods. In

other words, a group decision based on a properly designed

voting system may outperform individual methods.

A recent study revealed a conformational landscape of

PR772, where a rearrangement of the distribution of the viral

content could be observed by conformational analysis of

XFEL data (Hosseinizadeh et al., 2017). PR772 is a member of

the Tectiviridae virus family and is similar to the prototype

member, PRD1. During infection and also upon sample

storage, it has been directly observed by electron microscopy

that the PRD1 inner lipid membrane containing the DNA

genome changes its icosahedral form and produces a proteo-

lipid tube from a fivefold portal of the outer protein capsid,

which results in the release of the viral genome (Peralta et al.,

2013; Santos-Pérez et al., 2017). The differences in the phased

models shown in Fig. 6 might be attributed to the bias of each
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Figure 7
The shape analysis of the reconstructed maps. (a) An illustration of the cross-section slicing procedure: a Fibonacci sampling algorithm was used to select
the direction of the planes that pass through the model centre. (b) Ellipses with three eccentricity values to guide the understanding of the deviation from
a perfect circle. (c) The distribution of eccentricity values of map cross-sections for four reconstructed maps.

Table 2
The consistency levels between the reconstructed maps from four
datasets.

Model A Model B
q value at cutoff
of 0.5 nm�1

Real-space resolution
(nm)

CNN DM 0.087 11.5
CNN GC 0.087 11.5
DM GC 0.102 9.8
CNN Common 0.097 10.3
DM Common 0.097 10.3
GC Common 0.100 10.0



dataset towards different conformational states. On the other

hand, the common subset formed by the consensus of three

methods might be less biased towards any particular confor-

mational state. It may therefore be possible to use the

consensus subset to determine the most populated state (often

the ground state), serving as the first step for studying the

conformational changes using model-based approaches. For

example, using the model obtained from the common subset

as the starting point, a series of models could be generated

using structure perturbation or dynamic simulation methods.

Then each generated model could be used as a reference to

classify the experimental data. This model-based data classi-

fication approach could be improved iteratively by refining the

initial models with the classified data.

In summary, we presented two supervised image-classifica-

tion methods based on CNN and GC algorithms to identify

scattering patterns resulting from the single particles. The

performances and outcomes were compared against the

published dataset selected using the DM manifold embedding

method. Although the structure of PR772 virus is not known

from an independent study to allow direct comparison, the

cross-comparisons among the four datasets reveal interesting

results. The commonly selected dataset contains far fewer

‘bad’ patterns whose orientations could not be recovered to

high confidence levels. Furthermore, the phase-retrieval

results revealed that the common dataset yielded a recon-

structed model with higher resolutions. The enclosed DNA of

PR772 is found to locate closer to the centre of the virus in the

reconstructed model from the common dataset, in contrast to

the other three reconstructed models from individually

selected datasets. Given the rapid development in cryo-EM

single-particle imaging methods, we hope to see the high-

resolution structure of PR772, which will serve as the ground

truth to assess the quality of these four datasets.
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