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Higher-order statistical analysis of X-ray scattering from dilute solutions of

polydisperse goethite nanorods was performed and revealed structural

information which is inaccessible by conventional small-angle scattering. For

instance, a pronounced temperature dependence of the correlated scattering

from suspension was observed. The higher-order scattering terms deviate from

those expected for a perfectly isotropic distribution of particle orientations,

demonstrating that the method can reveal faint orientational order in

apparently disordered systems. The observation of correlated scattering from

polydisperse particle solutions is also encouraging for future free-electron laser

experiments aimed at extracting high-resolution structural information from

systems with low particle heterogeneity.

1. Introduction

Non-crystalline materials, such as glasses, liquids and solu-

tions, can accommodate various structural features which are

intrinsically forbidden in systems with translational symmetry.

Traditionally, X-ray scattering studies of disordered matter

rely on small-angle X-ray scattering (SAXS) and pair-

distribution function (PDF) analysis (Als-Nielsen &

McMorrow, 2011; Warren, 1990). These widely used approa-

ches, however, provide only limited structural information and

are usually insufficient for the unambiguous derivation of the

3D structure that is crucial for a complete understanding of a

material’s properties. Exploring higher-order statistics of the

scattered intensity can provide additional information about

disordered systems beyond that accessible by conventional

analyses. It has been suggested that, by calculating angular

cross-correlation functions (CCFs) of the scattered intensity

images, it may be possible to extract higher-order scattering

terms preserved in the measured intensity fluctuations beyond

the isotropic averages (Kam, 1977). By performing so-called

fluctuation X-ray scattering (FXS) experiments, one could, for

example, facilitate biological structure determination from

solution scattering (Kam, 1977; Kam et al., 1981) or detect

local orientational order and hidden symmetries in amorphous

materials (Clark et al., 1983; Ackerson et al., 1985).

Practical implementation of these techniques became

possible only recently, mostly due to advances in X-ray

instrumentation (Kurta et al., 2016). X-ray cross-correlation

analysis (XCCA) based on CCFs allowed details to be

revealed of the structural arrangements in partially ordered

soft-matter systems such as colloids (Wochner et al., 2009;

Lehmkühler et al., 2014; Schroer et al., 2015, 2016), liquid

crystals (Kurta et al., 2013c; Zaluzhnyy et al., 2015, 2017b,

2018), polymer blends (Kurta et al., 2015) and mesostructures
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(Zaluzhnyy et al., 2017a; Mancini et al., 2016; Lhermitte et al.,

2017). Correlations have also been explored in electron scat-

tering (Treacy et al., 2005, 2007; Treacy & Borisenko, 2012; Liu

et al., 2013a, 2015) where the requirement for a small scat-

tering volume can be conveniently achieved to observe the

intensity fluctuations associated with atomic scale structures

(Clark et al., 1983). The revival of the field by new experi-

mental X-ray capabilities has been accompanied by novel

developments in the theory of correlated scattering and

advanced data analysis (Altarelli et al., 2010; Kirian et al., 2011;

Malmerberg et al., 2015; Liu et al., 2016; Martin, 2017).

With the emergence of X-ray free-electron lasers (XFELs),

the FXS approach has been extensively revised for biological

structure determination from solution scattering (Saldin et al.,

2009, 2011; Poon & Saldin, 2011; Kurta et al., 2012, 2013b; Liu

et al., 2012; Chen et al., 2013; Malmerberg et al., 2015; Kurta,

2016). Experimental demonstrations for disordered ensembles

of various engineered nanostructures like nano-rice (Liu et al.,

2013b), polymer dumb-bells (Chen et al., 2012; Starodub et al.,

2012) and three-bladed nano-propellers (Pedrini et al., 2013)

indicated the general feasibility of the FXS approach. In

particular, FXS measurements on crystalline nanoparticles in

solution demonstrated the possibility of measuring atomic

scale correlated scattering (Mendez et al., 2014, 2016).

Recently, the FXS approach has successfully been applied to

data taken at the Linac Coherent Light Source (LCLS) in the

USA for biological structure determination. In combination

with a novel iterative phasing algorithm (MTIP; Donatelli et

al., 2015), FXS allowed the reconstruction of aerosolized

single virus particles (Kurta et al., 2017) and multiple virus

particles in solution (Pande et al., 2018) with nanometre

precision.

In studies of FXS from solution, a uniform distribution of

particle orientations is often assumed since it is a necessary

requirement for a successful 3D reconstruction. The question

is whether such a requirement is strictly fulfilled in real

experiments and how it affects the resolution. Clearly, inter-

particle interaction may be responsible for the appearance of

orientational particle correlations in concentrated solutions.

In a generic SAXS experiment, the thermodynamic argument

can be neglected when using dilute particle solutions, where

vanishingly small particle–particle interactions result in a

structure factor value close to unity. The effect of orientational

order, however, has not been explored in FXS experiments,

where the high sensitivity to orientational inhomogeneities

may lead to the manifestation of subtle thermodynamic effects

in the FXS data. On the other hand, particle motion during

X-ray exposure, particularly rotational diffusion for elongated

particles, can blur the contrast of the FXS data. In this work

we investigate how the orientational distribution and rota-

tional diffusion of particles in solution affect experimental

FXS data. Measurements were performed on aqueous

suspensions of polydisperse goethite nanorods at different

volume fractions and temperatures. Our results show a

pronounced temperature dependence of the correlated scat-

tering which, to a great extent, can be associated with orien-

tational particle correlations.

The analysis reveals that the higher-order scattering terms

have larger values than expected for an isotropic distribution

of particle orientations, indicative of weak orientational

(nematic) ordering. This demonstrates that FXS can also be

used as a high-sensitivity probe of orientational order in

apparently disordered systems.

2. Theoretical background

We consider X-ray scattering from a dilute polydisperse

mixture of N particles. The ensemble-averaged SAXS inten-

sity for such a system can be specified as (Als-Nielsen &

McMorrow, 2011)

hIðqÞi ¼ NhAi

Z
s

DðsÞhIsðqÞi ds; ð1Þ

where A is an experimental normalization factor (see

Appendix A), Is(q) is the scattered intensity at a momentum

transfer of magnitude q for a particle of size s and D(s) is the

normalized particle size distribution function, so
R

s DðsÞ ds = 1.

The integration is performed over all particle sizes s, and h� � �i

denotes statistical averaging. The SAXS intensity, equation

(1), commonly used to characterize polydisperse systems, can

be interpreted as a zeroth-order term in the context of our

work.

Here we introduce higher-order scattering terms for a dilute

polydisperse system of particles as (see Appendix A for more

details)

hCnðq1; q2Þi ¼ NhA2i

Z
s

DðsÞhCn
s ðq1; q2Þi ds; ð2Þ

where hCn(q1, q2)i is the ensemble-averaged nth order Fourier

component (FC) of the angular cross-correlation function

(CCF) C(q1, q2, �) [see e.g. Kam (1977) and Kurta et al.

(2016)], defined here for a polydisperse system of particles,

and hCn
s ðq1; q2Þi are the ensemble-averaged FCs defined for a

specific particle size s. In equation (2) it is assumed that the

particle orientations are uniformly distributed and hCn
s ðq1; q2Þi

is in fact a single-particle quantity.

Equation (2) defines higher-order scattering terms which

are unavoidably lost in the isotropic SAXS intensity equation

(1) and which we seek to extract here. For practical applica-

tions, the FCs hCn(q1, q2)i can be experimentally approxi-

mated by the so-called difference FCs fCnCnðq1; q2Þ (see

Appendix B) which help in reducing the effect of various

errors in the experimental data analysis (Kurta et al., 2017).

3. Experiment

The SAXS experiment was performed on beamline ID10 at

the European Synchrotron Radiation Facility (ESRF, France)

with 10 keV photon energy at about 1.3% bandwidth (pink

beam). Using a double-mirror system and a set of slits, the

X-ray beam was focused and collimated to a size of about

20 � 20 mm with about 1013 photons s�1 hitting the sample.

The scattered intensity was recorded by a Maxipix detector

(consisting of 256 � 256 square pixels, 55 mm in size) situated
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515 mm downstream from the sample. A 2 mm round beam-

stop of Pb was placed in front of the detector to protect it from

the direct beam transmitted through the sample.

The image acquisition time was 1 ms to minimize rotational

motion of the nanoparticles during exposure, and a fast

shutter before the sample protected it from the X-ray beam

during the 0.1 s of waiting time between successive exposures.

Scattering measurements were performed on dilute aqueous

solutions (80 wt% propane-1,3-diol in water) of goethite

(�-FeOOH) nanorods contained in glass capillaries of

diameter 0.7 mm. About 104 diffraction patterns were

acquired for the correlation analysis to accumulate sufficient

statistics for each volume fraction of goethite particles (’g =

0.05% and 0.5%) at the different temperatures.

The powerful X-ray beam is potentially able to damage the

sample, for instance resulting in gas bubbles that would lead to

very strong and unwanted stray scattering. Hence, a procedure

was established where every spot of the capillary only received

an exposure of 10–20 ms, after which a new spot was illumi-

nated. The waiting time between exposures ensures that

diffusion creates a new spatial arrangement of nanoparticles

inside the scattering volume, which is important for correct

ensemble averaging.

The structure and dynamics of goethite solutes have

previously been studied by X-ray scattering (Lemaire et al.,

2004; Poulos et al., 2010). For the suspensions used here it has

been established in structure factor studies that there is no

orientational (nematic) ordering below about 4% volume

concentration of particles. The exposure time of 1 ms was

chosen as a compromise between the need for a strong scat-

tering signal and the requirement that the particles remain in

quasi-fixed positions during exposure. The latter can be

ensured by cooling the sample, since the solvent (80 wt%

propane-1,3-diol in water) increases in viscosity at low T and

hence slows down the rotational diffusion over 1 ms, from

�10� at room temperature (297 K) to �1� at 229 K and �0.1�

at 209 K.

4. Results and discussion

SAXS images were corrected for background scattering and

normalized by the average intensity per pixel. Saturated

pixels, dead pixels and pixels shadowed by the beamstop were

masked in the analysis, and a flat-field correction was applied

to the detector. For the correlation analysis we employed the

difference spectra fCnCnðq1; q2Þ (see Appendix B), calculated in

the range of scattering vectors from q = 0.13 to 0.43 nm�1.

Fig. 1 shows a set of 2D correlation maps illustrating the

amplitudes of six FCs fCnCnðq1; q2Þ, n = 1–6, determined at ’g =

0.05% and T = 229 K. Dotted and dashed lines in Fig. 1(d)

define four different sections through the 2D maps. These

sections are shown in detail in Fig. 2 for n = 1–12.

One can see from Figs. 1 and 2 that within the analysed

portion of reciprocal space, a dominant contribution to the

difference spectrum fCnCnðq1; q2Þ originates from FCs of low

even orders, i.e. n = 2, 4 and 6. Apart from a slightly increased

value of the n = 1 FC, most probably due to imperfect centring

of the SAXS patterns and/or absorption effects, all other FCs

have vanishing values.

Fig. 3 illustrates the importance of utilizing the difference

CCF eCCðq1; q2;�Þ instead of the commonly used CCF

hCii(q1, q2, �)ii . As one can see from Fig. 3, both hCn
iiðq1; q2Þii

and hCn
ijðq1; q2Þii6¼j [see equation (17)] have a complex struc-

ture with similar magnitudes of even- and odd-order FCs,

indicating a strong direct correlation of diffraction patterns

which we attribute to an uncompensated and structured

background. In contrast, fCnCnðq1; q2Þ shows a smooth variation

of the even-order FCs of interest, as expected for this small-

angle scattering experiment.

It is noteworthy that the Fourier spectrum of the auto-

correlation fCnCnðq1; q2 ¼ q1Þ [Fig. 2(a)] differs substantially

from the cross-correlation terms1 fCnCnðq1; q2 6¼ q1Þ [Figs. 2(b)–

2(d)]. This is to be expected due to the contribution of self-

correlation of pixels and coherent speckle patterns (Altarelli

et al., 2010; Kurta et al., 2012, 2013a) that are enhanced by

autocorrelation (note the bright diagonal streak on all the 2D

maps in Fig. 1). As a result, the contrast of higher-order FCs of

the autocorrelation function diminishes rapidly as a function

of q. In the present case, the FC of the autocorrelation of order

n = 6 cannot be detected above the background and the FC of

the autocorrelation of order n = 4 diminishes rapidly, see

Fig. 2(a). Yet, the FCs of the CCF of orders n = 2, 4 and 6 are

clearly dominant across all measured q values, see Figs. 2(b)–

2(d). Considering a smooth q dependence of the amplitudes

jfCnCnðq1; q2 6¼ q1Þj (see Fig. 1), it is sufficient to analyse the FCs

of the CCF determined at one particular q2 value. Therefore,
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Figure 1
Amplitudes (log scale, arbitrary units) of the difference FCs jfCnCnðq1; q2Þj

for n = 1; . . . ; 6, calculated from X-ray scattering images for the sample
with a volume fraction ’g = 0.05% of goethite nanorods at T = 229 K. The
colour map and the axes specified in panel (d) are the same for all maps.
The dashed line at q1 = q2 = q, and the dotted lines at q2 = 0.15, 0.25 and
0.40 nm�1 in panel (d) indicate sections through the 2D maps (maps for
n > 6 are not shown here). These sections are shown in Fig. 2.

1 Peaks in jfCnCnðq1; q2Þj visible in Figs. 2(b)–2(d) appear when the corre-
sponding section shown in Fig. 1(d) crosses the diagonal q1 = q2. These peaks
appear due to autocorrelation of intensity at the same q and should not be
considered as cross-correlation terms defined strictly at q1 6¼ q2; the
magnitudes of jfCnCnðq1; q2Þj at the peak positions are the same as in Fig. 2(a)
at the corresponding q = q2 value.



all further analyses will exclusively involve the cross-

correlation terms fCnCnðq1; q2 ¼ 0:25 nm�1Þ.

The temperature dependence of the FXS data is illustrated

in Fig. 4. SAXS intensities [Figs. 4(a) and 4(c)] and the

dominant FCs jfCnCnðq1; q2Þj [Figs. 4(b) and 4(d)] are determined

for two samples with different volume fractions of goethite

particles, ’g = 0.05% [Figs. 4(a) and 4(b)] and ’g = 0.5% [Figs.

4(c) and 4(d)], at different temperatures. For each volume

fraction, the data measured at different temperatures were

scaled according to equations (1) and (2), assuming the same

average number of particles N in the beam; see Appendix C

for details of the scaling procedure. The analysis reveals

substantial variation in the magnitudes of jfCnCnðq1; q2Þj as a

function of temperature, while the q dependence remains

almost unchanged for a particular ’g. Indeed, by increasing

the solution temperature from T = 229 to 297 K (’g = 0.05%),

the dominant FC of order n = 2 decreases by almost two

orders of magnitude, as indicated by the arrow in Fig. 4(b),

while the higher-order FCs vanish completely. Similarly, by

increasing the solution temperature in a sample with a higher

volume fraction (’g = 0.5%), the dominant FCs (n = 2 and 4)

become approximately one order of magnitude smaller, see

arrow in Fig. 4(d).

To the best of our knowledge, this is the first reported

observation of temperature effects in fluctuation X-ray scat-

tering. It was pointed out by Kam (1977) that temperature-

dependent rotational diffusion of particles during X-ray

exposure can smear the intensity fluctuations of diffraction

patterns, thus reducing the contrast of the angular CCFs. By

reducing the temperature, the viscosity of the solvent

increases and rotational diffusion slows down, leading to an

increase in contrast. At first glance, the observed temperature

behaviour of jfCnCnðq1; q2Þj is in agreement with this physical

picture. However, as will be shown below, rotational diffusion

dynamics is not the decisive factor responsible for the

temperature variation in the contrast of jfCnCnðq1; q2Þj observed

in our experiment.

Experimental results for two samples with different volume

fractions of goethite particles (’g = 0.5% and 0.05%)

measured at the same temperature (T = 229 K) are compared

in Fig. 5. The results were scaled assuming that the number of

scattering particles N is ten times larger in the sample with the

highest volume fraction (’g = 0.5% compared with ’g =

0.05%). Ideally, in the absence of additional concentration

effects the FXS data should overlap after such a rescaling,

which is apparently not the case. In the q range shown in Fig. 5,

both SAXS intensities and FCs have similar q dependencies at

different concentrations, but the magnitudes of the FCs are

notably different. To understand the origin of this effect we

performed simulations of FXS for various model systems (see

Appendix D). We identified a model of the goethite solution

that adequately reproduces the SAXS intensity at ’g = 0.05%

as well as the q dependence of the FCs (Fig. 6). The model

takes particle polydispersity into account and assumes a

uniform distribution of orientations, but the simulated FCs

have considerably lower values (about three orders of

magnitude) than the experimental results [see Fig. 6(b)].

Notably, not only is the entire simulated spectrum shifted

down in magnitude, but the relative scaling of simulated FCs

at different orders n is also different, for instance
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Figure 2
Amplitudes (log scale) of the difference FCs jfCnCnðq1; q2Þj for n = 1; . . . ; 12, determined at (a) q1 = q2 = q, (b) q2 = 0.15 nm�1, (c) q2 = 0.25 nm�1 and (d) q2

= 0.40 nm�1 as a function of q1 (see Fig. 1). Three dominant FCs of the orders n = 2 (red), n = 4 (blue), and n = 6 (green) clearly stand out from the
background level [proximately indicated with dashed lines] formed by the degenerate FCs of other orders.



jeC2C2ðq1; q2Þj=j
eC4C4ðq1; q2Þj is much larger in the experiment than

retrieved in the simulation.

Additional simulations have indicated that a nonuniform

distribution of particle orientations may be responsible for the

observed effects (see Figs. 7 and 9). Our results show that the

FCs of the CCF have substantially higher values in the case of

a Gaussian distribution of orientations around a mean direc-

tion, and for arbitrarily large numbers of particles they can be

several orders of magnitude larger than for a perfectly

uniform distribution. Importantly, in the case of a nonuniform

distribution of particle orientations, the relative scaling of FCs

of different orders n is also affected, closely resembling what is

observed in the experiment (see Fig. 8). Similar effects can be

observed for models where only a fraction of the particles

obey a nonuniform distribution of orientations while the

others exhibit truly random orientations (see Fig. 9).

While the details depend on the particular parameters of

the nonuniform orientational distribution, the simulations

generally indicate a nonlinear dependence of the FCs on the

number of particles N in the system, meaning that equation (2)

does not hold in this case. Such a nonlinear scaling of FCs was

deduced earlier for a 2D disordered system of particles with a

Gaussian distribution of orientations about a certain direction

(Kurta et al., 2012). It has been shown that the N-dependent

scaling factor for an FC of nth order is equal to

N½1þ ðN � 1Þ expð�n2�2Þ�, where � is the standard deviation

of the Gaussian distribution. In the limit of � ! 1 this

expression tends towards N, which is the exact result for a

uniform distribution2. This means that for a nonuniform

distribution, FCs of different orders have different scaling

parameters which depend in a nonlinear fashion on N. Clearly,

in the 3D case relevant for our experiment, a specific non-

uniform distribution of orientations could further alter the q

dependence and relative scaling of individual FCs. While it is

not feasible to obtain a general analytical result for an arbi-

trary non-uniform distribution of particle orientations in 3D

[similar to equation (2)], simulations can still provide valuable

information for qualitative analyses.

Taking into account the devised model of nanoparticle

solution studied in our experiment, which involves orienta-

tional nonuniformity of particles, we can finally discuss

possible origins of the observed temperature variation of

jfCnCnðq1; q2Þj, particularly the role of rotational diffusion of

particles. Our simulations show (see Appendix E and Fig. 10)

that, in the case of orientational order of particles, the rota-

tional diffusion dynamics has a rather minor effect on the

contrast of jfCnCnðq1; q2Þj. Therefore, temperature-dependent

orientational correlations of particles are predominantly

responsible for the observed FXS contrast variation. The data

available from our experiment make it difficult to distinguish

whether direct particle–particle interactions or particle–wall

interactions are responsible for these correlations. Consid-

ering the very low sample volume fraction, however, we are

inclined to interpret our observations as a result of inadequate

equilibration (due to the high solvent viscosity at low

temperature) after sample loading, or an alignment effect

induced by the capillary walls. A more systematic study is

required to identify uniquely the physical origin of the

observed temperature-dependent orientational correlations.

5. Conclusions and outlook

Fluctuation scattering based on higher-order statistics of the

scattered intensities, combined with novel capabilities of X-ray

instrumentation and advanced approaches to data analysis,

opens up exciting new opportunities for materials research

with X-rays. Our results indicate that comprehensive infor-

mation about the structure and dynamics of disordered

systems can be extracted by means of angular cross-

correlation functions. We have shown that FXS from solutions

of nanoparticles can provide unique structural information,
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Figure 3
Experimental FXS data calculated for ’g = 0.05% and T = 229 K, showing
the amplitudes of the FCs of (a) the intra-image CCF, jhCn

iiðq1; q2Þiij, (b)
the inter-image CCF, jhCn

ijðq1; q2Þii6¼jj, and (c) the difference, jfCnCnðq1; q2Þj

[see equation (17)], determined at q1 = q2 = q (autocorrelation part of the
Fourier spectrum) for n = 1; . . . ; 12.

2 The scaling factor given by Kurta et al. (2012) is specified for a normalized
two-point CCF and should be multiplied by N2 in order to get the expression
shown here.



which is challenging or impossible to obtain by conventional

SAXS approaches.

The ‘classical’ aim of FXS formulated by Kam (1977) is to

use the angular CCFs as additional constraints in the particle

structure determination problem. Such studies rely on a

uniform distribution of particle orientations in solution, which

is a prerequisite of a successful 3D reconstruction. However,

the experimentally measured CCFs can be affected by two

major factors, namely rotational diffusion dynamics and inter-

particle interactions, leading to quite distinct outcomes for the

FXS data.

According to earlier theoretical predictions for isotropic

solutions (Kam, 1977; Kam et al., 1981), temperature-

dependent rotational diffusion of particles during X-ray

exposure can smear the intensity fluctuations of the diffraction

pattern, thus reducing the contrast of the angular CCFs.

Therefore, particle dynamics prevents structural information

being accessed by FXS because the higher-order scattering

terms vanish. To solve the problem it was suggested to cool the

solution down in order to slow down the dynamics due to the

resulting increase in solvent viscosity (Kam, 1977; Kam et al.,

1981). The effect of rotational diffusion is naturally diminished

at novel X-ray sources like X-ray free-electron lasers (XFELs)

and diffraction-limited storage rings, where extremely high

numbers of photons can be delivered to the sample in ultra-

short pulses, much shorter than the characteristic rotational

diffusion times of materials. This makes such X-ray sources

well suited to structural characterization by FXS. On the other
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Figure 4
The temperature dependence of the FXS data (log scale). (a) and (c) The SAXS intensities, and (b) and (d) the amplitudes of the FCs jfCnCnðq1; q2Þj for n =
2, 4 and 6 and q2 = 0.25 nm�1, determined at temperatures T = 229 and 297 K for the sample with a volume fraction of goethite nanorods ’g = 0.05%
[panels (a) and (b)], and at temperatures T = 209 and 229 K for the sample with ’g = 0.5% [panels (c)–(d)]. The black arrows in panels (b) and (d)
indicate the observed temperature drop of jeC2C2ðq1; q2Þj.

Figure 5
The concentration dependence of the FXS data at T = 229 K (log scale). (a) The SAXS intensities and (b) the amplitudes of the FCs jfCnCnðq1; q2Þj for n = 2,
4 and 6 and q2 = 0.25 nm�1, determined for two samples with different volume fractions of goethite nanorods, ’g = 0.5% and 0.05%.



hand, angular cross-correlation functions provide a new tool

for studying rotational diffusion dynamics that is notoriously

difficult to access experimentally.

Interparticle interactions can introduce distortions in the

angular CCFs, which may prevent them being used for particle

3D structure recovery. In conventional SAXS structural

studies, the role of interparticle interactions can be effectively

diminished by reducing the sample concentration, resulting in

SAXS intensity curves that can be used directly for structure

refinement. The FXS data appear to be much more sensitive to

nonuniformities in the orientational distribution of particles,

which manifest themselves in the measured CCFs even at

subtle deviations from the isotropic case, in contrast to SAXS.

Other sources of orientational nonuniformities may be

induced by external forces (optical excitations, magnetic fields

etc), the sample container (e.g. particle–wall interaction) or

solute flow alignment. Therefore, the possibility of unwanted

orientational ordering should be carefully considered in all

experiments aimed at single-particle structure recovery from

solution scattering, because the resulting nonlinear and non-

trivial scaling of higher-order scattering terms will distort the

structural information obtained. On the other hand, FXS may

be considered as a tool to study weak orientational order and

correlations in solutions, where other methods cannot provide

the desired sensitivity.

In our experimental study, by varying the temperature of

the goethite nanorod solution, we observed substantial

changes in the FXS contrast. We also revealed significant

deviations of the correlated scattering from that expected for

an isotropically oriented sample. Our simulations show that

nonuniformities in the orientational distribution of goethite

particles may be responsible for the observed features in FXS.

These results demonstrate that FXS can also be used as a

sensitive probe of orientational alignment in apparently

disordered systems, which is an essential capability for

nanoscale studies of inhomogeneities, cooperativity and early

stages of nucleation in solutions. The sample model involving

orientational correlations also suggests that rotational diffu-

sion dynamics plays a minor role in the temperature-

dependent variation of the FXS contrast. In the present case,

the goethite solutions are believed to be isotropic in bulk at

low concentrations (	4%), so the weak anisotropy observed is

probably an artifact from the sample loading or an alignment

effect induced by the capillary walls. In either case, FXS

demonstrates extreme sensitivity to weak nematic ordering of

anisotropic particles.

APPENDIX A
Two-point cross-correlation function for a dilute
polydisperse mixture of particles

We consider X-ray scattering from a single particle and define

single-particle scattered intensity and the cross-correlation

function (CCF). The scattered intensity distribution from a

single particle of the pth kind in an arbitrary kth orientation

can be expressed as

Ip;kðqÞ ¼

Z
�p;kðrÞ expðiq � rÞ dr

����
����

2

; ð3Þ

where q is the scattering vector, r is the real-space vector and

�p, k(r) is the 3D electron-density distribution of the particle of

the pth kind in the kth orientation. Ip, k(q) can be expanded

into an angular Fourier series as

Ip;kðq; ’Þ ¼
X1

n¼�1

In
p;kðqÞ expðin’Þ; ð4Þ

where the angular Fourier transform is defined in the polar

coordinate system q = (q, ’) and In
p;kðqÞ are the Fourier

components (FCs) of Ip, k(q, ’).

The two-point angular cross-correlation function3 (CCF) is

defined at two momentum transfer values q1 and q2 as (Kam,

1977; Kurta et al., 2013a, 2016)

Cp;kðq1; q2;�Þ ¼ Ip;kðq1; ’Þ Ip;kðq2; ’þ�Þ
� �

’
; ð5Þ

where � is the angular separation and h. . .i’ defines averaging

over the angular coordinate ’, with the subscript p indicating

that the CCF is for a particle of the pth kind in the kth
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Figure 6
The results of simulations for a polydisperse system of lath-shaped particles [with average dimensions a = 23 nm, b = 9.2 nm and c = 400 nm (see text)]
scaled to the experimental FXS data measured at ’g = 0.05% and T = 229 K. (a) The SAXS intensities and (b) the amplitudes jfCnCnðq1; q2Þj for n = 2, 4 and
6 at q2 = 0.25 nm�1. A Gaussian distribution of particle sizes and a uniform distribution of particle orientations were applied in the simulations.

3 The two-point angular CCF defined at q1 = q2 = q is sometimes called
‘angular autocorrelation’; see e.g. Chen et al. (2012) and Liu et al. (2012).



orientation. It is customary to operate with the FCs

Cn
p;kðq1; q2Þ of the CCF (5) with angular Fourier series of

Cp, k(q1, q2, �) written as (Altarelli et al., 2010)

Cp;kðq1; q2;�Þ ¼
X1

n¼�1

Cn
p;kðq1; q2Þ expðin�Þ: ð6Þ

It has been shown that the following relation holds between

the FCs of the intensity and of the CCF (Altarelli et al., 2010)

Cn
p;kðq1; q2Þ ¼ In


p;kðq1Þ I
n
p;kðq2Þ: ð7Þ

As one can see, the FCs of the CCF are determined by the FCs

of the intensities In
p;kðq1Þ and In

p;kðq2Þ.

The CCF and its FCs can be averaged over a set of M

diffraction patterns to obtain orientationally averaged results,

hCp;kðq1; q2;�Þik ¼
1

M

XM

k¼1

Cp;kðq1; q2;�Þ; ð8aÞ

hCn
p;kðq1; q2Þik ¼

1

M

XM

k¼1

Cn
p;kðq1; q2Þ ¼

1

M

XM

k¼1

In

p;kðq1Þ I

n
p;kðq2Þ;

ð8bÞ

where h. . .ik denotes statistical averaging.

Now we consider X-ray scattering from a dilute mixture of

particles consisting of Ns different species. In this case the

scattered intensity distribution (neglecting particle inter-

ference terms and hence valid for dilute suspensions) recorded

on the ith detector image can be expressed as

IiðqÞ ¼ Ai

XNs

p¼1

XNp

kp¼1

Ip;kp
ðqÞ; ð9Þ

where the first summation is performed over Ns different

particle types, the second summation is done over Np particles

of each particle type p (the value of Np depends on p), and

intensities Ip;kp
ðqÞ are defined by equation (3) for each particle

type p and orientation kp . Here we have also introduced the

experimental scaling factor Ai , which can vary from image to

image. For the sake of simplicity, we have assumed in equation

(9) that Ai is a q-independent quantity mostly defined by the

incident X-ray flux, the beam footprint and the sample

exposure time (or pulse duration), and that each measured

scattered intensity distribution is corrected for q-dependent

experimental factors (e.g. polarization and detector

geometry). Similar to equation (5), we can define the CCF

Ci(q1, q2, �) in terms of Ii(q, ’) as

Ciðq1; q2;�Þ ¼ A2
i Iiðq1; ’Þ Iiðq2; ’þ�Þ
� �

’
: ð10Þ

Assuming a uniform distribution of particle orientations,

statistically averaged CCFs hCi(q1, q2, �)ii and their FCs

hCn
i ðq1; q2Þii can be expressed as

hCiðq1; q2;�Þii ¼
1

M

XM

i¼1

Ciðq1; q2;�Þ

¼ hA2
i ii

XNs

p¼1

hNp;iiihCp;iðq1; q2;�Þii; ð11aÞ

hCn
i ðq1; q2Þii ¼

1

M

XM

i¼1

Cn
i ðq1; q2Þ

¼ hA2
i ii

XNs

p¼1

hNp;iiihC
n
p;iðq1; q2Þii; ð11bÞ

where the single-particle quantities hCp, i(q1, q2, �)ii and

hCn
p;iðq1; q2Þii are defined in equations (8a) and (8b), respec-

tively. In the above expressions we have assumed that fluc-

tuations in the experimental factor Ai and in the number of

particles Np, i attributed to each scattering image are statisti-

cally independent quantities.

As one can see from equations (11a) and (11b), in the case

of a mixture of particles the statistically averaged CCFs and

their FCs can be represented as a sum of single-particle

quantities weighted by the average number of particles hNp, iii

of each kind p in the mixture. This result is similar to that

obtained for two-dimensional heterogeneous disordered

ensembles of particles (Chen et al., 2013). An important

difference between the 2D case and the 3D case considered

here is that for the latter the ensemble-averaged quantities

hCn
p;iðq1; q2Þii cannot be further factorized in terms of intensity

FCs [similar to equation (7)], while this is still possible in the

2D case.

For a polydisperse mixture of particles, the CCF

hCi(q1, q2, �)ii and its FCs hCn
i ðq1; q2Þii can be defined as

follows:

hCiðq1; q2;�Þii ¼ NhA2
i ii

Z
s

DðsÞhCs;iðq1; q2;�Þii ds; ð12aÞ

hCn
i ðq1; q2Þii ¼ NhA2

i ii

Z
s

DðsÞhCn
s;iðq1; q2Þii ds; ð12bÞ

where the integration is performed over all particle sizes s and

for which a normalized particle size distribution function is

defined:
R

s DðsÞ ds = 1. N =
PNs

p¼1hNp;iii is the total number of

particles in the illuminated sample volume and the single-

particle quantities hCs, i(q1, q2, �)ii and hCn
s;iðq1; q2Þii are

defined for each particle size according to equations (8a)

and (8b).

For completeness, we also specify a small- (or wide-)angle

scattering (SAXS or WAXS) intensity for a polydisperse

system of particles as

hIiðqÞii ¼ NhAiii

Z
s

DðsÞhIs;iðqÞii ds; ð13Þ

where hIs, i(q)ii is the SAXS intensity determined for a particle

of size s,

hIs;iðqÞii ¼
1

2�M

XM

i¼1

Z 2�

0

Is;iðq; ’Þ d’; ð14Þ
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and Is, i(q, ’) is defined by equation (3), where the subscripts

p, k should be replaced by s, i, respectively. Equations (13) and

(12b) contain key expressions used for FXS data interpreta-

tion in this work [see equations (1) and (2) in the main text].

In the present manuscript we have employed a Fourier basis

for expressing the scattered intensity and cross-correlation

functions. Using a Fourier basis is typically preferred when

considering scattering from 2D systems, or in the case of small-

angle scattering with negligible curvature of the Ewald sphere.

At the same time, a Legendre basis is more natural in the case

of wide-angle scattering from 3D objects, particularly enabling

more straightforward treatment of effects associated with

curvature of the Ewald sphere.

APPENDIX B
Intra- and inter-image cross-correlation functions

For practical applications, it is helpful to determine the so-

called difference CCF (Kurta et al., 2014, 2017)

eCCðq1; q2;�Þ ¼ hCiiðq1; q2;�Þii � hCijðq1; q2;�Þii6¼j; ð15Þ

and its Fourier components defined in the series

eCCðq1; q2;�Þ ¼
X1

n¼�1

fCnCnðq1; q2Þ expðin�Þ; ð16Þ

where Cii(q1, q2, �) is the CCF determined on the same ith

image [intra-image CCF, commonly used in the literature

(Kam, 1977; Kurta et al., 2013a, 2016)] and Cij(q1, q2, �)

defines the angular correlation between two different images i

6¼ j (inter-image CCF). Due to the linear properties of the

Fourier transformation, the average difference Fourier spec-

trum can be also determined as (Kurta et al., 2014, 2017)

fCnCnðq1; q2Þ ¼ hC
n
iiðq1; q2Þii � hC

n
ijðq1; q2Þii6¼j; ð17Þ

where the second term on the right-hand side is defined

strictly for i 6¼ j.

In the case of nonuniformity of the measured data (e.g.

structured background, nonuniform response of detector etc.),

calculating the difference FCs fCnCnðq1; q2Þ helps significantly in

reducing artifacts that otherwise contaminate hCn
iiðq1; q2Þii.

APPENDIX C
Comparison of the FXS data sets

Here we describe the procedure for comparing FXS data sets,

which can be applied to test modelling against experimental

data or to compare different experimental results. In general,

precise information about the scaling factors A in equations

(1) and (2) is required to compare different data sets. In the

case of a uniform distribution of orientations, both the SAXS

intensity and the FCs of the CCF depend linearly on the

number of particles N, while the dependence of the experi-

mental scaling factor is linear or quadratic, respectively. Note

that generally hA2
i � hAi2, but the approximation hA2

i ’ hAi2

can be applied if for each diffraction pattern A = hAi + �A, and

�A is an arbitrarily small fluctuation about the average value

hAi (�A � hAi, h�Ai = 0). This approximation significantly

simplifies direct comparison of the FXS data and is valid, for

example, if the incident intensity fluctuates slightly about

some average value. In practice, experimental scattering

patterns can be normalized by the measured incident inten-

sities before further analysis. In the absence of accurately

measured incident intensities, the effect of incident intensity

fluctuations can be reduced by normalizing the intensity of

each diffraction pattern by its average intensity per pixel Iav

(Iav = 1=p
Pp

j¼1 Ij, where Ij is the intensity value of the jth pixel

and summation is done over p pixels). Simulations show that

the applicability of such a normalization approach is justified if

the statistical properties of the sample, e.g. the probability

distribution of particle orientations, are preserved during

measurements. This normalization procedure was applied

here.

Let us consider the following example of validating a model

against experimental FXS data. In simulations we assume a

particular form of the particle size distribution function D(s),

with a defined particle structure for each size s. Suppose that

we know the illuminated sample volume Vsample and the

particle volume fraction ’g (%). Then the number of scat-

tering particles Nexp is given by

Nexp ¼
’gVsample

100
R

s VðsÞDðsÞ ds
; ð18Þ

where V(s) is the volume of a particle of size s in the

considered model. Scaling of the simulated SAXS intensity

hI(q)isim to the experimental value hI(q)iexp is then performed

by first multiplying hI(q)isim by Nsc = Nexp/Nsim, where Nsim is

the number of particles used in the simulation, thus yielding an

updated (partially scaled) value of hI(q)isim. The scaling ratio

Asc = hAiexp/hAisim = hI(q)iexp/hI(q)isim is determined using this

updated value. The magnitude of Asc should not depend on

the choice of q so it is reasonable to calculate the ratio

hI(q)iexp/hI(q)isim at a q value where the experimental data

have the best signal-to-noise ratio. We then multiply the

simulated SAXS intensity by Asc and the simulated FCs by

ðNscA
2
scÞ (using the approximation hA2

i ’ hAi2 discussed

above). After this step, the rescaled simulated SAXS intensity

and FCs allow a direct comparison with the experimental data

to test the accuracy of the model.

In equations (1) and (2) we assumed that the particle

orientations are uniformly distributed (isotropic case). If this

is not the case, equations (1) and (2) do not hold and the above

scaling procedure is also wrong, in particular because the

N-dependent factors have more complicated forms. It has

been shown that, for a partially disordered 2D ensemble of

particles specified by a Gaussian distribution of orientations

with standard deviation �, the scaling factor in equation (2)

becomes equal to N½1þ ðN � 1Þ expð�n2�2Þ�, in contrast to N

in the case of a uniform distribution (Kurta et al., 2012). In 3D

simulations of nonuniform orientation distributions of

goethite nanorods, we also observed nonlinear N dependen-

cies of CCFs and FCs of different orders n. Therefore, if a

discrepancy is present after rescaling the model this may

indicate nonuniformities in the orientational distribution of
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particles, which is an interesting topic in itself (see simulation

results in Appendix D).

APPENDIX D
Simulations of FXS

We performed FXS simulations by employing bead models of

various structures within a uniform density approximation.

The X-ray scattering simulations were performed with para-

meters identical to those of the experiment, i.e. a photon

energy of 10 keV and a 2D detector consisting of 256 � 256

square pixels (55 �m pixel size) placed 515 mm downstream

from the sample. In all simulations we considered a fully

coherent beam and did not include shot noise. In the absence

of any structured background and detector artifacts, it is

sufficient to compute the commonly used CCF hCii(q1, q2, �)ii
(see Appendix B) and analyse its FCs hCn

iiðq1; q2Þii for every

scattering image i in order to obtain all necessary structural

information.

In the simulations a lath-shaped structure of goethite

nanoparticles was assumed, as illustrated in the inset of Fig.

6(a). Solvent scattering was neglected due to its negligible

scattering contribution compared with the strong signal from

goethite. To model the particle polydispersity, we assumed a

truncated Gaussian distribution of sizes, reported earlier for

goethite in solution (Lemaire et al., 2004). The particle size

distribution function D(s) was effectively defined as a 2D

Gaussian function with mean values Ma, Mc and corre-

sponding standard deviations �a, �c of the particle dimensions

a and c, respectively. The third particle dimension was defined

as b = a/p for each value of a, where p is an anisotropy

parameter. Due to the low experimental resolution and

particle polydispersity, our model fits showed limited sensi-

tivity to the largest particle dimension. However, the best

fitted model to the experimental SAXS intensity at ’g = 0.05%
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Figure 7
The results of simulations for various types of nonuniform distribution of particle orientations. (a), (c) and (e) The SAXS intensities, and (b), (d) and (f)
the amplitudes of the FCs jhCn

iiðq1; q2Þiij for n = 2, 4 and 6 at q2 = 0.25 nm�1. The results for a Gaussian distribution of particle orientations about the y
axis (GaussY) with �y = 1.0 [panels (a) and (b)] and �y = 2.0 [panels (c) and (d)], as well as a Gaussian distribution of orientations about the xz plane
(GaussXZ) with �xz = 2.0 [panels (e) and (f)], are plotted together with the results for a uniform distribution (Unif) of orientations. The nonuniform
distributions of orientations are shown schematically as insets in panels (a), (c) and (e) (see Appendix D for details).



and T = 229 K [see Fig. 6(a)] has p = 2.5, Ma = 23 nm, Mc =

400 nm, �a = 20.5 nm and �c = 95 nm, which are close to earlier

reported values (Poulos et al., 2010).

With these parameters, the model contains about Nexp =

0.7 � 106 particles in the illuminated volume at ’g = 0.05%,

estimated according to equation (18). This value of Nexp was

used to rescale the simulated FXS data to the experimental

results shown in Fig. 6 (see Appendix C for the scaling

procedure). The SAXS intensities and the q dependence of

the FCs hCn
iiðq1; q2Þii are reproduced reasonably well, although

the simulated FCs have considerably lower magnitudes than

the experimental results. An inaccurate estimation of the

number of particles can only be partially responsible for this

significant discrepancy and other causes must be sought.

Our simulations show that nonuniformities in the orienta-

tional distribution of particles may in fact be responsible for

the observed effects. In the case of a uniform distribution of

particle orientations, equation (2) can be expressed as an

integral over the values of hCn
s ðq1; q2Þi, where hCn

s ðq1; q2Þi is a

single-particle quantity. This is not the case for an arbitrary

nonuniform distribution of particle orientations in 3D, and

one has to perform full-size simulations with a large number of

particles to obtain a precise estimation of the effect. For a

qualitative demonstration, we deploy a simplified model and

perform simulations of nonuniform distributions of particle

orientations for a system of monodisperse lath-shaped parti-

cles with dimensions a = 7.7 nm, b = 3 nm and c = 100 nm.

The results of simulations for various types of truncated4

Gaussian distribution of particle orientations are compared

with those for a uniform distribution of orientations in Fig. 7.

The ‘particle orientation’ was defined as the orientation of the

long axis (c). We consider Gaussian distributions of particle

orientation along the y axis, which is perpendicular to the

incident X-ray beam [Figs. 7(a)–7(d)] with �y = 1.0 [Figs. 7(a)

and 7(b)] and �y = 2.0 [Figs. 7(c) and 7(d)]. A Gaussian

distribution of particle tilts about the xz plane oriented

perpendicular to the detector plane with �xz = 2.0 [Figs. 7(e)

and 7(f)] was also considered. In the latter case, particle

orientations were generated as follows. First aligned with its

long axis parallel to the z axis (parallel to the incident-beam

direction), the particle was rotated about the z axis by a

random angle in the range [0, 2�], then rotated about the x

axis by an angle defined according to the specified Gaussian

distribution in the range [��/2, �/2], and finally rotated about

the y axis by a random angle in the range [0, 2�]. Calculations

were performed for a different number of particles in the

sample (specified in the legends in Fig. 7) and scaled to the

results for a uniform distribution of particles. We applied the

scaling procedure described in Appendix C to show how

nonuniformities in the orientational distribution of particles

can be revealed by comparing the results with those for a

uniform distribution of orientations.

As one can see from Fig. 7, while in all considered cases the

rescaled SAXS intensities match precisely, the FCs

hCn
iiðq1; q2Þii always have higher values for models with a

nonuniform distribution of particle orientations. The discre-

pancy between the results for uniform and Gaussian distri-

butions of particles increases substantially as the number of

particles in the system grows and can reach several orders of

magnitude. Importantly, the relative scaling of FCs of different

orders n also increases compared with the model with a

uniform distribution of particles (see Fig. 8). Both features are

consistent with our experimental observations, suggesting that

an anisotropic orientational distribution of particles may be

responsible for the observed effects.

The simulation results in Fig. 9 show that the FCs

hCn
iiðq1; q2Þii can help to reveal even arbitrarily weak orien-

tational order. Here, we simulated X-ray scattering from a

mixture of N = 104 particles, where a fraction of them are

characterized by a Gaussian distribution of particle orienta-
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Figure 8
The ratios between the FC amplitudes jhCn

iiðq1; q2Þiij of different orders n
determined for the model systems shown in Figs. 7(a), 7(c) and 7(e). The
FC ratios plotted in panels (a), (b) and (c) were determined between the
FCs shown in Figs. 7(b), 7(d) and 7(f), respectively. For instance, the ratio
jhC2

iiðq1; q2Þiij=jhC
4
iiðq1; q2Þiij for a model of N = 104 particles with a

Gaussian distribution of particle orientations about the y axis (GaussY)
with �y = 1.0 is labelled in panel (a) with red triangular markers.

4 Finite angular ranges for a Gaussian distribution of orientations were
considered, as specified in the text.



tions about the xz plane with �xz = 2.0 but the rest are

uniformly oriented. Again, the results are scaled to those for a

system of N = 100 uniformly oriented particles. Obviously,

even for a particle model with only 20% obeying a Gaussian

distribution of orientations around a specific direction [Fig.

9(a)] the scaled FC of order n = 2 appears to be ten times

higher than the uniform case.

Note that in all simulated Fourier spectra

hCn
iiðq1; q2 ¼ 0:25 nm�1Þii the autocorrelation peak is present

at q = 0.25 nm�1 that is the result of coherent interference of

interparticle scattering. However, such a peak is absent in the

simulated FCs shown in Fig. 6(b), which were determined

according to equation (2). In this particular case the X-ray

scattering simulations were performed on single particles, in

order to calculate CCFs hCn
s ðq1; q2Þi for each particle size s.

Since interparticle interference effects were absent from these

simulations, this resulted in the absence of the autocorrelation

peak in the Fourier components hCn
iiðq1; q2Þii.

APPENDIX E
Simulations of rotational diffusion effects in FXS

Here we show how the rotational diffusion dynamics of

particles in solution can effect the results of correlation

analysis. As a starting point we use two simple models, the first

with a uniform distribution of particle orientations and the

second representing a partially ordered sample, where a

fraction of the particles (20%) are characterized by a Gaussian

distribution of orientations about the xz plane with �xz = 2.0

and the rest are uniformly oriented (80%). The results of

correlation analysis for these two models (without rotational

diffusion effects included) are shown in Fig. 9(a).

To give a qualitative demonstration of the effects associated

with rotational diffusion of particles during X-ray exposure,

we applied averaging of simulated diffraction patterns deter-

mined for a sequence of instantaneous sample configurations

(X-ray snapshots of the sample). In this manner, new sets of

averaged diffraction patterns were formed where intensity

fluctuations were smeared out to certain degree (depending

on the number of patterns in the average), thus simulating the

effect of contrast smearing due to rotational diffusion. These

new sets of averaged patterns determined for each sample

model were used to perform angular correlation analysis.

The results of simulations for models with and without

rotational diffusion effects included are presented in Fig. 10.

The difference between Figs. 10(a) and 10(b) is in the distinct

number of snapshots averaged to form individual average

diffraction patterns in the new data sets, M1 = 10 in Fig. 10(a)

and M2 = 20 in Fig. 10(b). In the calculations of CCFs, 1000

average patterns were used to produce the results in Fig. 10(a)

and 500 patterns in Fig. 10(b). In a real experiment this would

correspond to a faster rotational diffusion dynamics for the

results shown in Fig. 10(b) than for those in Fig. 10(a). As one

can see from the obtained results, after adding rotational

diffusion effects to the simulations, the contrast between the

FCs decreases fast in the case of a solution with a uniform

distribution of particles, in agreement with theoretical

predictions (Kam, 1977). At the same time, the values of the

FCs hCn
iiðq1; q2Þii for a system with partial orientational order

remain almost unaffected upon the inclusion of rotational
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Figure 9
The results of simulations for a partially ordered versus completely disordered system of particles. The amplitudes of the FCs jhCn

iiðq1; q2Þiij for n = 2, 4
and 6 at q2 = 0.25 nm�1 are shown. In the model of a mixed system of particles, a fraction of the particles have a Gaussian distribution of orientations
about the xz plane (GaussXZ) with �xz = 2.0, while all other particles obey a uniform distribution (Unif), where the corresponding fractions are specified
in the figure legend.



diffusion effects. This is a logical result, since in spite of the

smearing of individual intensity fluctuations associated with

instantaneous particle positions and orientations, the orien-

tational distribution of particles remains (on average) the

same and forms the major contrast in the measured diffraction

patterns. This means that rotational diffusion dynamics do not

play a significant role if particle orientations maintain the

same nonuniform probability distribution of orientation

during measurements. We would like to note that our simpli-

fied model can only qualitatively explain the dependency of

FXS contrast on rotational diffusion. More realistic simula-

tions should be based on a real thermodynamic model of the

system.
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Figure 10
The results of simulations of rotational diffusion effects in systems with and without orientational order. The amplitudes of the FCs jhCn

iiðq1; q2Þiij for n =
2, 4 and 6 at q2 = 0.25 nm�1 are shown. In the model of a mixed system of particles, a fraction of the particles have a Gaussian distribution of orientations
about the xz plane (GaussXZ) with �xz = 2.0, while all other particles obey a uniform distribution (Unif), where the corresponding fractions are specified
in the figure legends. The results of simulations with rotational diffusion are compared with those without rotational diffusion [shown in Fig. 9(a)]. The
difference between panels (a) and (b) is in the distinct number of X-ray snapshots, (a) ten versus (b) 20, averaged to form individual averaged diffraction
patterns, when simulating rotational diffusion effects (see Appendix E).
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