IUCLJ ISSN 2052-2525 BIOLOGY MEDICINE

Present address: Lentigen Technology,
Gaithersburg, Maryland 20878, USA

Keywords: martensitic transformations; reversibly switchable fluorescent proteins; fluorescence; tetramerization; isomerization; chromophore deprotonation; UV–vis absorption spectroscopy; room-temperature X-ray photocrystallography

Room-temperature photo-induced martensitic transformation in a protein crystal. Corrigendum

Steven Dajnowicz,^{a,b} Patricia S. Langan,^b‡ Kevin L. Weiss,^b Ilia N. Ivanov^c and Andrey Kovalevsky^b*

^aDepartment of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, USA, ^bNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA, and ^cCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. *Correspondence e-mail: kovalevskyay@ornl.gov

The article by Dajnowicz et al. [IUCrJ (2019). 6, 619-629] is withdrawn.

Since acceptance for publication, the authors of Dajnowicz *et al.* (2019) have become aware that, while the data presented regarding the crystal structures, UV–Vis and fluorescence spectra are correct, the authors cannot conclude with certainty that the photo-induced structural changes can occur *in crystallo*, *i.e.* as a martensitic transformation. The article has therefore been withdrawn.

References

Dajnowicz, S., Langan, P. S., Weiss, K. L., Ivanov, I. N. & Kovalevsky, A. (2019). *IUCrJ* 6, 619–629.

OPEN 🔂 ACCESS