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Methods are presented that detect three types of aberrations in single-particle

cryo-EM data sets: symmetrical and antisymmetrical optical aberrations and

magnification anisotropy. Because these methods only depend on the

availability of a preliminary 3D reconstruction from the data, they can be used

to correct for these aberrations for any given cryo-EM data set, a posteriori.

Using five publicly available data sets, it is shown that considering these

aberrations improves the resolution of the 3D reconstruction when these effects

are present. The methods are implemented in version 3.1 of the open-source

software package RELION.

1. Introduction

Structure determination of biological macromolecules using

electron cryo-microscopy (cryo-EM) is primarily limited by

the radiation dose to which samples can be exposed before

they are destroyed. As a consequence of the low electron dose,

cryo-EM has to rely on very noisy images. In recent years,

advances in electron-detector technology and processing

algorithms have enabled the reconstruction of molecular

structures at resolutions sufficient for de novo atomic model-

ling (Fernandez-Leiro & Scheres, 2016). With increasing

resolutions, limitations imposed by the optical system of the

microscope are becoming more important. In this paper, we

propose methods to estimate three optical effects – symme-

trical and antisymmetrical aberrations, and magnification

anisotropy – which, when considered during reconstruction,

increase the attainable resolution.

In order to increase contrast, cryo-EM images are typically

collected out of focus, which introduces a phase shift between

the scattered and unscattered components of the electron

beam. This phase shift varies with spatial frequency and gives

rise to the contrast-transfer function (CTF). Since the electron-

scattering potential of the sample corresponds to a real-valued

function, its Fourier-space representation exhibits Friedel

symmetry: the amplitude of the complex structure factor at

spatial frequency k is the complex conjugate of the structure

factor at frequency �k. Traditionally, the phase shift of these

two frequencies has been assumed to be identical, which

corresponds to a real-valued CTF. Imperfections of the optical

system can, however, produce asymmetrical phase shifts that

break the Friedel symmetry of the scattered wave. The effect

of this is that the CTF has to be expressed as a complex-valued

function, which affects not only the amplitudes of the structure

factors but also their phases.
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The phase shifts of a pair of corresponding spatial

frequencies can be separated into a symmetrical component

(i.e. their average shift) and an antisymmetrical component

(i.e. their deviation from that average). In this paper, we will

refer to the antisymmetrical component as antisymmetrical

aberrations. The symmetrical component of the phase shift

sometimes also deviates from that predicted by the aberration-

free CTF model (Hawkes & Kasper, 1996). The effect of this is

that the CTF is not always adequately represented by a set of

elliptical rings of alternating sign, but these so-called Thon

rings can take on slightly different shapes. We will refer to this

deviation from the traditional CTF model as symmetrical

aberrations.

In addition to the antisymmetrical and symmetrical aber-

rations, the recorded image itself can be distorted by a

different magnification in two perpendicular directions. This is

called anisotropic magnification. Anisotropic magnification

can be detected by measuring the ellipticity of the power

spectra of multi-crystalline test samples (Grant & Grigorieff,

2015). This has the advantage of providing a calibration of the

absolute magnification, but does require additional experi-

ments, and microscope alignments may drift in between such

experiments. For several icosahedral virus data sets, it has

been shown that anisotropic magnification may be detected

and corrected by an exhaustive search over the amount and

the direction of the anisotropy while comparing projections of

an undistorted three-dimensional reference map with indivi-

dual particle images (Yu et al., 2016).

Because the antisymmetrical and symmetrical aberrations

and the anisotropic magnification produce different effects, we

propose three different and independent methods to estimate

them. We recently proposed a method to estimate a specific

type of antisymmetrical aberration that arises from a tilted

electron beam (Zivanov et al., 2018). In this paper, we propose

an extension of this method that allows us to estimate arbi-

trary antisymmetrical aberrations expressed as linear combi-

nations of Zernike polynomials (Zernike, 1934). The methods

to estimate symmetrical aberrations and anisotropic magnifi-

cation are novel. Similar to the method for antisymmetrical

aberration correction, the method for symmetrical aberration

correction also uses Zernike polynomials to model the esti-

mated aberrations. The choice of Zernike polynomials as a

basis is to some degree arbitrary, and the methods described

here could be trivially altered to use any other function as a

basis. In particular, we make no use of the orthogonality of

Zernike polynomials, since they are only defined to be

orthogonal on the entire, evenly weighted unit disc. In our

case, the evidence is distributed non-uniformly across Fourier

space, and accounting for this fact breaks the orthogonality of

the polynomials.

Optical aberrations in the electron microscope have been

studied extensively in the materials science community

(Batson et al., 2002; Krivanek et al., 2008; Saxton, 1995, 2000;

Meyer et al., 2002). However, until now, their estimation has

required specific test samples of known structure and of

greater radiation resistance than biological samples. The

methods presented in this paper work directly on cryo-EM

single-particle data sets of biological samples, making it

possible to estimate the effects after the data have been

collected, and without performing additional experiments on

specific test samples. Using data sets that are publicly available

from the EMPIAR database (Iudin et al., 2016), we illustrate

that when these optical effects are present their correction

leads to reconstruction with increased resolution.

2. Materials and methods

2.1. Observation model

We are working on a single-particle cryo-EM data set

consisting of a large number of particle images. We assume

that we already have a preliminary 3D reference map of the

particle up to a certain resolution, and that we know the

approximate viewing parameters of all observed particles. This

allows us to predict each particle image, which in turn allows

us to estimate the parameters of the optical effects by

comparing these predicted images with the observed images.

Let Xp,k 2 C be the complex amplitude of the observed

image of particle p 2 N for 2D spatial frequency k 2 Z2.

Without loss of generality, we can assume that the observed

image is shifted so that the centre of the particle appears at

the origin of the image. We can obtain the corresponding

predicted image by integrating over the 3D reference along

the appropriate viewing direction. According to the central-

slice theorem, the corresponding complex amplitude Vp,k 2 C

of the predicted particle image is given by

Vp;k ¼ WðApkÞ; ð1Þ

where W : R3
7!C is the 3D reference map in Fourier space

and Ap is a 3 � 2 projection matrix arising from the viewing

angles. Since the back-projected positions of the 2D pixels k

mostly fall between the 3D voxels of the reference map, we

determine the values of W(Apk) using linear interpolation.

Further, we assume that we have an estimate of the defocus

and astigmatism of each particle, as well as the spherical

aberration of the microscope, allowing us to also predict the

CTFs. We can therefore write

Xp;k ¼ expði’kÞCTFp;kVp;k þ np;k; ð2Þ

where ’k is the phase-shift angle induced by the anti-

symmetrical aberration, CTFp,k is the real part of the CTF and

np,k represents the noise.

The three methods presented in the following all aim to

estimate the optical effects by minimizing the squared differ-

ence between Xp,k and exp(i’k)CTFp,kVp,k. This is equivalent

to a maximum-likelihood estimate under the assumption that

all np,k are drawn from the same normal distribution.

2.2. Antisymmetrical aberrations

Antisymmetrical aberrations shift the phases in the

observed images and they are expressed by the angle ’k in (2).

We assume that ’k is constant for a sufficiently large number

of particles. This assumption is necessary since, in the presence
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of typically strong noise, we require the information from a

large number of particle images to obtain a reliable estimate.

We model ’k using antisymmetrical Zernike polynomials as

a basis,

’kðcÞ ¼
P

b

cbZbðkÞ; ð3Þ

where cb 2 R are the unknown coefficients describing the

aberration and Zb(k) are a subset of the antisymmetrical

Zernike polynomials. The usual two-index ordering of these

polynomials is omitted for the sake of clarity. This set of

polynomials always includes the first-order terms Z1
�1(k) and

Z1
1(k) that correspond to rigid motion in 2D. It is essential to

consider these terms during estimation, since they capture any

systematic errors in particle positions that arise when the

positions are estimated under antisymmetrical aberrations, in

particular under axial coma arising from beam tilt. In that

situation, the particles are erroneously shifted in order to

neutralise the coma in the mid-frequency range, which over-

compensates for the phase shift in the low-frequency range.

The measured phase shift is therefore a superposition of an

axial coma and a translation and has to be modelled as such.

The coefficients cb are determined by minimizing the

following sum of squared differences over all particles,

Easymm ¼
P
p;k

fk

��Xp;k � exp½i’kðcÞ�CTFp;kVp;k

��2; ð4Þ

where fk is a heuristical weighting term given by the FSC of the

reconstruction; its purpose is to suppress the contributions of

frequencies |k| for which the reference is less reliable.

Since typical data sets contain between 104 and 106 particles,

and each particle image typically consists of more than 104

Fourier pixels, optimizing the nonlinear expression in (4)

directly would be highly impractical, especially since the

images would likely have to be reloaded from disc in each

iteration. Instead, we apply a two-step approach. Firstly, we

reduce the above sum over sums of quadratic functions to a

single sum over quadratic functions, one for each Fourier-

space pixel k,

Easymm ¼
P

k

wkj exp½i’kðcÞ� � qkj
2
þ K; ð5Þ

where K is a constant that does not influence the optimum of

cb. The per-pixel optimal phase shifts qk 2 C and weights wk 2

R are given by

qk ¼
P

p

ðXp;kCTFp;kV�p;kÞ=
P

p

CTF2
p;kjVp;kj

2; ð6Þ

wk ¼ fk

P
p

CTF2
p;kjVp;kj

2: ð7Þ

This is the same transformation that we have applied for the

beam-tilt estimation in RELION-3.0 (Zivanov et al., 2018);

beam tilt is in fact only one of the possible sources of anti-

symmetrical aberrations. The computation of qk and wk

requires only one iteration over all the images in the data set,

and for the data sets presented here it took of the order of one

hour of time on a 24-core 2.9 GHz Intel Xeon workstation.

Once the qk and wk are known, the optimal cb are deter-

mined by minimizing the following sum of squared differences

using the Nelder–Mead downhill simplex (Nelder & Mead,

1965) method,

c ¼ argminc0
P

k

wk

�� exp½i’kðcÞ� � qk

��2: ð8Þ

This step requires only seconds of computation time. In

addition to making the problem tractable, this separation into

two steps also allows us to inspect the phase angles of the per-

pixel optima qk visually and to determine the type of anti-

symmetrical aberration present in the data set.

After the optimal antisymmetrical aberration coefficients c

have been determined, they are used to invert the phase shift

of all observed images X when a 3D map is being recon-

structed from them.

2.3. Symmetrical aberrations

Unlike the antisymmetrical aberrations, the symmetrical

aberrations act on the absolute value of the CTF. In the

presence of such aberrations, the CTF no longer consists of

strictly elliptical rings of alternating sign, but can take on a

more unusual form. In our experiments, we have specifically

observed the ellipses deforming into slightly square-like

shapes. In order to estimate the symmetrical aberration, we

need to determine the most likely deformations of the CTFs

hidden underneath the measured noisy pixels. Since the

micrographs in a cryo-EM data set are usually collected at

different defoci, it is not sufficient to measure the collective

power spectrum of the entire data set; instead, we need to

determine one deformation applied to different CTFs.

In RELION-3.1, the CTF is defined as

CTFp;k ¼ � sinð�p;kÞ; ð9Þ

�p;k ¼ k>Dpkþ
�

2
Cs�

3
jkj4 � �p; ð10Þ

where Dp is the real symmetrical 2 � 2 astigmatic-defocus

matrix for particle p, Cs is the spherical aberration of the

microscope, � is the electron wavelength and �p is a constant

offset given by the amplitude contrast and the phase shift

owing to a phase plate (if one is used). We chose this formu-

lation of astigmatism because it is both more concise and also

more practical when dealing with anisotropic magnification, as

shown in Section 2.4. In Appendix A, we define Dp and we

show that this is equivalent to the more common formulation

(Mindell & Grigorieff, 2003).

We model the deformation of the CTF under symmetrical

aberrations by offsetting �,

CTFp;k ¼ � sin½�p; kþ  kðdÞ�; ð11Þ

where  k(d) is modelled using symmetrical Zernike poly-

nomials combined with a set of coefficients d 2 RB that

describe the aberration,

 kðdÞ ¼
P

b

dbZbðkÞ: ð12Þ
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The optimal values of db are determined by minimizing

another sum of squared differences,

Esymm ¼
P
p;k

fk

��Xp;k � CTFp;k
eVVp;k

��2 ð13Þ

¼
P
p;k

fk

��Xp;k þ sin½�p;k þ  kðdÞ�eVVp;k

��2; ð14Þ

where the predicted complex amplitude eVVp;k contains the

phase shift induced by the antisymmetrical aberration (if it is

known),

eVVp;k ¼ exp½i’ðkÞ�Vp;k: ð15Þ

This is again a nonlinear equation with a large number of

terms. In order to make its minimization tractable, we perform

the following substitution,

sin½�p;k þ  kðdÞ� ¼ r>p;ktkðdÞ; ð16Þ

with the known column vector rp,k 2 R
2 given by

rp;k ¼
cosð�p;kÞ

sinð�p;kÞ

� �
ð17Þ

and the unknown tk(d) 2 R2 by

tkðdÞ ¼
sin½ kðdÞ�

cos½ kðdÞ�

� �
: ð18Þ

This allows us to transform the one-dimensional nonlinear

term for each pixel k into a two-dimensional linear term,

Esymm ¼
P
p;k

fk

���Xp;k þ
eVVp;kr>p;ktkðdÞ

���2: ð19Þ

In this form, we can decompose Esymm into a sum of

quadratic functions over all pixels k. This is equivalent to the

transformation in (5), only in two real dimensions instead of

one complex dimension,

Esymm ¼
P

k

fk½tkðdÞ � t̂tk�
>Rk½tkðdÞ � t̂tk� þ K; ð20Þ

where the real symmetrical 2 � 2 matrix Rk is given by

Rk ¼
P

p

jeVVp;kj
2rp;kr>p;k ð21Þ

and the corresponding per-pixel optima t̂tk 2 R2 by

t̂tk ¼ �R�1
k �k; ð22Þ

�k ¼
P

p

ReðX�p;keVVp;kÞrp;k: ð23Þ

Again, computing Rk and t̂tk only requires one iteration over

the data set, where for each pixel k five numbers need to be

updated for each particle p: the three distinct elements of Rk

(the matrix is symmetrical) and the two of �k. Once Rk and t̂tk

are known, the optimal Zernike coefficients d are determined

by minimizing Esymm in (20) using the Nelder–Mead downhill

simplex algorithm. Analogously to the case of the anti-

symmetrical aberrations, a visual inspection of the optimal

 k(d) for each pixel allows us to examine the type of aber-

ration without projecting it into the Zernike basis. The CTF

phase-shift estimate for pixel k is given by tan�1½t̂t
ð1Þ
k =t̂t

ð2Þ
k �, where

t̂t
ð1Þ
k and t̂t

ð2Þ
k refer to the two components of tk.

Once the coefficients d of the symmetrical aberration are

known, they are used to correct any CTF that is computed in

RELION-3.1.

2.4. Anisotropic magnification

To determine the anisotropy of the magnification, we again

compare predicted images with the observed images. We

assume that the 3D reference map W has been obtained by

averaging views of the particle at in-plane rotation angles

drawn from a uniform distribution. This is a realistic

assumption, since unlike the angle between the particle and

the ice surface, where the particle often shows a preferred

orientation, the particle is oblivious to the orientation of the

camera pixel grid. Thus, for a data set of a sufficient size, the

anisotropy in the individual images averages out and the

resulting reference map depicts an isotropically scaled 3D

image of the particle (although the high-frequency informa-

tion on the periphery of the particle is blurred out by the

averaging). We can therefore estimate the anisotropy by

determining the optimal deformation that has to be applied to

the predicted images in order to best fit the observed images.

We are only looking for linear distortions of the image. Such

a distortion can be equivalently represented in real space or in

Fourier space: if the real-space image is distorted by a 2 � 2

matrix M, then the corresponding Fourier-space image is

distorted by M�1>. We choose to operate in Fourier space

since this allows us to determine the deformation of the

predicted image without also distorting the CTF. We assume

that the CTF parameters known at this point already fit the

Thon rings observed in the image, so we only deform the

particle itself.

Formally, we define the complex amplitude Vp,k(M) of the

predicted image deformed by a 2 � 2 matrix M by

Vp;kðMÞ ¼ WðApMkÞ; ð24Þ

and we aim to determine such a matrix M that minimizes

Emag ¼
P
p;k

���Xp;k � CTFp;k
eVVp;kðMÞ

���2; ð25Þ

where eVV again refers to the phase-shifted complex amplitudes

as defined in (15). We are not assuming that M is necessarily

symmetrical, which allows it to express a skew component in

addition to the anisotropic magnification. Such skewing effects

are considered by the models commonly used in computer

vision applications (Hartley, 1994; Hartley & Zisserman,

2003), but not in cryo-EM. We have decided to model the skew

component as well, in case it should manifest in a data set.

The expression given in (25) is yet another sum over a large

number of nonlinear terms. In order to obtain a sum over

squares of linear terms, we first express the deformation by M

as a set of per-pixel displacements �k 2 R
2,

Mk ¼ kþ �k: ð26Þ

Next, we perform a first-order Taylor expansion of W

around Apk. We know that this linear approximation of W is
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reasonable for all frequencies k at which the reference map

contains any information, because the displacements dk are

likely to be smaller than one voxel there. If they were signif-

icantly larger then they would prevent a successful computa-

tion of the complex amplitudes of the reference map at these

frequencies, except if a very large number of particles were to

be considered. The linear approximation is given as

eVVpðkþ �kÞ ’
eVVp;k þ g>p;k�k; ð27Þ

where the gradient gp,k 2 C
2 is a column vector that is

computed by forward-projecting the 3D gradient of W (which

is given by the linear interpolation),

gp;k ¼ exp½i’ðkÞ�A>p rWðApkÞ: ð28Þ

It is essential to compute gp,k in this way, since computing it

numerically from the already projected image Vp,k would lead

to a systematic underestimation of the gradient (owing to the

interpolation) and thus to a systematic overestimation of the

displacement. Note also that the change in ’(k) as a result of

the displacement is being neglected. This is owing to the fact

that the phase shift, like the CTF, has also been computed

from the distorted images, so that we can assume it to be given

correctly in the distorted coordinates.

Using the terms transformed in this way, the sum of squared

errors can be approximated by

Emag ’
P
p;k

fk

���Xp;k � CTFp;k

�eVVp;k þ g>p;k�k

����2 ð29Þ

¼
P
p;k

fk

���Xp;k � CTFp;k

	eVVp;k þ g>p;kðM � IÞk

���2: ð30Þ

This corresponds to two linear systems of equations to be

solved in a least-squares sense, either for the per-pixel

displacements �k (29) or for the global deformation matrix M

(30). Analogously to the aberrations methods, we solve for

both. Knowing the per-pixel solutions again allows us to

confirm visually whether the observed deformations are

consistent with a linear distortion; if they are, then the per-

pixel displacements �k will follow a linear function of k.

The optimal displacements �̂k�k 2 R
2 are equal to

�̂k�k ¼ S�1
k ek; ð31Þ

ek ¼
P

p

CTFp;kRe½g�p;kðXp;k �
eVVp;kÞ�; ð32Þ

with the real symmetrical 2 � 2 matrix Sk given by

Sk ¼
P

p

CTF2
p;kReðg�p;kg>p;kÞ: ð33Þ

Note that this is equivalent to treating the real and imaginary

components of (29) as separate equations, since Re(z*w) =

Re(z)Re(w) + Im(z)Im(w) for all z, w 2C. Analogously to the

estimation of the symmetrical aberrations, Sk and ek are

computed in one iteration by accumulating five numbers for

each pixel k over the entire data set.

The optimal 2 � 2 deformation matrix M is determined by

first reshaping it into a column vector m 2 R4,

M ¼
1þmð1Þ mð2Þ

mð3Þ 1þmð4Þ

� �
: ð34Þ

The expression in (30) can then be written as

Emag ¼
P
p;k

��Xp;k � CTFp;k
eVVp;k � a>p;km

��2; ð35Þ

with the column vector ap,k 2 C
4 given by

ap;k ¼ CTFp;k

kð1Þg
ð1Þ
p;k

kð2Þg
ð1Þ
p;k

kð1Þg
ð2Þ
p;k

kð2Þg
ð2Þ
p;k

2
6664

3
7775: ð36Þ

We can now compute the optimal m,

m ¼ T�1l; ð37Þ

where the real symmetrical 4 � 4 matrix T and the column

vector l 2 R4 are equal to

T ¼
P
p;k

fkReða�p;ka>p;kÞ; ð38Þ

l ¼
P
p;k

fkRe½a�p;kðXp;k � CTFp;k
eVVp;kÞ�: ð39Þ

There is no need to compute T and l explicitly by iterating

over all particles p again, since all the necessary sums are

already available as part of Sk and ek. Instead, we only need to

sum up the corresponding values over all pixels k. This is

shown in Appendix B.

In order to correct for the anisotropy after M has been

estimated, we never resample the observed images. When we

compute a 3D map from a set of observed images, we do so by

inserting 2D slices into the 3D Fourier-space volume. Since

this process requires the insertion of 2D pixels at fractional 3D

coordinates (and thus interpolation), we can avoid any addi-

tional resampling of the observed images by instead inserting

pixel k into the 3D map at position ApMk instead of at Apk.

Analogously, if the methods described in Sections 2.2 and 2.3

are applied after the distortion matrix M is known, then the

predicted images are generated by reading the complex

amplitude from W at 3D position ApMk. This has been

omitted from the description of these methods to aid read-

ability.

Furthermore, when dealing with anisotropic magnification

in RELION, we have chosen to always define the CTF in the

undistorted 2D coordinates. The primary motivation behind

this is the assumption that the spherical aberration (the second

summand in equation 10) should only be radially symmetrical

if the image is not distorted. For this reason, once the distor-

tion matrix M is known, we need to transform the astigmatic-

defocus matrix D into the new undistorted coordinate system.

This is performed by conjugating D under M�1,

D0 ¼ M�1>DM�1: ð40Þ

When a CTF value is computed after this transformation has

been performed, it is always computed as CTF(Mk) instead of

as CTF(k).
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The Zernike polynomials that are used as a basis for the

symmetrical and antisymmetrical aberrations are also defined

in the undistorted coordinates, i.e. the Zernike polynomials

are also evaluated at Zb(Mk). Note that correction of these

coefficients after estimating M cannot be performed analyti-

cally, but would require a numerical solution. Instead, we

propose that the aberrations be estimated only after M is

known. In severe cases, a better estimate of M can be obtained

by repeating the magnification refinement after determining

optimal defocus and astigmatism estimates using the initial

estimate of M. We illustrate this scenario on a synthetic

example in Section 3.4.

2.5. Implementation details

The three methods described above need to be applied to a

large number of particles in order to obtain a reliable estimate.

Nevertheless, we allow the three effects to vary within a data

set in RELION-3.1. To facilitate this, we have introduced the

concept of optics groups: partitions of the particle set that

share the same optical properties, such as the voltage or pixel

size (or the aberrations and the magnification matrix). As of

RELION-3.1, those optical properties are allowed to vary

between optics groups, while particles from different groups

can still be refined together. This makes it possible to merge

data sets collected on different microscopes with different

magnifications and aberrations without the need to resample

the images. The anisotropic magnification refinement can then

be used to measure the relative magnification between the

optics groups by refining their magnification against a

common reference map.

Since most of the optical properties of a particle are now

defined through the optics group to which it belongs, each

particle STAR file written out by RELION-3.1 now contains

two tables: one listing the optics groups and one listing the

particles. The particles table is equivalent to the old table,

except that certain optical properties are no longer listed.

Those are typically the voltage, the pixel and image sizes, the

spherical aberration and the amplitude contrast, and they are

instead specified in the optics groups list. This reduces the

overall file size, and makes manual editing of these properties

easier.

A number of other optical properties are still stored in the

particles list, allowing different values for different particles in

the same group. These properties make up the per-particle

part of the symmetrical aberration, i.e. the coefficient �p,k in

(10). The specific parameters that can vary per particle are the

following: the phase shift, defocus, astigmatism, the spherical

aberration and the B-factor envelope.

The B-factor envelope is a two-dimensional parameter

consisting of a scale factor S and the B factor itself. It corre-

sponds to a Gaussian envelope over the CTF [given by

Sexp(�4B|k|2)] and it provides a means of weighting different

particles against each other. Specifically, a greater B factor

means that the particle will contribute less to the higher

frequencies of the reconstruction. Although B factors on the

CTF have been available in earlier releases of RELION, the

method to estimate them is new in version 3.1.

We have developed a new CTF refinement program that

considers all particles in a given micrograph and locally opti-

mises all of the above five parameters, while each parameter

can be modelled either per particle, per micrograph or remain

fixed. The program then uses the L-BFGS algorithm (Liu &

Nocedal, 1989) to find the least-squares optimal parameter

configuration given all the particles in the micrograph. This

allows the user to find, for example, the most likely phase shift

of a micrograph while simultaneously finding the most likely

defocus value of each particle in it. The program has been

engineered to offer a wide range of combinations, even though

some of those may not appear to be useful at first, for example

estimating the spherical aberration or the phase shift per

particle. In this manner the program allows exceptions, for

example very large particles, but we recommend most users to

only model the defocus per particle and everything else per

micrograph or not at all.

Note that the terms defocus and astigmatism above refer

specifically to �z (defocus) and a1 and a2 (astigmatism), where

the astigmatic defocus matrix Dp of particle p in (10) is

composed as follows:

Dp ¼
�zþ a1 a2

a2 �z� a1

� �
:

As an example, this would allow the defocus to be expressed

per particle by allocating a separate �z for each particle, while

the astigmatism could be estimated per micrograph by

requiring a1 and a2 to be identical for all particles.

3. Results

To validate our methods and to illustrate their usefulness, we

describe four experiments using publicly available data sets.

Firstly, we assess aberration correction on two data sets that

were collected on a 200 keV Thermo Fisher Talos Arctica

microscope. Secondly, we illustrate a limitation of our method

for modelling aberrations using a data set that was collected

on a 300 keV Thermo Fisher Titan Krios microscope with a

Volta phase plate with defocus (Danev et al., 2017). Thirdly, we

apply our methods to one of the highest resolution cryo-EM

structures published so far, collected on a Titan Krios without

a phase plate. Finally, we determine the precision to which the

magnification matrix M can be recovered in a controlled

research papers

258 Jasenko Zivanov et al. � High-order aberrations and anisotropic magnification IUCrJ (2020). 7, 253–267

Table 1
Half-set resolutions (Å) obtained at different stages of our processing
pipeline in the aberration experiment on aldolase and 20S proteasome at
200 keV.

Aldolase Proteasome

Initial 2.7 3.2
First CTF refinement 2.4 2.5
Bayesian polishing 2.3 2.3
Second CTF refinement 2.1 2.3
No aberrations 2.5 3.1



experiment, using artificially distorted images, again from a

Titan Krios microscope.

3.1. Aberration experiment at 200 keV

We reprocessed two publicly available data sets: one on

rabbit muscle aldolase (EMPIAR-10181) and the other on the

Thermoplasma acidophilum 20S proteasome (EMPIAR-

10185). Both data sets were collected on the same 200 keV

Talos Arctica microscope, which was equipped with a Gatan

K2 Summit direct electron camera. At the time of the original

publication (Herzik et al., 2017), the aldolase could be

reconstructed to 2.6 Å resolution and the proteasome to 3.1 Å

resolution using RELION-2.0.

We picked 159 352 particles for

the aldolase data set and 74 722

for the proteasome. For both data

sets, we performed five steps and

measured the resolution at each

step. Firstly, we refined the parti-

cles without considering the

aberrations. The resulting 3D

maps were then used to perform

an initial CTF refinement in

which the per-particle defoci and

the aberrations were estimated.

The particles were then subjected

to Bayesian polishing (Zivanov et

al., 2019), followed by another

iteration of CTF refinement. In

order to disentangle the effects of

improved Bayesian polishing

from the aberration correction,

we also performed a refinement

with the same polished particles,

but assuming all aberrations to be

zero. We measured the Fourier

shell correlation (FSC) between

the two independent half sets and

against maps calculated from the

known atomic models (PDB

entries 1zah and 6bdf, respec-

tively; St-Jean et al., 2005; Camp-

bell et al., 2015). The plots are

shown in Fig. 1 and the resolu-

tions measured by the half-set

method, using a threshold of

0.143, in Table 1. Plots of the

aberration estimates are shown in

Fig. 2.

Fig. 2 indicates that both data

sets exhibit antisymmetrical as

well as symmetrical aberrations.

For both data sets, the shapes of

both types of aberrations are well

visible in the per-pixel plots, and

the parametric Zernike fits

capture these shapes well. The

antisymmetrical aberrations

correspond to a trefoil (or three-

fold astigmatism) combined with

a slight axial coma and they are

more pronounced than the

symmetrical aberrations. The
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Figure 1
Left: FSC plots from the aberration experiments on aldolase and 20S proteasome at 200 keV. The top plot
shows the half-set FSC and the bottom plot shows the FSC against maps calculated from the respective
atomic models (PDB entries 1zah and 6bdf; see text for details). Note that estimating the aberrations during
the initial CTF refinement already produces a significant increase in resolution (red line). It also allows
more effective Bayesian polishing and defocus refinement, increasing the resolution further (solid black
line). Neglecting the aberrations while keeping the remainder of the parameters the same (dashed black
line) allows us to isolate the effects of aberration correction. For the proteasome, it also exposes a slight
(false) positive peak in the half-set FSC around 2.7 Å which corresponds to a negative peak in the reference
FSC. This indicates that the phases of the complex amplitudes of the 3D map are, on average, flipped at this
frequency band owing to the strong aberrations. Right: small regions of the resulting maps illustrating the
effect of considering the aberrations. The maps correspond to the solid black lines (aberrations considered)
and the dashed black lines (aberrations not considered) in the FSC plots. The aldolase maps were
sharpened by a B factor of �50 Å2 and contoured at 3.7�. The proteasome maps were sharpened by a B
factor of �55 Å2 and contoured at 3.5�. All maps were rendered by PyMOL v.1.8.4.1.



trefoil is visible as three alternating

areas of positive and negative phase

difference, with approximate threefold

symmetry, in the images for the anti-

symmetrical aberration estimation (on

the left in Fig. 2). The axial coma breaks

the threefold symmetry by making one

side of the image more positive and the

opposite side more negative. The

apparent fourfold symmetry in the

images for the symmetrical aberrations

(on the right in Fig. 2) corresponds to

fourfold astigmatism and is strongest for

the proteasome data set. The protea-

some also shows the stronger anti-

symmetrical aberrations, which even

exceed 180� at the higher frequencies.

Note that because the per-pixel plots

show the phase angle of t̂tk from (20),

they wrap around once they reach 180�.

This has no effect on the estimation of

the parameters, however, since t̂tk itself,

which is a 2D point on a circle, is used in

the optimization and not its phase angle.

The FSC plots (Fig. 1) indicate that

aberration correction leads to higher

resolution, as measured by both the

FSC between independently refined

half-maps and the FSC against maps

calculated from the atomic models.

Comparing the result of the second CTF

refinement and its equivalent run

without aberration correction (the

lower two lines in Table 1; Fig. 3), the

resolution increased from 2.5 to 2.1 Å

for the aldolase data set and from 3.1 to

2.3 Å for the proteasome. In addition,

aberration correction also allows more

effective Bayesian polishing and

defocus estimation, which is the reason

for performing the CTF refinement

twice.

3.2. Phase-plate experiment

We also analysed a second data set

on a T. acidophilum 20S proteasome

(EMPIAR-10078). This data set was

collected using a Volta phase plate

(VPP; Danev et al., 2017) under defocus.

We picked 138 080 particles and

processed them analogously to the

previous experiment, except that the

CTF refinement now included the esti-

mation of anisotropic magnification.

The estimated aberrations are shown in

Fig. 4 and the FSCs in Fig. 6.
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Figure 2
Antisymmetrical and symmetrical aberration experiments on aldolase and the 20S proteasome at
200 keV. The upper image of each pair shows the independent phase-angle estimates for each pixel,
while the lower image shows the parametric fit using Zernike polynomials. These types of
aberrations are referred to as trefoil or threefold astigmatism (left) and fourfold astigmatism (right).
The proteasome trefoil exceeds 180� at the very high frequencies, so the sign in the per-pixel plot
wraps around. This has no impact on the parametric fit. The dashed circles indicate resolutions of
1.94 and 1.98 Å, respectively.



The purpose of a VPP is to shift the phase of the unscat-

tered beam in order to increase the contrast against the

scattered beam. This is accomplished by placing a heated film

of amorphous carbon (the VPP) at the back-focal plane of the

microscope and letting the electron beam pass through it after

it has been scattered by the specimen. The central, unscattered

beam, which exhibits much greater intensity than the unscat-

tered components, then spontaneously creates a spot of

negative electric potential on the VPP

(Danev et al., 2014). It is this spot which

then causes the phase shift in the

unscattered beam. After being used for

a certain amount of time, the spot

charges up even more and develops

imperfections. At this point, the user

will typically switch to a different posi-

tion on the carbon film. The charge at

the previous position will decay,

although some charge may remain for

an extended period. If the VPP is shifted

by an insufficient distance, the old spot

will reside in a position traversed by

scattered rays corresponding to some

higher image frequency. We hypothesize

that we can observe these spots in our

symmetrical aberration plots.

The symmetrical plots show a positive

phase shift at the center of frequency

space (Fig. 4). We hypothesize that this

spot is caused by the size of the charge

built up at the currently used position on

the phase plate (Danev & Baumeister,

2016). Moreover, this plot shows four

additional spots at higher spatial

frequencies. We hypothesize that these

may arise from residual charges on

previously used phase-plate positions.

These charges would then interfere with

the diffracted rays at higher spatial

frequency from the current position,

resulting in the observed spots in the

aberration image. The absence of the

vertical neighbor spots from the anti-

symmetrical plot suggests that the spots

were scanned in a vertically alternating

but horizontally unidirectional sense.

This is illustrated in Fig. 5.

Because these types of aberrations do

not satisfy our smoothness assumptions,

they cannot be modelled well using a

small number of Zernike basis poly-

nomials. Although increasing the

number of Zernike polynomials would

in principle allow the expression of any

arbitrary aberration function, it also

decreases the ability of the system to

extrapolate the aberration into the

unseen high-frequency regions. As a

consequence, our aberration model

cannot be used to neutralise the effects

of the phase-plate positions, which is
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Figure 3
Effects of the symmetrical aberrations on the CTF of the 20S proteasome as part of the aberration
experiment at 200 keV. The image on the left shows a CTF expressed by the traditional model, while
that on the right shows the fit of our new model which considers higher-order symmetrical
aberrations. Note that the slightly square-like shape that arises from fourfold astigmatism cannot be
expressed by the traditional model. The aberrations correspond to the bottom right image in Fig. 2.

Figure 4
Antisymmetrical (left) and symmetrical (right) aberrations measured on the phase-plate data set.
The upper image shows independent per-pixel estimates and the lower image shows the parametric
fits. Note the four afterimages of previously used phase-plate spots in the upper right image. They
cannot be represented by our model. The dashed circle indicates a resolution of 2.12 Å.



confirmed by the FSC plots in Fig. 6. In practice, this problem

can be avoided experimentally by spacing the phase-plate

positions further apart and thus arbitrarily increasing the

affected frequencies.

The estimated magnification aniso-

tropy for this data set is relatively weak.

The final magnification matrix M we

recovered was

M ¼
1:006 0:005

0:006 0:998

� �
;

which corresponds to 1.35% anisotropy

along two perpendicular axes rotated by

66�.

3.3. High-resolution experiment

We applied our methods to a mouse

heavy-chain apoferritin data set

(EMPIAR-10216) collected on a

300 keV Titan Krios fitted with a Falcon

3 camera. At the time of its publication,

the particle could be reconstructed to a

resolution of 1.62 Å using RELION-3.0

(Danev et al., 2019). This data set thus

offers us a means to examine the effects

of higher-order aberrations and aniso-

tropic magnification at higher resolu-

tions.

We compared the following three

reconstructions. Firstly, the original,

publicly available map. Since it had

been estimated using RELION-3.0, the

effects of beam tilt could be corrected

for, but none of the other high-order

aberrations or anisotropic magnifica-

tion. Secondly, the aberrations alone:

for this, we proceeded from the previous

refinement and first estimated the

higher order aberrations and then,

simultaneously, per-particle defoci and

per-micrograph astigmatism. Thirdly, we

performed the same procedure but only

after first estimating the anisotropic

magnification. For the third case, the

entire procedure was repeated after a

round of refinement. For all three cases,

we calculated the FSC between the

independently refined half-maps and

the FSC against an atomic model, PDB

entry 6s61, that was built into an inde-

pendently reconstructed cryo-EM map

of mouse apoferritin at a resolution of

1.8 Å. In the absence of a higher-reso-

lution atomic model, comparison with

PDB entry 6s61 relies on the assump-

tion that the geometrical restraints

applied during atomic modelling resulted in predictive power

at resolutions beyond 1.84 Å. We used the same mask as in the

original publication for correction of the solvent-flattening
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Figure 5
Our interpretation of the aberration plots in Fig. 4. The presence of all four neighbouring spots in
the symmetrical plot, together with the absence of the vertical neighbours from the antisymmetrical
plot, indicates that the VPP spots were scanned in a vertically alternating and horizontally
unidirectional sense, as shown in the first image. This partitions a majority of the spots into two
classes, a and b, in which the direct vertical neighbour is located on opposite sides. The total phase
shift induced by the neighboring spots is decomposed into an antisymmetrical and a symmetrical
part. Both of them are averaged over particles from both classes during estimation, so the vertical
neighbor partially cancels out in the antisymmetrical plot but not in the symmetrical plot.

Figure 6
Half-set (top) and map versus atomic model (bottom) FSC plots for the phase-plate data set. The
atomic model used was again PDB entry 6bdf. Note that considering the aberrations does not
improve the resolution, since these types of aberrations cannot be expressed by our model.
Nevertheless, the CTF refinement does improve the resolution owing to the new micrograph global
defocus and phase-shift estimation and owing to considering the slightly anisotropic magnification.



effects on the FSC between the independent half-maps, and

we used the same set of 147 637 particles throughout.

The aberration plots in Fig. 7 show that this data set exhibits

a trefoil aberration and faint fourfold astigmatism. In the

magnification plot in Fig. 8, we can see a clear linear rela-

tionship between the displacement of each pixel k and its

coordinates. This indicates that the measured displacements

stem from a linearly distorted image and that the implied

distortion is a horizontal dilation and a vertical compression.

This is consistent with anisotropic magnification, since the

average magnification has to be close to 1 because the refer-

ence map itself has been obtained from the same images under

random in-plane angles. The smoothness of the per-pixel plot

suggest that the large number of particles allows us to measure

the small amount of anisotropy reliably. The magnification

matrix we estimated was

M ¼
1:003 0:001

0:001 0:998

� �
;

which corresponds to 0.54% anisotropy. As can be seen in the

FSC curves in Fig. 9, considering either of these effects is

beneficial, while considering both yields a resolution of 1.57 Å,

an improvement of three shells over the reconstruction

obtained using RELION-3.0.

3.4. Simulated anisotropic
magnification experiment

To measure the performance of our

anisotropic magnification estimation

procedure in the presence of a larger

amount of anisotropy, we also

performed an experiment on synthetic

data. For this experiment, we used a

small subset (9487 particles from 29

movies) taken from a human apoferritin

data set (EMPIAR-10200), which we

had processed before (Zivanov et al.,

2018). We distorted the micrographs by

applying a known anisotropic magnifi-

cation using MotionCor2 (Zheng et al.,

2017). The relative scales applied to the

images were 0.95 and 1.05, respectively,

along two perpendicular axes rotated at

a 20� angle. In this process, about 4% of

the particles were mapped outside the

images, so the number of distorted

particles is slightly smaller at 9093.

We then performed four rounds of

refinement on particle images extracted

from the distorted micrographs in order

to recover the anisotropic magnifica-

tion. Each round consisted of a CTF

refinement followed by an autorefine-

ment. The CTF refinement itself was

performed twice each time: once to

estimate the anisotropy and then again

to determine the per-particle defoci and per-micrograph

astigmatism. The FSC curves for the different rounds can be

seen in Fig. 10. We observe that the FSC already approaches

that of the undistorted particles after the second round. In the

first round, the initial 3D reference map is not precise enough

to allow a reliable recovery of anisotropy.

The magnification matrix M recovered in the final round is

M ¼
1:060 �0:032

�0:032 0:984

� �
:

It corresponds to the relative scales of 0.951 and 1.049,

respectively, along two perpendicular axes rotated by 19.939�,

although it also contains an additional uniform scaling by a

factor of 1.022. The uniform scaling factor has no influence on

the refinement, but it does change the pixel size of the

resulting map. We therefore note that caution must be taken

to either enforce the product of the two relative scales to be 1,

or to otherwise calibrate the pixel size of the map against an

external reference.

This experiment shows that the anisotropy of the magnifi-

cation can be estimated to three significant digits, even from a

relatively small number of particles. Since the estimate arises
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Figure 7
Higher-order aberrations measured on the high-resolution mouse apoferritin data set. The
antisymmetrical plot (left) shows a significant trefoil aberration, while the symmetrical plot (right)
shows a faint fourfold astigmatism. Although the aberrations are comparatively weak, they are
clearly measurable and considering them does lead to a small improvement in resolution (see Fig. 9).
The dashed circle indicates a resolution of 1.04 Å.



from adding up contributions from all particles, the precision

increases with their number.

4. Discussion

Although we previously described a method to estimate and

correct for beam-tilt-induced axial coma (Zivanov et al., 2019),

no methods to detect and correct for higher-order optical

aberrations have been available until now. It is therefore not

yet clear how often these aberrations are a limiting factor in

cryo-EM structure determination of biological macro-

molecules. The observation that we have already encountered

several examples of strong threefold and fourfold astigmatism

on two different types of microscopes suggests that these

aberrations may be relatively common.

Our results with the aldolase and 20S proteasome data sets

illustrate than when antisymmetrical and/or symmetrical

aberrations are present in the data, our methods lead to an

important increase in the achievable resolution. Both aldolase

and the 20S proteasome could be considered as ‘easy’ targets

for cryo-EM structure determination: they have both been

used to test the performance of cryo-EM hardware and soft-

ware (see, for example, Li et al., 2013; Danev & Baumeister,

2016; Herzik et al., 2017; Kim et al., 2018). However, our

methods are not limited to standard test samples, and have

already been used to obtain biological insights from much

more challenging data. Images of brain-derived tau filaments

from an ex-professional American football player with chronic

traumatic encephalopathy that we recorded on a 300 keV

Titan Krios microscope showed severe threefold and fourfold

astigmatism. Correction for these aberrations led to an

increase in resolution from 2.7 to 2.3 Å, which allowed the

visualisation of alternative side-chain conformations and of

ordered water molecules inside the amyloid filaments (Falcon

et al., 2019).

Titan Krios microscopes come equipped with lenses that

can be tuned to correct for threefold astigmatism, although

this operation is typically only performed by engineers. The

Titan Krios microscope that was used to image the tau fila-

ments from the American football player is part of the UK

national cryo-EM facility at Diamond (Clare et al., 2017).

After measuring the severity of the aberrations, its lenses were

re-adjusted, and no higher-order aberrations have been

detected on it since (Peijun Zhang, personal communication).

Talos Arctica microscopes do not have lenses to correct for

trefoil, and the microscope that was used to collect the aldo-

lase and the 20S proteasome data sets at the Scripps Research

Institute continues to yield data sets with fluctuating amounts

of aberrations (Gabriel Lander, personal communication).

Until the source of these aberrations are determined or better

understood, the corrections proposed

here will be important for processing of

data acquired on these microscopes.

The extent to which higher-order

aberrations are limiting will depend on

the amount of threefold and fourfold

astigmatism, as well as on the target

resolution of the reconstruction. We

have only observed noticeable increases

in resolution for data sets that yielded

reconstructions with resolutions beyond

3.0–3.5 Å before the aberration correc-

tion. However, the effects of the aber-

rations are more pronounced for lower-

energy electrons. Therefore, our

methods may become particularly rele-

vant for data from 100 keV micro-

scopes, the development of which is

envisioned to yield better images for

thin specimens and to bring down the

elevated costs of modern cryo-EM

structure determination (Peet et al.,

2019; Naydenova et al., 2019).

The effects of anisotropic magnifica-

tion on cryo-EM structure determina-

tion of biological samples have been

described previously, and methods to

correct for it have been proposed

(Grant & Grigorieff, 2015; Yu et al.,

2016). Our method bears some resem-

blance to the exhaustive search algo-

rithm implemented in JSPR (Guo &
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Figure 8
Anisotropic magnification plots for the high-resolution mouse apoferritin data set. The top row
shows the estimated displacement for each pixel (�̂k�k in equation 31), while the bottom row shows the
displacement corresponding to the estimated magnification matrix M (i.e. Mk � k). Note that the
per-pixel estimates follow a linear relationship, indicating that the displacements are indeed caused
by a linear transformation of the image. The horizontal coordinate is defined as increasing to the
right and the vertical coordinate as increasing downwards, so the two plots indicate a horizontal
dilation and a vertical compression. The dashed circle indicates a resolution of 1.04 Å.



Jiang, 2014; Yu et al., 2016), in that it

compares reference projections with

high signal-to-noise ratios and the

particle images of an entire data set.

However, our method avoids the

computationally expensive two-dimen-

sional grid search over the direction and

magnitude of the anisotropy in JSPR. In

addition, our method is, in principle,

capable of detecting and modeling skew

components in the magnification.

In addition to modeling anisotropic

magnification, our method can also be

used for the combination of different

data sets with unknown relative magni-

fications. In cryo-EM imaging, the

magnification is often not exactly

known. Again, it is possible to accu-

rately measure the magnification using

crystalline test specimens with known

diffraction geometry, but in practice

errors of up to a few percent in the

nominal pixel size are often observed.

When processing data from a single data

set, such errors can be absorbed, to

some extent, in the defoci values. This

produces a CTF of very similar apper-

ance but at a slightly different scale.

Therefore, a small error in pixel size

only becomes a problem at the atomic

modeling stage, where it leads to overall

contracted or expanded models with

bad stereochemistry. (Please note that

this is no longer true at high spatial

frequencies owing to the absolute value

of the Cs; e.g. beyond 2.5 Å for non-Cs-

corrected 300 kV microscopes.) When

data sets from different sessions are

combined, however, errors in their

relative magnification will affect the 3D

reconstruction at much lower resolu-

tions. Our method can directly be used

to correct for such errors. In addition, to

provide further convenience, our new

implementation allows the combination

of particle images with different pixel

and box sizes into a single refinement.

The performance of our methods under

these conditions remains to be illu-

strated. Often, when two or more

different data sets are combined, a

single data set outperforms the other

data sets at the resolution limit of the

reconstruction and combination of the

data sets does not improve the map.

Our results illustrate that antisym-

metrical and symmetrical aberrations, as
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Figure 10
Half-set (top) and map versus atomic model (bottom) FSC plots for the simulated anisotropic
magnification experiment on human apoferritin. The atomic model used was PDB entry 5n27
(Ferraro et al., 2017). From the second iteration onward, the curves lie close to their final positions.
Note that the resolution of the undistorted reconstruction cannot be reached by the distorted
reconstructions, since particles have been lost along the way and the image pixels have been
degraded by resampling.

Figure 9
Half-set (top) and map versus atomic model (bottom) FSC plots for the high-resolution mouse
apoferritin data set. Considering the anisotropic magnification (black line) produces a further
improvement in terms of resolution beyond what is attainable by considering the aberrations alone
(blue line). The atomic model used was PDB entry 6s61, another publicly availably cryo-EM
structure. The resolution indicated by the bottom plot is limited by the fact that the resolution of the
atomic model is only 1.84 Å.



well as anisotropic magnification, can be accurately estimated

and modelled a posteriori from a set of noisy projection images

of biological macromolecules. No additional test samples or

experiments at the microscope are necessary; all that is needed

is a 3D reconstruction of sufficient resolution that the optical

effects become noticeable. Our methods could therefore in

principle be used in a ‘shoot first, ask questions later’ type of

approach, in which the speed of image acquisition is prior-

itized over exhaustively optimizing the microscope settings. In

this context, we caution that while the boundaries of applic-

ability of our methods remain to be explored, it may be better

to reserve their use for unexpected effects in data from

otherwise carefully conducted experiments.

APPENDIX A

In the following, we show that our formulation of the

astigmatic-defocus term as a quadratic form is equivalent to

the traditional form as defined in RELION, which in turn was

based on the model in CTFFIND (Mindell & Grigorieff,

2003). Let the two defoci be given by Z1 and Z2, the azimuthal

angle of astigmatism by ’A and the wavelength of the electron

by �. We then wish to show that

k>Dk ¼ ��½Z	 þ Zd cosð2�’kÞ�jkj
2; ð41Þ

Z	 ¼ �
1

2
ðZ1 þ Z2Þ; ð42Þ

Zd ¼ �
1

2
ðZ1 � Z2Þ; ð43Þ

�’k ¼ tan�1 kð2Þ

kð1Þ

� �
� ’A ð44Þ

for the astigmatic-defocus matrix D defined as

D ¼ ��Q>�Q; ð45Þ

Q ¼
cosð’AÞ sinð’AÞ

� sinð’AÞ cosð’AÞ

� �
; ð46Þ

� ¼
�Z1 0

0 �Z2

� �
: ð47Þ

The multiplication by Q rotates k into the coordinate

system of the astigmatism,

Qk ¼
cosð�’kÞ

sinð�’kÞ

� �
jkj: ð48Þ

Multiplying out the quadratic form and applying the defi-

nitions of Z	 and Zd yields

k>Dk ¼ ðQkÞ>�ðQkÞ ð49Þ

¼ ���½Z1 cos2
ð�’kÞ þ Z2 sin2

ð�’kÞ�jkj
2

ð50Þ

¼ ��½ðZ	 þ Zd cos2
ð�’kÞ � Zd sin2

ð�’kÞ�jkj
2: ð51Þ

By substituting cos(2�’k) for cos2(�’k) � sin2(�’k) we see that

this is equivalent to the original formulation.

In order to convert a given D into the traditional formu-

lation, we perform an eigenvalue decomposition of �D/(��).

The two eigenvalues are then equal to Z1 and Z2, respectively,

while the azimuthal angle of the eigenvector corresponding to

Z1 is equal to ’A.

APPENDIX B

Computing T and l explicitly through (38) would require

iterating over all particles p in the data set. Since we have

already accumulated the terms in Sk and ek over all p, we can

avoid this by instead performing the following summation

over all pixels k,

T ¼
P

k

fk
eSSk � ð

ekkekk>Þ; ð52Þ

l ¼
P

k

fkeeek �
ekk; ð53Þ

where � indicates element-wise multiplication, and the real

symmetrical 4 � 4 matrix eSSk and the column vectors ekk andeeek 2 R
4 are given by the reshaping of Sk, k and ek,

eSSk ¼

S
ð1;1Þ
k S

ð1;1Þ
k S

ð1;2Þ
k S

ð1;2Þ
k

S
ð1;1Þ
k S

ð1;1Þ
k S

ð1;2Þ
k S

ð1;2Þ
k

S
ð2;1Þ
k S

ð2;1Þ
k S

ð2;2Þ
k S

ð2;2Þ
k

S
ð2;1Þ
k S

ð2;1Þ
k S

ð2;2Þ
k S

ð2;2Þ
k

2
6664

3
7775; ð54Þ

ekk ¼
kð1Þ

kð2Þ

kð1Þ

kð2Þ

2
6664

3
7775; eeek ¼

e
ð1Þ
k

e
ð1Þ
k

e
ð2Þ
k

e
ð2Þ
k

2
6664

3
7775: ð55Þ
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