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This study describes a method to estimate the likelihood of success in

determining a macromolecular structure by X-ray crystallography and

experimental single-wavelength anomalous dispersion (SAD) or multiple-

wavelength anomalous dispersion (MAD) phasing based on initial data-

processing statistics and sample crystal properties. Such a predictive tool can

rapidly assess the usefulness of data and guide the collection of an optimal data

set. The increase in data rates from modern macromolecular crystallography

beamlines, together with a demand from users for real-time feedback, has led

to pressure on computational resources and a need for smarter data handling.

Statistical and machine-learning methods have been applied to construct a

classifier that displays 95% accuracy for training and testing data sets compiled

from 440 solved structures. Applying this classifier to new data achieved 79%

accuracy. These scores already provide clear guidance as to the effective use of

computing resources and offer a starting point for a personalized data-collection

assistant.

1. Introduction

1.1. Protein crystallography

For more than half a century, X-ray diffraction has been

used to investigate protein crystals and the resulting diffrac-

tion images have been analysed to reveal the underlying

structure of the protein to atomic detail. Despite well estab-

lished techniques and dedicated user facilities, the vast

majority of recorded diffraction data do not yield a protein

structure (http://biosync.sbkb.org). For example, in 2016 it is

estimated that less than 7% of diffraction data measured at

European synchrotrons resulted in structures deposited in the

Protein Data Bank (PDB; Berman et al., 2000). This calcula-

tion is based on an average collection time of 5 min per data

set and assuming 200 operational days a year with 23 h of

runtime per day. The possible factors affecting whether data

lead to a structure deposition or not are manifold: (i) the

crystal material comprising the purified protein and the

additional chemicals used to crystallize it; (ii) the beamline

hardware and capabilities, which define the experiments that

can be carried out; (iii) the data-collection strategy, which is

determined based on (i) and (ii); and (iv) intensity integration

and assessment of the quality of the measured data as well as

phase estimation, the latter finally determining whether a data

set results in a structure or not. Each of these factors can be

represented by one or more metrics, in particular those

describing the protein and those derived from data analysis.

Use of these metrics offers a unique opportunity to predict the

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252520000895&domain=pdf&date_stamp=2020-02-27


usefulness of a given data set, i.e. whether or not it will result

in an atomic structure.

In this publication, we use machine learning and commonly

applied statistical methods to analyse quality metrics from

data analysis combined with protein sequence information.

This serves as a basis for developing an interactive user guide

to help crystallographers assess their data sets in order to

determine which should be put forward for full analysis and

structure solution using experimental phasing for phase esti-

mation (Drenth, 1999; Dauter et al., 2002; Blow & Rossmann,

1961; Blundell & Johnson, 1976). It is hoped that such a tool

will enable structural biologists to better plan experiments and

improve upon the estimated 7% success rate.

1.2. Machine learning

Machine learning is part of the field of artificial intelligence.

It uses statistical methods to develop algorithms which allow

a computer to ‘learn’ in a data-driven manner and make

predictions based on the learned information (Kohavi &

Provost, 1998). ‘Learning’ implies that a task or prediction has

not been hard-coded by a programmer in advance (Bishop,

2006). The main purpose of machine learning is to identify

patterns in given training data and to predict an outcome for

any new data based on the learned pattern.

The input data are usually held in a database, here

METRIX_DB, and can be extracted in a tabular fashion, with

columns and their headers giving the characteristics/features/

dimensions of the data and each row representing a sample.

Commonly, the data are split randomly into training and test

sets, with the former being used to train a machine-learning

algorithm and the latter being used to assess the performance

of the finalized, trained model. Generally, k-fold cross-

validation against the training set is performed to highlight

any overfitting, which is monitored through classification

accuracy. In supervised learning, the data have been annotated

with labels of the known result, here representing two classes

in a classification problem, and an equal distribution of class

sizes is desirable. A confusion matrix is used for performance

assessment, giving details about correctly identified positive

(true positive; TP) and negative (true negative; TN) samples

as well as wrong classifications (false positive, FP; false

negative, FN). These classification outcomes are the basis on

which to calculate additional metrics (classification accuracy

and error, sensitivity, specificity, false-positive rate, precision,

F1 score). Additionally, the area under a curve of a receiver

operating characteristic (ROC) curve is calculated. A classi-

fication error of 5% is often used as a benchmark, as this is the

typically observed human classification performance (Dodge

& Karam, 2017).

In a pre-assessment step the most important features in

decision making are identified using statistical tools such as

Pearson’s linear correlation coefficients and recursive feature

elimination. The use of this subset of features for classifier

training improves the stability and performance of the classi-

fier and reduces computation time (Pyle, 1999; Pang-Ning

et al., 2006; Guyon & Elisseeff, 2003). Training a classifier to

create a predictive model is then an iterative process of

training, testing and assessment until the desired stability and

performance are reached.

In this case study, we focused on supervised learning to

solve a binary classification problem, namely the likelihood of

experimental phasing success (class label ‘1’ or positive) or

failure (class label ‘0’ or negative). The algorithms used to

create trained models are decision trees, random forest clas-

sifiers and their derivatives (Breiman et al., 1984), and support

vector machines (SVMs; Cortes & Vapnik, 1995).

2. Methods

2.1. METRIX_DB database

For the project that is described here, a database called

METRIX_DB was created using the SQLite3 programming

language accessed through a standard library within Python.

At the time of writing, the database held the details of 810

released PDB structures. The diffraction images for these

structures have been curated to match the set that was used to

determine the published three-dimensional coordinates. At

the moment, these structures stem from two structural geno-

mics projects: 303 from the Structural Genomics Consortium

(SGC; https://www.thesgc.org) at Oxford University, England

and 507 from the Joint Center for Structural Genomics (JCSG;

http://www.jcsg.org) at Stanford Synchrotron Radiation

Lightsource, USA. We acknowledge that by using structures

from two major laboratories, their distribution may not be

entirely representative of the PDB.

For 364 of these structures the data were collected as

‘native’ and for 446 the data collection produced an anom-

alous MAD or SAD experiment. The data were acquired at

both synchrotron and in-house facilities and therefore also

cover a range of detectors, i.e. photon-counting and CCD

cameras, as well as X-ray sources. The resolution for the

structures ranges from 1.05 to 3.8 Å; soluble and membrane

proteins are covered as well as proteins in complexes with

other proteins, peptides or nucleic acids. The anomalous

scatterer used in experimental phasing was introduced by

means of protein production in a selenium-enriched medium

to create selenomethionine (SeMet) in nearly all cases.

The metadata for these 810 structures were retrieved from

the published PDB files and stored in METRIX_DB. Addi-

tional information was created when carrying out data inte-

gration and reduction, experimental phasing and sequence

analysis. Where multiple wavelengths were available for a

structure, the data set for each wavelength is considered a

separate sample. After all of the data had been collected in the

different tables of the database, individual columns containing

the information of interest were selected and combined into a

new table and exported as a file of comma-separated values

which could directly be used in machine learning.

The code for the database can be found at https://

github.com/ccp4/metrix-database.
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2.2. Data-reduction and phasing pipeline

Many of the details about the various data sets to be used in

machine learning are statistics created during data reduction

and phasing. Rather than executing these computational steps

in a serial manner, a processing framework has been created

using the Python 2.7 programming language to streamline the

process using a compute cluster. A series of scripts has been

developed to run xia2 (Winter, 2010) using DIALS (Winter et

al., 2018) and AIMLESS (Evans, 2006) for diffraction-image

integration and data reduction. The statistics recorded in

METRIX_DB are averages over the entire resolution range

for a data set of a given wavelength. Although it is recognized

(Usón & Sheldrick, 2018) that experimental phasing success

can be sensitive to the high-resolution cutoff used, we chose

not to investigate the resolution-dependence of the quality

metrics included here owing to the increase of complexity for

this proof-of-principle study. Only samples for which data

reduction was successful were taken forward into experi-

mental phasing.

For experimental phasing the SHELXC/D/E pipeline

(Sheldrick, 2010) was used. If one wavelength was identified

during data reduction, even if the data were collected as

‘native’, then a SAD experiment was assumed and phasing was

carried out accordingly. If more than one wavelength was

identified, the data were phased as a MAD experiment. Only

samples for which the phasing software exited without error

were used for machine learning and assigned a label, either ‘1’

or ‘0’, respectively, depending on whether the protein back-

bone could be traced or not. ‘Native’ data were not auto-

matically assigned with label ‘0’, as several examples originally

phased through molecular replacement also exhibited an

anomalous signal strong enough for experimental phasing

owing to intrinsic metals, for example in the active site.

With the exception of a hold-out set used to calibrate the

best classifier, the concession was made to not check data-

reduction and phasing output in depth, or optimize input

parameters for each structure, in order to be able to run

computations on a computational cluster and hence in a time-

efficient manner. A total of 703 samples were used for training

and testing the classifiers, and a further 34 for calibration

before predicting with new samples.

2.3. Protein

The sequence of each protein published alongside the

structure was retrieved from the PDB and used for various

calculations. For each sequence the molecular weight and

number of atoms was calculated and stored in METRIX_DB.

Using the unit-cell dimensions, molecular weight and the

MATTHEWS_COEF tool from the CCP4 suite (Winn et al.,

2011; Matthews, 1968), the most likely number of molecules in

the asymmetric unit was determined as well as the unit-cell

volume and the solvent content. The number of anomalous

scatterers expected to be present in the structure was deter-

mined by counting the methionines in the sequence and was

multiplied by the number of molecules most likely to be found

in the asymmetric unit. Overall, this gave reasonably good

estimates for most samples, but did fail in cases of proteins in

complexes and a few cases in which the anomalous scatterer

was not selenium.

2.4. New test data

The data used in this challenge were provided by the

protein crystallography group at the University of Newcastle,

England. None of the proteins analysed were present in the

training or testing data. For 12 samples, the data collections

were carried out on beamlines I03, I04, I04-1 and I24 at

Diamond Light Source using a PILATUS detector. Data

measured with this type of detector were available in the

training and test sets. A further 12 samples were from a recent

data collection on I04 using its new hardware setup of an

EIGER detector and a multi-axis goniometer, for which no

data were available in the training and test sets. The new

diffraction data were integrated in the same way as the

training and test data.

2.5. Machine learning

The machine-learning aspect of this publication is based on

Python 3.6. Other packages used are pandas 0.23.0 (McKinney,

2010), Matplotlib 2.2.3 (Hunter, 2007), SciPy 1.1.0 (Oliphant,

2007), mlxtend 0.13.0 (Raschka, 2018), scikit-learn 0.20.0

(Pedregosa et al., 2011) and NumPy 1.14.3 (Oliphant, 2006).

The code for the machine-learning component of this

publication can be found at https://github.com/ccp4/metrix_ml.

To ensure that the performance of a classifier is not biased

to one particular class, it is important to have a balanced data

set in which both classes are present equally. This also needs to

be considered when splitting the data into training and testing

sets, as the dominant class is likely to be more frequently

found and will therefore skew the performance of any classi-

fier to only be able to predict this class. However, in our case a

balance between the classes was not achievable. Therefore, the

split into training and testing data was stratified to ensure that

the two sets are representative of the data, meaning that they

maintain the class distribution. Here, we used a common split

of 20% of data being assigned to the testing set and 80%

remaining in a training set, while at the same time maintaining

a class distribution of 66% for class ‘1’ and 33% for class ‘0’. A

random seed has also been defined to ensure reproducibility

when splitting the data in subsequent executions. Additionally,

some classifiers allow weights to be assigned to the different

classes to achieve a balance, which will be explored when

carrying out a randomized search for the best hyperpara-

meters (see below). This also applies to the hold-out set used

to calibrate the classifier before prediction.

Overfitting means that the algorithm learns the training

data and predicts these cases very well, apparently producing

very good performance measures. However, challenged with a

new, unseen sample the algorithm performs badly and fails to

generalize. k-fold cross-validation for the training set was used

to address this problem. Crucially, if the class distribution is

unbalanced then this needs to be reflected in the cross-

validation folds as well. In this study, we used a threefold
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cross-validation. The testing set is only used for assessing the

trained, hyperparameter-optimized model at the very end.

For support vector machines, the data were standardized

using the StandardScaler class from the pre-processing

module of scikit-learn to scale to unit variance. For decision

trees and random forest algorithms, however, standardization

is not necessary.

A full list of all 44 features investigated here is given in

Supplementary Table S1. This also includes the custom column

transformations discussed in Appendix A. All features inves-

tigated here were plotted against each other and their linear

Pearson’s correlation coefficients, r, were determined using

the corr() function in pandas. Any correlation coefficient

which has an associated p-value of <0.05 can be considered to

be meaningful and a correlation can be identified. The results

were visualized in a correlation matrix with negative correla-

tions (�1 to 0) coloured red and positive correlations (0 to 1)

coloured blue. To quantify the correlation strength between

two variables a coefficient of determination, r2, was calculated.

This gives the variance in the data of one dependent variable

explained by the independent variable in the pair. An r2 of

>10% therefore indicates a weak correlation and an r2 of

>90% indicates a strong correlation. Only correlations that

fulfil p < 0.05 and r2 > 10% will be considered here.

For support vector machines feature importances are not

readily available. Recursive feature elimination was therefore

used to identify the most likely number of features as well as

those most important for decision making. This was monitored

through changes in classification accuracy upon the with-

drawal of a feature. The recursive feature-elimination function

with cross-validation from the feature_selection module in

scikit-learn was used for this assessment.

The classifiers listed below have been used. For all classifiers

the hyperparameters used have been determined in a rando-

mized search using the RandomizedSearchCV function in

scikit-learn, which tried 500 combinations for a given range. A

basic scheme of training and assessment can be found in

Supplementary Fig. S1. The following classifiers have been

investigated for their suitability as a predictive tool for the

available data: a support vector machine with a linear kernel

and a radial-base function kernel, a decision tree, a decision

tree with bagging, a decision tree with AdaBoost, a random

forest and an extreme randomized forest. More details of the

hyperparameter settings for the individual classifiers can be

found in Appendix B. The hyperparameters used for the best

classifier after identifying the most important features are

given in Supplementary Table S2. The metrics used to assess

the different classifiers are detailed in Appendix C.

As mentioned previously, the data used in this study are

unbalanced regarding class distributions. Although this

distribution was maintained by using a stratified split when

separating the test and training sets, this imbalance still had an

effect on how reliable the predicted class probabilities were.

In order to address this problem, the best classifier was

calibrated with a hold-out set that was neither part of the

test nor the training set using the CalibrateClassifierCV

function in scikit-learn with cv=‘prefit’.

After calibrating the best classifier, the predict() function

from the scikit-learn package was used to challenge it with new

samples.

2.6. Comparison with an existing SAD prediction tool

The software tool plan_SAD_experiment (Terwilliger et al.,

2016a,b) from the Phenix analysis package (version 1.17.1;

Liebschner et al., 2019) was used to calculate the probability of

success for a given wavelength, assuming that each wavelength

represents a SAD data set. The tool was executed with the

following parameters: phenix.plan_sad_experiment

seq_file=<PDB.fasta> atom_type=Se wavelength=

<wave> resolution=<Dmin> data=<mtz_file>, where

wavelength and resolution have been queried from

METRIX_DB, and mtz_file contains the integrated inten-

sities for each wavelength of a given PDB entry.

3. Results

3.1. METRIX_DB database

Based on the results of automated analysis, 440 structures

successfully produced 703 samples, each of which is a crys-

tallographic data set at a single wavelength. The class labels

for these samples were verified through manual inspection of

the automatic processing results, with 232 identified as class ‘0’

and 471 as class ‘1’. Information is held in METRIX_DB as a

collection of tables, with each table relating to a stage of

crystallographic data analysis, for example sequence details,

data reduction, experimental phasing and the deposited PDB

file information for reference. METRIX_DB is structured

such that the number of samples and features to be investi-

gated can easily be expanded. Measures have been put in

place to expand the database in the future, with the aim to

ultimately use the results from the Synchweb/ISPyB user

interface (Fisher et al., 2015), which is used to manage data-

collection results during a visit.

3.2. Pre-assessment of the data

Fig. 1 shows a correlation matrix for the linear Pearson’s

correlation coefficients determined for all features. The

features are grouped such that correlations between descrip-

tors of diffraction data quality are concentrated in the top left

quadrant and correlations between protein descriptors are

located in the bottom right quadrant. The corresponding

correlation coefficients (r), associated p-values and coeffi-

cients of determination (r2) as quantitative measures of the

correlation strength are reported in Supplementary Table S3.

The highest scoring features for three decision trees, two

random forests and the linear SVM classifiers are reported in

Supplementary Table S4, with the corresponding performance

statistics on the test set given in Supplementary Table S5.

Features related to and extracted from experimental

phasing software, such as CCweak, CCall and CFOM, were used

in initial, exploratory work. These features were so dominant

that the information provided from data integration and

scaling statistics would vanish. However, the purpose of this
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study was to identify indicators for experimental phasing

success at the step of data integration and scaling, so experi-

mental phasing statistics were excluded from further analysis.

The most important features in the decision-making process

in the different classifiers and the frequency of appearance of

a particular feature were counted and plotted in Fig. 2. For

retraining the classifiers, the six highest scoring features were

chosen: CCanom, �I/�I, manom, dmax, �F/F and f 00theor. Smaller

and larger feature sets based on the scores plotted in Fig. 2,

using one feature (CCanom), two features (CCanom, manom;

CCanom, I/�), five features (CCanom, manom, dmax, �F/F, f 00theor)

and seven features (CCanom, �I/�I, manom, dmax, �F/F, f 00theor,

CC1/2), were also tried (data not shown), but none of the

resulting classifiers performed as well as the decision tree with

AdaBoost and the six highest scoring features.

3.3. Feature correlations

A closer look at the correlation matrix identifies high

degrees of positive or negative correlation between the data-

quality descriptors commonly used by crystallographers.

These statistics either assess the precision of unmerged

(Rmerge, Rmeas) or merged (I/�, CC1/2, Rp.i.m.) intensities. The

pattern of correlations for Rmerge and Rmeas are very similar,

supporting the view that the introduction of Rmeas renders

Rmerge obsolete (Weiss & Hilgenfeld, 1997). For the merged
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Figure 1
Correlation matrix of Pearson’s correlation coefficients between feature pairs to identify linear correlations between them. All 44 features investigated
have been plotted. Blue indicates positive linear correlation ranging from 0 to 1 and red indicates negative linear correlation ranging from �1 to 0. The
intensity of the colour indicates the strength of the correlation. All numerical values can be found in Supplementary Table S3.



intensity precision indicators, there are broadly similar

patterns (with the sign of the correlation coefficient inverted

for Rp.i.m. compared with I/� or CC1/2), but the differences

between these patterns suggest that distinct information is

expressed by these metrics. The relations between these

quantities have been discussed elsewhere (Karplus &

Diederichs, 2015). It should be mentioned that the spread of

multiplicity, M, in METRIX_DB is limited and therefore a

relationship with I/� could not be explored without artificial

truncation of data sets, which we did not perform. Indicators

of anomalous signal in the data (�I/�I, �F/F, CCanom and

manom) are only weakly correlated to the theoretical anom-

alous scattering factor f 00theor, presumably because of other

factors influencing the observed signal such as anomalous

scatterer occupancy and B factor, and the overall signal-to-

noise ratio in the data. The anomalous signal as expressed by

�F/F is clearly reflected in strong correlations to Rmeas(I),

Rmerge(I) and Rp.i.m.(I) calculated assuming intensity equiva-

lence of Bijvoet mates, i.e. higher values when compared with

Rmerge(I+/I�), Rmeas(I+/I�) and Rp.i.m.(I+/I�) that account for

the presence of anomalous signal.

Other commonly used metrics, such as Nobstotal, Nobsunique,

dmin and B, show lower level correlations to data-quality

descriptors. dmax, however, is typically defined by a backstop

shadow rather than the intrinsic quality of the measured

intensities and is uncorrelated to data-quality descriptors.

Data completeness, T, is given here by a single value, which

ignores the potentially relevant effect of systematic patterns of

incompleteness, such as missing wedges, shadowed regions of

the detector and a variable high-resolution cutoff at different

regions of the detector. More detailed analysis such as this will

require more sophisticated descriptors of completeness and a

more representative database.

There are weak correlations between descriptors of the

protein content and data-quality indicators, for example

MWSASU, which gives the ratio between molecular weight and

the number of anomalous scatterers in the asymmetric unit, or

IASU, which represents the ratio between signal (I/�) and

asymmetric unit content (MWASU). As METRIX_DB expands

it will be interesting to explore these relationships, but at this

stage we avoid speculative interpretation. The pattern of

correlations within the group of protein-content descriptors

shows some larger features, as expected for metrics that are all

used to quantify various aspects of the crystal content.

Unit-cell parameters are weakly correlated with various

parameters but display no strong predictive properties. Also

visible, as one would expect, are correlations between space-

group number (Nsg), multiplicity (M) and I/� through its

relation to multiplicity.

3.4. Selecting the best-performing classifier

The reduced feature set identified above was used to retrain

all classifiers, and their performance results on the test set are

given in Supplementary Table S6. The best-performing clas-

sifier was a decision tree with AdaBoost, and its confusion

matrix and radar plot are shown in Figs. 3(c) and 3(d),

respectively. Additionally, the results for a perfect classifier

are given for comparison [Figs. 3(a) and 3(b)].

This classifier is the best-performing classifier based on the

assessment metrics used, achieving a classification accuracy of

95%. The sensitivity, or true-positive rate, was found to be
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Figure 2
Bar plot of feature occurrences found during the initial classifier training. Features that are important in the decision-making process during classification
appear more frequently regardless of which classifier has been used. The highest scoring features for the individual classifiers can be found in
Supplementary Table S4. The most frequently found features are CCanom, �I/�I, manom, dmax, �F/F, f 0 0theor and CC1/2.



96% (90 out of 94 samples) and the specificity, or true-negative

rate, was 94% (44 out of 47 samples). The false-positive rate

was 6% (three samples) with precision 97%. The F1 score was

96% and the area under the curve of an ROC curve was 99%.
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Figure 3
Confusion matrices and radar plots for a perfect classifier (a, b), the best classifier, a decision tree with AdaBoost (c, d), and for new data (e, f ) and the
performance of the best classifiers on new data. The confusion matrices (a, c, e) give the scores for the four possible classification outcomes: true negative
at the top left, true positive at the bottom right, false negative at the top right and false positive at the bottom left. The perfect classifier has no
misclassifications, whereas the decision tree with AdaBoost places three class ‘0’ samples and four class ‘1’ samples into the wrong category. For the new
data one sample has been identified as false positive and four as false negatives. The classification outcomes serve as a basis to calculate classification
accuracy (ACC), classification error (Class Error), sensitivity (Sensitivity), specificity (Specificity), false-positive rate (FPR), precision (Precision) and F1

score (F1 score) as they are plotted in the radar plots (b, d, f ). The value ROC AUC is determined by calculating the area under the curve of an ROC
curve.



3.5. Testing the prediction classifier against new data

The performance metric results for the new data using the

decision tree with AdaBoost are given in Supplementary

Table S7 and the corresponding confusion matrix and radar

plot in Figs. 3(e) and 3( f). A total of 24 new samples were used

to challenge the classifier. The samples comprised proteins not

present in METRIX_DB, and the data-collection strategies

and beamline hardware were entirely different to those used

for the training data. These therefore presented a significant

challenge for the classifier. The experimental outcomes for

these new samples were assessed and labelled by the user and

were only revealed after prediction had been carried out. A

probability threshold of 80.0% for class ‘1’ was applied,

reflecting the fact that users would typically prefer a low false-

positive rate, i.e. have some confidence that class ‘1’ truly

reflects a successful structure determination.

The classification accuracy achieved was 79%. Sensitivity

and specificity were 64% (seven out of 11 samples) and 92%

(12 out of 13 samples), respectively. The false-positive rate was

8% (one out of 13 samples) with a precision of 86% and an F1

score of 74%, and the area under the curve of a receiver

operating characteristic curve (ROC AUC) was determined as

75%.

3.6. Comparison with an existing SAD prediction tool

The same samples, a total of 703, that were used as training

and testing sets for machine learning were analysed by

phenix.plan_SAD_experiment. A probability threshold of 80%

for SAD phasing success was chosen as a measure of confi-

dence in the prediction, as was performed for the new user

sample (see Section 3.5). Overall, the tool achieved a classi-

fication accuracy of 68%. The vast majority of true-positive

samples were correctly identified by the prediction tool, with a

sensitivity of 97%. Many of the false-negative samples had a

wavelength chosen for low-energy remote data collection as

part of a MAD data set where there is weak or no anomalous

signal but that was essential to solve the phase problem. Of the

true-negative samples, 21 were correctly identified, which is

reflected in a false-positive rate of 91%. In comparison, the

false-positive rate for our testing set is 5% and 8% for new

user data. We stress that the results from the two approaches

are not directly comparable as the tools are intended for

different purposes. Phenix.plan_SAD_ experiment was

designed to advise a user who has already chosen to try SAD

phasing whether they are going to be successful, which it does

very well based on the sensitivity of 97%. However, its

purpose is not to identify data sets for which data were

collected either as native or MAD, hence the false-positive

rate of 91%.

4. Discussion

Analysing crystallographic results with the aim to predict the

likely experimental phasing success using machine learning is

a data-driven approach. As such, the outcome is defined by

the kind of data that have been used in training. In this study,

we have chosen to focus on particular experimental phasing

approaches represented by a training database of native, SAD

and MAD data sets. The content of METRIX_DB is currently

limited to published structures where data are publicly avail-

able. Nearly all of the crystallographic data used here exhib-

ited anomalous signal that made experimental phasing

straightforward. A post-mortem analysis of a collection of

weak S-SAD data sets is under way with the aim of including

such data in METRIX_DB. Ultimately, representative data

from each kind of data collection performed by users needs to

be included in METRIX_DB. This should reduce the

constraints currently imposed on the content of METRIX_DB

and therefore on the scope of our studies. Additionally, this

would close the technology gap between the data currently

measured on modern X-ray beamlines and those contained in

METRIX_DB. For example, current synchrotron data sets are

almost exclusively measured using photon-counting hybrid

pixel detectors and fine-slicing methods. However, our

analysis clearly provides initial insight into the potential

application of machine learning in protein crystallography to

assist a scientist during decision making in experimental

phasing. For future investigations METRIX_DB will be

expanded to make use of other descriptors, for example,

results from analysis and prediction tools making use of the

protein sequence. Furthermore, recent changes in data policy

for many European synchrotrons will allow user data to be

incorporated into training databases, making them more

relevant and effective.

Clearly, the highest scoring features identified here, �I/�I,

�F/F, CCanom, manom, dmax and f 00theor, should be optimized by

a crystallographer prior to, or during, data collection and

analysis, whether or not a classifier is being used to provide

guidance. For example, to maximize f 00theor a wavelength scan

should be carried out prior to data collection to select an

optimal wavelength. To optimize dmax an additional low-

resolution pass could be collected and/or the beamstop size

and position could be set to ensure low-resolution data

coverage. Regarding �I/�I, �F/F, CCanom and manom it would

be advisable to look at the classifier prediction for experi-

mental phasing success and continue to collect additional

rotation images in order to increase anomalous signal while

monitoring radiation damage. Alternatively, data collected

from several crystals of the same protein with the same

anomalous scatterer can be combined.

The matrix of Pearson’s linear correlation coefficients

showed that a subset of data-quality metrics [Rmerge, Rmeas,

Rp.i.m., Rmerge(I+/I�), Rmeas(I+/I�) and Rp.i.m.(I+/I�)] are

highly correlated with each other and hence convey very

similar information. This gives additional support to

previously published analysis (Karplus & Diederichs, 2012;

Diederichs & Karplus, 2013; Evans & Murshudov, 2013)

describing the relationships between these metrics.

Conducting an in-depth analysis of the resolution depen-

dence of many of the metrics investigated here, in particular

those identified as being most important when judging the

likelihood of experimental phasing success using a machine-

learning tool, was not within the scope of this manuscript but
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will be part of further work. In our study, all of the statistics

were averages across the entire resolution range of a given

sample, where the high-resolution limit was set by the data-

integration software. Generally, phasing techniques do not use

the full resolution range of data but typically truncate the data

to a lower resolution limit for substructure determination.

Using a systematic approach by applying common cutoffs to

all data sets would therefore be useful in identifying the

resolution range that gives the highest chance of success,

regardless of the actual resolution limit of the data.

The best classifier as judged by its performance metrics

presented here is a decision tree with AdaBoost. With a

classification error of 5%, this classifier performs at about the

same level as a human would when presented with the test

data (Dodge & Karam, 2017). The small number of false

positives and false negatives, four and three, respectively,

should allow the classifier to generalize when challenged with

a novel sample. This is further detailed below.

Many of the data sets present in the training and test sets

were measured with CCD and photon-counting hybrid pixel-

array detectors (PADs) using typical crystal rotation ranges

per image of >0.5� (wide-slicing). The 24 data sets used to test

the classifier were, however, measured at Diamond Light

Source on PADs using fine-slicing (typically <0.1�). This

difference in data-collection approach may be one reason for

the lower classification accuracy of 79%. In general, however,

one would always expect a reduction in accuracy for any

classifier when used with new data. Surprisingly, perhaps, the

classifier performs well in correctly identifying samples where

experimental phasing is likely to fail, class ‘0’, with a specificity

of 92%. A broader representation of detector types and data-

collection strategies in METRIX_DB would be likely to result

in better classifier performance against new data and could

highlight other high-scoring features to optimize.

Similarly, the use of different anomalous scatterers in the

diffraction experiment needs to be considered since all deri-

vatized training samples here were selenomethionine proteins.

Samples 9 to 12 of the new user data were heavy-atom soaks

using platinum, gold or lead compounds. Samples 9 and 10

were correctly classified as class ‘0’, since a lack of anomalous

signal meant experimental phasing failed. This was probably

owing to poor incorporation of the heavy atoms during

soaking. Of the remaining two samples, one was classified

correctly as class ‘1’ (sample 11).

Although attempted, a direct comparison with the already

available phenix.plan_SAD_experiment is not justified as this
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Figure 4
General workflow envisaged for an interactive user assistant. Blue depicts the different steps in structure solution from diffraction data collection to
experimental phasing. Dark purple gives the feedback and statistics of every step, which is stored in the database METRIX_DB. Green represents the
statistics stored in METRIX_DB which are used to train the classifier in METRIX_ML.



tool was specifically designed to help crystallographers maxi-

mize their chances of solving the phase problem with a SAD

experiment. However, our machine-learning approach is

designed to work in a more general way by looking at the data

measured for different phasing methods.

An implementation of an interactive user guide can be

envisaged in which the classifier is trained with standard data

sets, makes predictions on incoming data collections and

reports results to the user. Feedback can be given directly

through the Synchweb/ISPyB interface as part of the general

data-analysis workflow. After assessing their results, either

while still at the beamline or later after more careful analysis,

users annotate the data through Synchweb/ISPyB with the

actual experimental outcome by simply clicking on a box to set

a label. This data would then be included in METRIX_DB or

extracted directly from Synchweb/ISPyB to retrain the clas-

sifier. The retraining process itself would be carried out during

shutdown periods when no new user data are acquired or

between visits, depending on computational resources. Over

time, such a classifier would be customized towards the

proteins investigated by a certain user group and their typical

data-collection experimental phasing strategies. A classifier

would become more stable and the training frequency can

then be reduced. The flowchart in Fig. 4 gives a schematic

outline for an interactive user system. Although a user will

always be able to ignore the recommendations and trigger

data analysis manually, including our trained algorithm in the

analysis pipelines is expected to help in balancing the work-

load on the computing infrastructure in a more intelligent way

than the brute-force approach currently in use.

Additionally, we envision a system in which a classifier

executes repeat predictions on incomplete data while data

collection is still ongoing to indicate a trend of success and to

identify the point at which the data are sufficient to attempt

experimental phasing. This would be very beneficial, for

example, in the case where multiple partial rotation data sets

are being collected and combined. Post-mortem analysis

regarding such an application is under way using S-SAD data.

We have presented a proof of principle for how machine

learning can be used in protein crystallography, in particular

for experimental phasing, and have discussed the possible

applications of such predictive classifiers. This concept will be

generalized in the future to cover a broader range of structure-

determination methods including isomorphous replacement-

related methods and molecular replacement. This will require

a substantial expansion of METRIX_DB.

Although intervention by an expert crystallographer is still

essential for corner cases, such machine-learning support

systems will become more and more important. The data rates

and data volumes accumulated during diffraction experiments

are already such that it is difficult for a human to keep pace.

Furthermore, the number of scientists who are using protein

crystallography as an analytical tool rather than a scientific

discipline is rapidly increasing, placing a greater burden on

automated acquisition and analysis systems at user facilities.

For these reasons, it is expected that decision-making tools

based on machine learning will form an integral part of

macromolecular crystallography beamline facilities in the

future.
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APPENDIX A
Custom column transformations

The custom column transformations are largely based on

knowledge of the protein and are inspired by the publication

by Holton & Frankel (2010).

The molecular weight in the asymmetric unit is defined as

MWASU ¼
MWchain

NmolASU

; ð1Þ

where MWchain is the molecular weight of the protein (Da) and

NmolASU is the number of molecules in the asymmetric unit as

determined by the Matthews coefficient.

The expected number of anomalous scatterers is estimated

as

NsitesASU ¼ NmethionineNmolASU; ð2Þ

where Nmethionine is the number of methionines identified from

the sequence file and NmolASU is the expected number of

molecules in the asymmetric unit as determined by the

Matthews coefficient.

The ratio between the molecular weight and the number of

anomalous scatterer sites in the asymmetric unit is given by

MWSASU ¼
MWASU

NsitesASU

; ð3Þ

where MWASU is defined as in (1) and NsitesASU is defined as in

(2).

MWASU has also been looked at in the context of solvent

content,

MWSASUVs ¼
MWSASU

Vs

; ð4Þ

where MWSASU is given by (2) and the solvent content Vs has

been determined through the Matthews coefficient.

The molecular weight of the protein has been brought into

context with the number of atoms in its chain,

AVZ ¼
MWchain

Natomchain

; ð5Þ

where MWchain is the molecular weight (Da) of the protein and

Natomchain is the number of atoms in the protein based on the

sequence including hydrogens.

Based on Ncell (Holton & Frankel, 2010), we calculate the

total number of ordered atoms in the unit cell (including

hydrogens) as follows,
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Ncell ¼
Vcell

VsAVZ

; ð6Þ

where Vcell is the unit-cell volume, Vs is given by the Matthews

coefficient and AVZ is as defined in (5).

A ratio between the measured signal I/� and the molecular

weight in the asymmetric unit was created through

IASU ¼
I=�

MWASU

: ð7Þ

The Wilson B factor, B, as extracted from the data-

processing statistics, was multiplied by a constant (�2) to give

�B = �2B, and dinv is defined as

dinv ¼
1

d2
min

: ð8Þ

�B, dinv and Ncell are then combined as follows,

L ¼ Ncell expð�BÞdinv: ð9Þ

APPENDIX B
Classifier hyperparameter details

B1. Support vector machine with linear kernel

The SVC() function from the svm class in scikit-learn was

used with a linear kernel. ‘C’ and a ‘class_weight’ of either

‘none’ or ‘balanced’ were the only hyperparameters to be

optimized for this classifier.

B2. Support vector machine with radial basis function (RBF)
kernel

This allows the classification of samples where a simple

linear separation cannot be achieved. The SVC() function

from the svm class in scikit-learn was used with an RBF kernel.

Hyperparameters ‘C’, ‘gamma’ and a ‘class_weight’ of either

‘none’ or ‘balanced’ were optimized.

B3. Decision tree

For each decision at the ith node in a decision tree all

features available are evaluated and the one that leads to the

cleanest split, separating most of the samples as judged by

either Gini purity Gi or entropy reduction Hi, is applied. A

node is considered to be ‘pure’ according to the Gini criterion

with gini = 0 if all of the samples in it belong to the same class

or if the entropy is reaching zero if the highest level of order is

achieved.

Gi ¼ 1�
Pn

k¼1

p2
i;k; ð10Þ

Hi ¼ �
Pn

k¼1 pi;k 6¼0

pi;k logðpi;kÞ ð11Þ

where pi,k is the ratio between the instances of the different

classes k out of all samples n.

The underlying algorithm is for classification and regression

trees (CART; Breiman et al., 1984) and the following hyper-

parameters have been optimized in a randomized search.

‘criterion’: splitting criterion (Gini purity and entropy

reduction).

‘max_features’: the maximum number of features to use

throughout the tree or base estimator when carrying out a split

[all features (44) in the first round and between two and seven,

whichever is closest to the square root of the number of

features].

‘min_samples_split’: the minimum number of samples in a

node needed to consider a split (between two and 20).

‘max_depth’: the maximum number of splits that can be in a

tree, also known as the depth of the tree (between five and 10).

‘min_samples_leaf’: the minimum number of samples

needed to create a leaf (between one and 20).

‘max_leaf_nodes’: the maximum number of leaves in the

tree; the tree stops splitting when the maximum number is

reached (between 10 and 20).

Additionally, ‘class_weight’ was set to ‘balanced’.

B4. Decision tree with bagging

Also known as bootstrap aggregating, this is a higher level

application to improve the stability of a decision-tree classifier,

reduce its variance and avoid overfitting (Breiman, 1996). The

samples have been drawn with replacement. The base esti-

mator in the application used here is a decision tree for which

the abovementioned hyperparameters have been optimized

by a randomized search, but additionally the number of clas-

sifiers (‘n_estimators’, between 100 and 10 000) was also

evaluated and ‘class_weight’ could be either ‘balanced’ or

‘none’.

B5. Decision tree with AdaBoost

AdaBoost, like bagging, is an ensemble method but uses

sequential learning. The base estimator used here is a decision

tree for which the hyperparameters listed above have been

optimized in a randomized search and additionally the

number of estimators used (‘n_estimators’, between 100 and

10 000) has been searched for as well. Furthermore, the

‘class_weight’ could be either ‘balanced’ or ‘none’ and a

‘learning_rate’ was also set. The particular AdaBoost algo-

rithm used here is ‘Stagewise Additive Modelling using a

Multiclass Exponential loss function’, SAMME.R (where R

stands for ‘Real’), which uses class probabilities rather than

predictions as would be used with SAMME (Zhu et al., 2009).

B6. Random forest

Random forest is an ensemble method using decision trees

as base estimators and trained using a bagging method (Ho,

1995). The samples used to build a tree are only a subset and

are drawn with replacement. All the hyperparameters given

for the decision-tree classifier above have been used and

additionally ‘class_weights’ could be either ‘balanced’ or

‘none’ and ‘n_estimator’ could be between 100 and 10 000.
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B7. Extreme random forest

Additionally to using a subset of features, the threshold for

a feature at which this split occurs is chosen randomly rather

than looking for the best threshold (Geurts et al., 2006). In the

application here, the decision-tree hyperparameters given

above were optimized, except for ‘max_depth’, which was set

to 1. Additionally, the ‘class_weights’ could be either

‘balanced’ or ‘none’ and ‘n_estimators’ could be between 100

and 10 000.

APPENDIX C
Classifier assessment

To assess any machine-learning result a confusion matrix of

the classification outcomes was created (true positive, TP; true

negative, TN; false positive, FP; false negative, FN), which was

used to calculate a series of performance indicators. All

positive samples (P = TP + FN) are those labelled as class ‘1’

and all negative samples (N = TN + FP) are those labelled as

class ‘0’.

‘Classification accuracy’ (ACC) is defined as

classification accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
ð12Þ

and shows how well the model does in predicting the correct

class for both positive (class ‘1’) and negative (class ‘0’) cases.

The ‘classification error’, on the other hand, gives details

about how many samples have been attributed to the wrong

class and is defined as

classification error ¼
FPþ FN

TPþ TNþ FPþ FN
: ð13Þ

‘Sensitivity’, recall or true-positive rate (TPR) defines how

well the model does in identifying samples of the positive class

correctly out of all positive samples and is determined as

sensitivity or TPR ¼
TP

P
¼

TP

TPþ FN
: ð14Þ

‘Specificity’ or true-negative rate (TNR), on the other hand,

gives the tendency of the model to correctly identify those

samples that belong to class ‘0’ out of all negative samples and

is defined as

specificity or TNR ¼
TN

N
¼

TN

TNþ FP
¼ 1� FPR: ð15Þ

False-positive rate (FPR) gives the number of true nega-

tives or samples of class ‘0’ that have been predicted as posi-

tives out of all negative samples:

false-positive rate or FPR ¼
FP

N
¼

FP

FPþ TN
¼ 1� TNR:

ð16Þ

‘Precision’ or positive predictive value (PPV) is defined as

the number of true positive samples to be predicted as positive

out of all samples being classified as belonging to class ‘1’:

precision or PPV ¼
TP

TPþ FP
: ð17Þ

‘F1 score’ is a trade-off between ‘precision’ and ‘sensitivity’

and is defined as

F1 score ¼
2

ð1=precisionÞ þ ð1=sensitivityÞ

¼
TP

TPþ ½ðFNþ FPÞ=2�
: ð18Þ

In a good classifier this should be close to 100%, but can be

significantly lower depending on whether a classifier is desired

to have high precision or sensitivity. For an ideal model, the

‘classification error’ and ‘FPR’ would both be zero or 0%, and

the ‘sensitivity’, ‘specificity’ and ‘precision’ would be one or

100%. In general, a model cannot achieve perfect predictions

unless it has learned the data. A classification error of �5% is

usually found for a human, and a good classifier should be

close or better than this value (Dodge & Karam, 2017).

A visual way to judge the performance of a model is using a

receiver operating characteristic (ROC) curve. In such a plot

the false-positive rate, FPR, is plotted on the horizontal axes

whereas the true-positive rate, TPR, is plotted on the vertical

axes. A well performing model will exhibit a curve that peaks

near the top left corner where FPR is minimal and TPR is at

its maximum. Additionally, the area under the curve (AUC) of

an ROC curve can be determined, with a well performing

model having an AUC value close to 1 or 100% (Hanley &

McNeil, 1983).
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Terwilliger, T. C., Bunkóczi, G., Hung, L.-W., Zwart, P. H., Smith, J. L.,

Akey, D. L. & Adams, P. D. (2016b). Acta Cryst. D72, 359–374.
Usón, I. & Sheldrick, G. M. (2018). Acta Cryst. D74, 106–116.
Weiss, M. S. (2001). J. Appl. Cryst. 34, 130–135.
Weiss, M. S. & Hilgenfeld, R. (1997). J. Appl. Cryst. 30, 203–205.
Wilson, A. J. C. (1942). Nature, 150, 152.
Wilson, A. J. C. (1949). Acta Cryst. 2, 318–321.
Wilson, A. J. C. (1950). Acta Cryst. 3, 397–398.
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,

Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Winter, G. (2010). J. Appl. Cryst. 43, 186–190.
Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea,

R. J., Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-
Clark, T., Young, I. D., Sauter, N. K. & Evans, G. (2018). Acta Cryst.
D74, 85–97.

Zhu, J., Zou, H., Rosset, S. & Hastie, T. (2009). Stat. Interface, 2, 349–
360.

research papers

354 Melanie Vollmar et al. � The predictive power of data-processing statistics IUCrJ (2020). 7, 342–354

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=jt5042&bbid=BB50

