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High-resolution single-particle cryo-EM data analysis relies on accurate particle

picking. To facilitate the particle picking process, a self-supervised workflow has

been developed. This includes an iterative strategy, which uses a 2D class

average to improve training particles, and a progressively improved convolu-

tional neural network for particle picking. To automate the selection of particles,

a threshold is defined (%/Res) using the ratio of percentage class distribution

and resolution as a cutoff. This workflow has been tested using six publicly

available data sets with different particle sizes and shapes, and can automatically

pick particles with minimal user input. The picked particles support high-

resolution reconstructions at 3.0 Å or better. This workflow is a step towards

automated single-particle cryo-EM data analysis at the stage of particle picking.

It may be used in conjunction with commonly used single-particle analysis

packages such as Relion, cryoSPARC, cisTEM, SPHIRE and EMAN2.

1. Introduction

The rapid development of computational algorithms and

workflows has boosted the resolution revolution in high-

resolution single-particle cryo-electron microscopy (cryo-EM)

analysis (Cheng, 2015; Henderson, 2015; Subramaniam et al.,

2016). With further improvements in electron microscope

optics, camera speed and data collection strategies, collecting

4000–10 000 micrographs per day is becoming routine. Of

course this improvement has resulted in substantial amounts

of data to be processed, and it becomes time consuming to go

through each of the steps in single-particle analysis workflows

implemented in program packages such as Relion, cryo-

SPARC, cisTEM, SPHIRE and EMAN2 (Tang et al., 2007;

Fernandez-Leiro & Scheres, 2017; Moriya et al., 2017; Punjani

et al., 2017; Grant et al., 2018). These packages have either

manual or semi-automatic particle-picking processes.

However, finding suitable parameters for automated particle

picking remains difficult, a situation which is amplified when

dealing with low-contrast micrographs with contamination or

denatured particles. Traditional methods involve manually

picking particles and using manually selected 2D class

averages in order to obtain accurate templates for template-

based automated particle picking (Frank & Wagenknecht,

1983; Huang & Penczek, 2004; Chen & Grigorieff, 2007; Tang

et al., 2007; Langlois et al., 2014; Scheres, 2015; Punjani et al.,

2017). Each of these steps may require expert knowledge to

judge the quality of particles and to choose, on a trial-and-

error basis, parameters for template-based particle picking. In

an additional complication, with low-contrast micrographs

such as close-to-focus ones that preserve high-resolution

information, picking particles manually can be non-trivial and

laborious even for experts.
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Owing to rapid accumulation of large cryo-EM data sets,

using automated particle picking to facilitate single-particle

analysis is highly desirable (Danev et al., 2019). Convolutional

neural networks (CNNs) have been increasingly used for

particle picking in cryo-EM single-particle analysis (Wang et

al., 2016; Xiao & Yang, 2017; Zhu et al., 2017; Bepler et al.,

2018; Da et al., 2018; Nguyen et al., 2018; Al-Azzawi et al.,

2019b; Wagner et al., 2019). These CNN-based methods may

differ in the formation of network architecture. Nevertheless,

they all require particle data for training, and the training

quality determines the picking results and subsequent single-

particle analysis. The training data can be composed of either

manually picked particles or ab initio picking by various

feature-detection methods (Zhu et al., 2004; Voss et al., 2009;

Al-Azzawi et al., 2019a). However, even these methods

require the use of pre-trained CNN models. These models may

not be always reliable for unknown particles due to data set

bias (Wang et al., 2016; Tegunov & Cramer, 2019; Wagner et al.,

2019).

An effective strategy is needed such that CNNs can be

trained in a self-supervised manner for improved particle

picking. Considering the established utility of 2D class

averages in selecting particles and CNNs in pattern recogni-

tion, we propose that the combination of the two could

improve the quality of training data via iterative training,

particle picking and 2D class averaging. To test this hypothesis,

we devised a self-supervised iterative particle-picking work-

flow that may be used for automated particle picking and can

be incorporated into a variety of single-particle analysis

packages. Here we describe the process and performance of

the workflow, which we have tested with six data sets that span

a variety of particle sizes and shapes. We offer some ideas for

further enhancement of the use of our workflow.

2. Methods

2.1. Cryo-EM micrograph data preparation

We used six publicly available EMPIAR data sets to test the

workflow as summarized in Table 1 (https://www.ebi.ac.uk/

pdbe/emdb/empiar/). Among these data sets, EMPIAR 10204,

10218, 10028 and 10335 are unaligned movies. We used 5 � 5

patches and reported dose rates for dose-weighted motion

correction in Relion (Zivanov et al., 2018). Data sets EMPIAR

10184 and 10059 were already motion corrected and were used

directly for downstream use. Per-micrograph contrast-transfer

function (CTF) correction for both phases and amplitudes was

performed in Gctf (Marabini et al., 2015; Zhang, 2016). After

CTF correction, we selected aligned micrographs with an

estimated CTF resolution beyond 3.0 Å for EMPIAR 10204

and 4.0 Å for the others to test our workflow. To generate a

subset of micrographs for iterative training and particle

picking, we selected 20–40 micrographs, half of which had

defocus below 1 mm and the other half had defocus below

2 mm. For EMPIAR 10204, we used the first 20 micrographs to

test our workflow.

2.2. A workflow for iterative particle picking

The workflow is built on the hypothesis that from a subset

of micrographs, particles may be improved by selective

filtering through a 2D class average and the improved particles

can then be used to train a CNN. We propose that this iterative

procedure will lead to the optimization of a fine-tuned CNN-

based particle picker, capable of picking high-quality particles.

The workflow is composed of three steps as illustrated in Fig.

1. The first step produces initial candidate particles for training

the CNN. The second step trains the network progressively,

leading to the final particle picking in step 3. To speed up the

convergence of the CNN model, 2D class averages are used to

produce improved particles [Fig. 1(a)].

The selection of 2D classes and particles is automated by

using the ratio of percentage class distribution and resolution

(denoted as %/Res). The percentage class distribution is the

ratio of the number of particles within a 2D class average and

the total number of particles. This value is reported in Relion

as the class distribution. Resolution is reported in Relion as

the estimated resolution in ångstroms (Å). The particles in the

selected 2D classes are then used for iterative 2D class aver-

aging and selection. For each iteration, particle sets exceeding

the %/Res cutoff are used as input for the next iteration. The

iteration continues until 90% of the input particles are

selected [Fig. 1(a)].

Even with the use of 2D class averages, these initial particles

may not be chosen optimally which may then lead to subse-

quent biased training and picking. Therefore, following

training and picking, we performed 2D class averaging again

to improve the selection of particle sets until 90% of particles

research papers

720 McSweeney et al. � A self-supervised workflow for particle picking in cryo-EM IUCrJ (2020). 7, 719–727

Table 1
Summary of the results for the EMPIAR data sets used in this work.

Values reported in the database are given in parentheses.

EMPIAR EMD Name
MW
(kDa)

No. of particles
picked

No. of particles
refined

Percent
(%)†

Resolution
(Å)

B factor
(Å2)

10204 22025 �-galactosidase 520 58710 31542 (93975) 53.7 2.66 (2.6) 65
10218 22026 20S proteasome 700 80346 49870 (127570) 62.1 2.4 (2.1) 68
10184 22027 Aldolase 150 922306 114133 (187000) 12.4 2.45 (2.4) 107
10059 22028 TRPV1 with DkTx and RTX 280 441246 91651 (73929) 20.8 3.0 (2.95) 113
10028 22029 80S ribosome 1263 155264 118801 (105247) 76.5 2.85 (3.2) 98
10335 22030 Streptavidin 53 691567 12206 (11402) 1.8 2.69 (2.6) 58

† Percentage ratio of the number of particles used in the final refinement and the number of particles picked.



exceed the %/Res threshold. The training, picking and 2D

class average are iterated until convergence. Here, for each

iteration the definition of convergence is based on the ratio of

the number of qualified particles (i.e. exceeded %/Res cutoff)

to the total number of particles picked by the CNN model. In

this work, we used 70% as a termination cutoff for conver-

gence. That is, if after training 70% of the picked particles are

in 2D classes with %/Res > 0.1, we consider the training

converged and the trained network is then used for production

picking. In the event that the defined convergence of 70% was

not satisfied in three iterations, we used the CNN model from

the last iteration for production picking.

2.3. Ab initio particle picking

To produce candidate particles for training, we imple-

mented Localpicker for ab initio particle picking. The program

makes use of a threshold mask image calculated based on the

value of local pixels (Singh et al., 2012). With the threshold

mask image, features were detected, labeled and written to a

star file, one file for each micrograph. One particular feature

of Localpicker is that it is a shape-based method, thus enabling

the picking of particles of various shapes simultaneously.

Localpicker is robust and requires only three parameters to

control the particle picking process: estimated particle size in

pixels, bin size and threshold. The particle size is used to

remove particles that are too close on micrographs. The bin

size is used to reduce micrograph size to facilitate picking. The

threshold is used for feature detection; local maxima smaller

than the threshold value are ignored.

For five EMPIAR data sets 10204, 10184, 10059, 10028 and

10335, we used Localpicker for initial particle picking with bin

size 9 and threshold 0.001 or 0.0015. For EMPIAR 10218 (20S

proteasome), due to aggregation among particles, we manually

picked �1000 particles for downstream workflow.

2.4. Initial particle selection

Initial particles picked manually or by Localpicker were

extracted from micrographs and scaled to 64 � 64 pixels using

Relion (version 3.0.7) followed by iterative 2D class averaging

and selection of 2D classes. The number of classes used for 2D

classification is the total number of particles divided by 200.

The selection of 2D classes was based on %/Res. Only those

classes with %/Res > 0.1 were selected for the next cycle of 2D

class average. The 2D class averaging and particle selection

were iterated until more than 90% of particles were selected

(i.e. more than 90% of picked particles reach the aforemen-

tioned cutoff value).

2.5. CNN architecture

For our particle-picking workflow, we employed a three-

convolution-layer network architecture [Fig. 2(a)]. The

network contains an input layer, three layers of convolution

(Conv2D) followed by a pooling operation (MaxPooling2D)

for feature extraction at various scales. Finally, two densely

connected layers are used for input classification. The last

dense layer has two outputs, whose values correspond to the

relative probability of classification as a particle or a non-

particle. Given a candidate image, the network assigns a

probability of being a particle and non-particle with a summed

probability of 1.

2.6. Iterative training and particle picking

Particles selected from the initialization stage were used for

training the CNN implemented using Keras (https://keras.io)

with TensorFlow as the backend. For the training and picking,

we binned particles by 4 and resized them to 64 � 64 pixels.

For each iteration, the training was performed for 30 epochs

and the training accuracy, validation accuracy, training loss

and validation loss were monitored for convergence. No

parameters were specially tuned during the iterative training

and particle-picking processes. We coded the Keras-based

particle training and picking as the program Kpicker.

Data augmentation was used to synthesize additional data

to facilitate the training. Specifically, we used random

rotations of 20� and flips (vertical and horizontal) for
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Figure 1
Schematic drawing for the workflow of iterative particle training and
picking. A small data set, usually 20–40 micrographs, is used for the
workflow. The workflow comprises (a) an initialization step, (b) a training
step followed by (c) a picking step. The process uses iterations of 2D class
averages to improve particles for training a CNN for particle picking.



augmentation. Particles selected from the 2D class average

were labeled as 1. Non-particles were randomly selected from

empty areas at a minimum distance of a particle diameter from

known particles. These non-particles were labeled as 0.

To predict whether a candidate image is a particle or not, we

optimized the model with respect to the binary cross-entropy

loss where a softmax activation function was used on the final

layer. Kpicker scans over micrographs to produce a stack of

candidate images 64 � 64 pixels in size. These images were

provided to the model to obtain predications of particles or

non-particles. We treat a candidate image as a particle if its

binary classification probability is 0.9 or higher. When the two

particles are too close to each other, we keep the particle with

a higher predicted probability. The same 2D class average was

used to filter particles and %/Res of 0.1 was used for auto-

matic selection of 2D classes. In general, two iterations of

Kpicker training and picking followed by 2D class averaging

are sufficient for convergence. The CNN was then used for

production picking against all micrographs. Table 1

summarizes the number of particles picked for the six test data

sets.

2.7. Reconstruction of 3D maps

Picked particles were extracted as 64 � 64 pixels and

further cleaned up by 2D class averages in Relion (Zivanov et

al., 2018) or cryoSPARC (Punjani et al., 2017). Cleaned-up

particles were re-centered and re-extracted with a bin size of 2

for EMPIAR 10335 and 1 for the other data sets. These

particles were used for 3D classifications and high-resolution

refinements. Appropriate symmetry was enforced for all

refinements except the ab initio 3D reconstructions in which

none-symmetry (C1) was used. The local map resolution was

estimated using ResMap (Kucukelbir et al., 2014). B factors of

the reconstructed maps were estimated using a Guinier plot

(Rosenthal & Henderson, 2003).

3. Results

3.1. Training and picking with the workflow

Kpicker in our workflow contains a training and a picking

module. To speed up the training process, we down-sized all

particles to 64 � 64 pixels for all six data sets. Particles from

these subset micrographs were used for training the network

for production picking. Within 30 epochs, the training process

had converged, signaled by a plateau in both the accuracy and

loss [Figs. 2(b)–2(e)]. With the filtered particles from the

iterative 2D class averages, the training process is quite robust

with an accuracy beyond 0.9 [Figs. 2(b) and 2(c)]. Among

these six test data sets, ribosome data show the best validation

performance (accuracy and loss) while aldolase and strept-

avidin data lead to poorer performance. Considering that the

mass of a ribosome is 1.3 MDa; and streptavidin and aldolase

have masses below 200 kDa, such divergent performance

might suggest a particle-size dependent training efficiency.
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Figure 2
CNN for training and picking. (a) Three-convolutional-layer CNN architecture. The three Conv2D layers use the indicated number of filters in
parentheses. After each Conv2D, the spatial dimensions of the filters are reduced by a factor of two through the pooling process. Two dense layers are
used to classify candidate particles. (b)–(e) Training results for the six EMPIAR data sets demonstrate the convergence of the workflow. (b) Training
accuracy. (c) Validation accuracy. (d) Training loss function. (e) Validation loss function.



This is consistent with the fact that large particles have higher

signal-to-noise ratios compared with particles of smaller sizes.

To visualize the picking quality of our workflow, we show

two representative micrographs with picked particles for the

�-galactosidase data (EMPIAR 10204) (Fig. 3). The two

micrographs contain some ice contamination. With a particle

size of 240 pixels in diameter (212 Å), a bin size of 9 and a

threshold of 0.0015, Localpicker effectively picked most

particles. However, the ice contaminants were also picked due

to their high intensities. After iterative training and picking,

Kpicker classified these ice-contaminated areas as non-

particles, leading to improved picking. Such improved picking

capability is likely to be the result of improved training data

and hence an improved CNN model.

We note that, for the six data sets, we did not adjust training

and picking parameters used for Kpicker except for particle

size. For each data set, the particle size used in Kpicker was the

same as that used for Localpicker or manual picking. There-

fore, our workflow and the CNN promise methods for

allowing self-supervised training and picking across multiple

data sets with minimal required adjustments to support single-

particle cryo-EM data analysis.

3.2. Use of the %/Res criterion for automated 2D class
selection

In our workflow, an important step is the selection of

particles from 2D classes for subsequent training. In general,

good classes have a higher percentage class distribution and a

higher resolution (a smaller value). Instead of using a single

criterion that is either class distribution or resolution, we

chose to use their ratio (%/Res) to filter 2D classes. Fig. 4

shows the distribution of %/Res for the last iteration with

respect to the number of classes for the six test data sets. We

found that %/Res gives a sharp contrast between the number

of good and bad classes, and can be used to select classes and

thus particles automatically. For five data sets, %/Res

decreases rapidly before reaching a value of 0.1. The only

outlier is the streptavidin data in which more than 50 classes

have a %/Res > 0.1. Tetrameric streptavidin is a small protein

of 53 kDa. A wider %/Res distribution is consistent with a

lower accuracy in alignment of particles within each 2D class.

Nevertheless, we found that a value of 0.1 for %/Res is a good

compromise for selecting promising 2D classes automatically,

including streptavidin, for training the network to conver-

gence [Figs. 2(b)–2(e)].

With the established workflow and the automated 2D class

selection criterion of 0.1%/Res, we performed the production

picking in Kpicker for all micrographs for the six data sets,

each with an individually trained network and a respective

particle size. Compared with the initial particle picking and 2D

class averaging [Fig. 1(a)], interactive training and picking

[Fig. 1(b)] facilitate the selection of more 2D classes and views

(Fig. S1 of the supporting information). Table 1 summarizes

the total number of particles picked for each data set, ranging

from 58 710 particles for �-galactosidase (213 micrographs) to

922 306 particles for aldolase (1100 micrographs).

3.3. High-resolution 3D reconstructions

To test whether our workflow and the associated picked

particles support high-resolution single-particle analysis. We

performed 2D and 3D classifications and 3D refinements for
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Figure 3
Particle picking before and after iterative training and picking. Picked
particles are indicated as green circles. (a) and (b) Two representative
micrographs with particles picked initially by Localpicker. (c) and (d)
Improved particle picking after the iterative procedure of the workflow.
In the workflow, iced areas have been effectively excluded from picking.

Figure 4
Plot of %/Res with respect to the number of classes for the six EMPIAR
data sets. Particles were iteratively trained by the CNN model and
improved by the 2D class average until 90% or more particles were
selected by %/Res of 0.1 (dashed purple line).



the six data sets from the picked particles. With particles

extracted and scaled to 64� 64 pixels, 2D classification reveals

clear classes with distinctive molecular shapes and atomic

features for all six data sets (Fig. 5). For TRPV1 channels in

protein nanodiscs, the contrast between the channels and the

disks allow the appreciation of the embedded transmembrane

regions [Fig. 5(e)]. At this 2D classification stage, we selected

particles with distinctive 2D features for 3D classifications and

refinements.

To further test whether picked particles support high-

resolution reconstructions, we re-centered and re-extracted

these selected particles from micrographs and performed 3D

classifications and refinements for achieving high resolution.

Using the gold standard Fourier shell correlation at 0.143 as a

cutoff, particles from all six test data sets are readily refined to

maps of a resolution of 3 Å or better: 3.0 Å for TRPV1

embedded in protein nanodiscs and 2.4 Å for proteasome (Fig.

6). The numbers of particles used for their final refinements

are listed in Table 1. Their local resolution maps indicate high-

resolution features [Figs. 7(a)–7( f)]. These test data sets cover

diverse samples of different shapes and sizes from 1.3 MDa

ribosomes to 53 kDa streptavidin. Compared with the

reported resolutions in the database, particles from our

workflow allowed 3D reconstructions at equivalent resolu-

tions (Table 1).

To evaluate our workflow relative to other particle picking

programs such as Relion, we used the deposited particles of

the ribosome data (EMPIAR 10028). These ribosome parti-

cles (105 247) were picked using Relion and were refined to

3.2 Å resolution (Wong et al., 2014). With our workflow,

Kpicker picked 155 264 particles from the ribosome data. If we

take these shiny particles (i.e. after particle-wise motion

correction with B-factor weighting by Relion) as ground truth,

95.8% of them (100 841) were picked by Kpicker with their

coordinate centers within 40 pixels. From these Kpicker

picked particles, a 2.84 Å reconstruction can be readily

obtained (Table 1).

Therefore, our workflow, including the use of 0.1%/Res

selection criterion, can pick high-quality particles in

sufficient quantities to support high-resolution cryo-EM data

analysis.
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Figure 6
Gold-standard Fourier shell correlation for the six EMPIAR data sets.
The dashed purple line indicates the cutoff of FSC at 0.143.

Figure 5
Representative 2D classes for the six EMPIAR data sets. Particles picked by the workflow were filtered by 2D class averages. (a) �-Galactosidase, (b)
20S proteasome, (c) aldolase, (d) TRPV1, (e) 80S ribosome, ( f ) streptavidin.



4. Discussion

4.1. Particle picking

In this work, we have proposed and tested a deep-learning-

based iterative workflow to facilitate particle picking and

improvement for cryo-EM single-particle analysis. With a

prior knowledge of particle size (in pixels), the particle-

picking process can be automated from initial particle selec-

tion to filtering by 2D class averages and finally to large-scale

production picking (Fig. 1).

In our workflow, we used Localpicker and the 2D class

average to generate initial particles for Kpicker training. One

can also pick particles manually, as was done for proteasome

data (EMPIAR 10218), and use them for Kpicker training

with or without the 2D class average.

There are no limitations on the number of particles to be

used for training. With the �-galactosidase data as an example,

100 particles give good training and picking results although

more particles are beneficial. We found that 50 particles can

lead to the picking of 13% of particles with their coordinate

centers within 20 pixels of the final refined centers. This

increased significantly to 65% when 100 particles were used

for training. Therefore, we suggest using at least 100 particles

for Kpicker training. With the iterative 2D class average and

training procedure, Kpicker tends to pick more as well as

improved particles. For the production picking of the �-

galactosidase data with 4656 training particles, 81% of parti-

cles have their coordinate centers within 20 pixels of the final

refined positions.

We have developed two pickers, Localpicker and Kpicker,

for testing with our workflow. Both pickers take MRC-format

micrographs and write out particle coordinates in star format.

Therefore, they may be used alone to pick particles for other

workflows. In the current implementation, the two pickers

have their limitations. For example, we have not implemented

an ice detection step; therefore, an ice contaminated area may

be picked by Localpicker. Nevertheless, these false particles

were rejected from the 2D class average and skipped by

Kpicker (Fig. 3). The effectiveness of excluding ice areas from

Kpicker indicates the utility of our workflow in facilitating

single-particle analysis. One can also include ice areas as

negative particles for training as used by FastParticlePicker

(Xiao & Yang, 2017). As a proof of concept, the current version

of Kpicker training makes use of a GPU while the picking uses

CPU only. To speed up the Kpicker picking performance,

picking with a GPU is desirable (Wagner et al., 2019).

For the six test data sets of various pixel sizes ranging from

0.536 (streptavidin) to 1.34 Å (ribosome), we found that a bin
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Figure 7
Refined 3D maps for the six EMPIAR data sets. For each data set, refined maps were color coded based on local-resolution estimation. The size of each
reconstruction roughly reflects its actual size relative to a ribosome. (a) �-Galactosidase (520 kDa), (b) 20S proteasome (700 kDa). (c) aldolase
(150 kDa), (d) TRPV1 (280 kDa), (e) 80S ribosome (1263 kDa), ( f ) streptavidin (53 kDa). The keys indicate the resolutions of the colored maps: dark
blue for higher resolution, and dark red for lower resolution.



size between 7 and 9 and a threshold of 0.001–0.0015 yield

acceptable results with Localpicker. If one needs to optimize

the initial picking, altering the bin size and threshold is

recommended. In Localpicker, there is almost no need to

change the particle size because it is only used for cleaning up

close-contract particles and does not contribute to pattern

recognition.

4.2. Low-defocus micrographs

For the �-galactosidase data, we selected the first 20

micrographs for iterative training and picking. We found that

for micrographs with defocus < 0.5 mm, the number of picked

particles is lower than more defocused micrographs. To test

whether our workflow can pick particles on low-defocus

micrographs, we selected 20 micrographs of the �-galactosid-

ase data with estimated CTF defocus below 0.5 mm and

applied the same workflow for particle picking without

changing any parameters. After the iterative training, Kpicker

picked 73 898 particles from 213 micrographs. Fig. 8(a) is a

representative micrograph with an estimated CTF defocus of

0.4 mm. Kpicker skipped the ice contaminants and picked most

particles [Fig. 8(b)]. Compared with the 58 710 particles found

using only the first 20 micrographs for iterative training and

picking, using the low-defocus micrographs for training

allowed picking of 26% more particles. Therefore, our work-

flow might be promising for picking on low-defocus micro-

graphs.

4.3. Iteration and improvement

Using the 2D class average is a standard and routine

procedure for cleaning up particles in single-particle cryo-EM

analysis. In our workflow, we gain two advantages from 2D

class averaging. The first is to repeatedly improve training

data. Such improvements may effectively remove contami-

nants such as ice (Figs. 3 and 8). The second is to use the ratio

of percentage class distribution and resolution (%/Res) as a

cutoff for automated selection of 2D classes. We found that

%/Res is correlated well with our visual inspection and

selection of 2D classes. Empirically, for the six data sets, we

used an %/Res of 0.1 for selection of 2D classes for automated

iterative particle improvement and picking (Fig. 4). One could

also use a more stringent criterion (for example, %/Res > 0.2)

for more difficult particle picking.

Although our workflow is devised for automated particle

picking, one can also manually select 2D classes for iterative

training and picking. With either automated (based on %/Res)

or manual selection, improved particles may be used for

Kpicker training and picking. One can even use iterative 2D

classification and the %/Res criterion to select improved

templates for a template-based particle picking.

4.4. Particle picking efficiency for high-resolution
reconstruction

In our workflow, we used 2D class averaging to improve

particles for CNN training and picking. Therefore, we expect

that a high percentage of picked particles will contribute to the

final refinement of 3D maps. Surprisingly, for the six data sets,

we found that the percentage values are quite different, from

76.5% for the ribosome to only 1.8% for streptavidin (Table

1). Realizing that the ribosome has a molecular weight of

1.3 MDa (Wong et al., 2014) and streptavidin is one of the

smallest samples tested by single-particle cryo-EM (Han et al.,

2020) suggests a size-dependent picking efficiency. To examine

this idea more closely, we plotted the percentage of picked

particles used for high-resolution reconstructions with respect

to the molecular weight of samples used in this work (Fig. 9).

We found there is a strong trend of decreasing picking effi-

ciency with reduced sample molecular weight. We attribute

this at least in part to beam-induced damage and denaturing at

the water–air interface. It is possible that smaller particles are

prone to more damage and denaturing compared with large

particles. Consequently, only a small portion of particles may
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Figure 8
Picking on a low-defocus micrograph of the �-galactosidase data. (a)
Micrograph with a CTF estimated defocus of 0.4 mm. (b) Particles picked
by Kpicker after iterative training and picking with 20 micrographs of
defocus values below 0.5 mm.

Figure 9
Particle-size dependent picking efficiency. The percentage of picked
particles used for the final map refinement was plotted with respect to
sample molecular weight in kDa. For smaller sized particles, only a
smaller percentage of total particles may be used for the final map
refinement.



be used for a high-resolution 3D refinement. Such damage and

denaturing may not be detected at the particle picking stage

which uses only low-resolution binned images. Consequently,

for particles picked by the workflow, we still needed to use

additional 2D and 3D classifications to filter out particles

before we could reach high resolutions. In addition, Fig. 9

suggests that, for small particles, we should expect a low

picking efficiency irrespective of the picking programs used.

One main feature of the workflow is to eliminate these trial-

and-error parameters in particle picking through iterative

training of the CNN model with improved particles from the

self-supervised 2D class average. Therefore, we did not change

input parameters in Kpicker except for the particle size which

is data dependent. With the six data sets tested, we have

demonstrated that the combination of the CNN model and our

workflow is a highly efficient method to pick a sufficient

quantity and quality of particles to support high-resolution

reconstructions.

5. Concluding remarks

Particle picking is still a time-consuming step in single-particle

cryo-EM data analysis. We have proposed and tested a

workflow that allows for self-supervised iterative particle

picking through the integration of a deep learning-based

particle picker and 2D class averaging for the generation of

improved training data. The workflow supports the picking of

particles suitable for high-resolution single-particle analysis.

Either the entire or part of the workflow may be incorporated

into other workflows for automated cryo-EM single-particle

analysis.

6. Code availability

The code for the workflow including the two pickers is avail-

able at https://github.com/NSLS-II/Self-Supervised.
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