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Cryo-electron microscopy of protein complexes often leads to moderate

resolution maps (4–8 Å), with visible secondary-structure elements but poorly

resolved loops, making model building challenging. In the absence of high-

resolution structures of homologues, only coarse-grained structural features are

typically inferred from these maps, and it is often impossible to assign specific

regions of density to individual protein subunits. This paper describes a new

method for overcoming these difficulties that integrates predicted residue

distance distributions from a deep-learned convolutional neural network,

computational protein folding using Rosetta, and automated EM-map-guided

complex assembly. We apply this method to a 4.6 Å resolution cryoEM map of

Fanconi Anemia core complex (FAcc), an E3 ubiquitin ligase required for DNA

interstrand crosslink repair, which was previously challenging to interpret as it

comprises 6557 residues, only 1897 of which are covered by homology models. In

the published model built from this map, only 387 residues could be assigned to

the specific subunits with confidence. By building and placing into density 42

deep-learning-guided models containing 4795 residues not included in the

previously published structure, we are able to determine an almost-complete

atomic model of FAcc, in which 5182 of the 6557 residues were placed. The

resulting model is consistent with previously published biochemical data, and

facilitates interpretation of disease-related mutational data. We anticipate that

our approach will be broadly useful for cryoEM structure determination of large

complexes containing many subunits for which there are no homologues of

known structure.

1. Introduction

With the advent of direct electron detectors and advances in

image-processing software, there has been an influx of large

protein complex structures determined by cryoelectron

microscopy (cryoEM). These technologies allow the structural

characterization of protein assemblies that have eluded X-ray

crystallography, and have led to maps with resolutions that

allow atomic models to be built directly (3.3–4.6 Å or better;

Cheng & Walz, 2009; Hryc et al., 2011) or lower subnanometre

resolutions (�5–9 Å) that can be interpreted by the fitting of

existing models. CryoEM data are noisy and structure deter-

mination requires a large number of particle images to be

averaged together. This averaging, when combined with

complications such as image misclassification, highly hetero-

geneous samples or a limited number of sample views, typi-

cally limits the resolutions that can be attained (Lyumkis,

2019). This makes map interpretation difficult, and has

necessitated the development of a number of tools for model

building and refinement into such cryoEM maps (Bonomi et
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al., 2019; Chen et al., 2016; Segura et al., 2016; Terashi &

Kihara, 2018; Terwilliger et al., 2018; van Zundert et al., 2015).

In the absence of homologous structural information,

cryoEM maps at intermediate resolutions are often largely

‘uninterpretable’; that is, while secondary structures may be

identified and domains can often be roughly segmented,

atomic-level information may not be accurately inferred

(Gatsogiannis et al., 2013; Janssen et al., 2015; Kube et al., 2014;

Stuttfeld et al., 2018). At best, a combination of secondary-

structure placement and sequence-based secondary-structure

prediction can lead to low-resolution complete or partial

backbone-trace models (Cheng et al., 2010; Snijder et al.,

2017). Furthermore, while computational tools exist for

modeling into maps at these resolutions (Bonomi et al., 2019;

Kovacs et al., 2018; Segura et al., 2016; van Zundert et al., 2015;

Webb et al., 2018), no tool is capable of inferring such struc-

tures de novo. Finally, while co-evolution information can

provide valuable structural information (Kim et al., 2014;

Nugent & Jones, 2012; Ovchinnikov et al., 2014), the limited

availability of large numbers of sequences restricts the

applicability of the method, although it has been used in the

interpretation of some cryoEM structures (Klink et al., 2020;

Park, Lacourse et al., 2018; Schoebel et al., 2017).

In this manuscript, we take advantage of recent advances in

protein structure prediction which employ deep convolutional

neural networks to predict protein contacts or pairwise

distances from multiple sequence alignments (Kandathil et al.,

2019; Nugent & Jones, 2012; Senior et al., 2020; Xu, 2019; Yang

et al., 2020; Zheng et al., 2019). We combine predictions from

trRosetta (Yang et al., 2020), which uses a deep residual-

convolutional neural network to predict both distance and

orientation between all pairs of residues in a protein, and a

fast model-building protocol that utilizes the results from the

network to constraint folding. We then dock models generated

using this approach into cryo-EM maps. The experimental EM

data and deep-learning-based structure predictions are

synergistic: the deep-learned predictions serve the same role

as high-resolution structures of homologues, informing the

topology of individual domains and making the search space

manageable, while the EM data, addresses two weaknesses in

contact-guided prediction: it validates the accuracy of contact-

guided predictions, and secondly, it provides information on

the quaternary structure of complexes.

We illustrate the effectiveness of this approach by building

an atomistic model of the Gallus gallus (chicken) Fanconi

anemia core complex (FAcc), guided by a recently published

heterogeneous 4.6 Å resolution single-particle cryoEM

reconstruction and cross-linking mass-spectrometry data. In

previous work, crystal structures of FANCF, FANCE and

FANCL were docked and secondary-structural elements were

placed into the map (Shakeel et al., 2019). In contrast, here we

are able to generate an atomistic model for nearly all of the

complex. This method overcomes the limitations of direct

interpretation of the cryoEM map, including a lack of recog-

nizable homology to proteins of known structure for the

majority of the subunits, and the relatively low resolution of

substantial portions of the complex. The novel structural

information provided by trRosetta-predicted distance distri-

butions enables accurate topology-level predictions for

domains and subunits with no recognizable homology. By

combining these trRosetta predictions (and Rosetta density-

guided modeling tools; Wang et al., 2016) with subnanometre-

resolution cryoEM data, we are able to infer a nearly complete

FAcc model, providing key insights into the function and

organization of this complex.

2. Methods

2.1. Composite-map generation

The cryoEM map used for all computations (and displayed

in all figures) is a composite map generated from three indi-

vidual focused refinements. The EMDB IDs of these maps are

EMD-10293 (bottom), EMD-10292 (middle) and EMD-10291

(top). The maps were combined by first aligning each map to

the ‘bottom’ map in UCSF Chimera (Pettersen et al., 2004)

using the ‘fit into density’ tool and resampling using ‘vop

resample’. Next, using a custom script, the ‘bottom’ map was

normalized to density values between 0 and 1, and histogram

matching was used to remap the density distributions of the

‘middle’ and ‘top’ maps to that of the ‘bottom’ map. Finally, a

weighted average of the three maps was computed, in which

the weight of the contribution of each map to the composite

map was proportional to the density value in each map at a

given point.

The local resolution plots in Supplementary Fig. S6(b) were

estimated using ResMap (Kucukelbir et al., 2014) by using the

aligned maps generated in the previous step and their

respective half maps.

2.2. Subunit multiple sequence-alignment generations

In order to model the subunits of FAcc, we first generated

multiple sequence alignments (MSAs) for every subunit of

FAcc using a two-step procedure. In the first stage, four rounds

of iterative HHblits (version 3.0.3; Steinegger et al., 2019)

searches against the Uniclust30 database (August 2018

version) with gradually relaxed E-value cutoffs (10�80, 10�70,

10�60, 10�40 and 10�20) were used to generate an initial

alignment. The resulting alignment was then converted to an

HMM profile and additional sequences were collected by a

single run of hmmsearch (version 3.1b2; Eddy, 1998) against an

extensive custom sequence database as described in Wu et al.

(2020); a bit-score threshold of 0.2� (protein length) was used

to select significant hits. The composite MSAs were filtered

with hhfilter at 99% sequence-identity and 50% coverage

cutoffs.

2.3. trRosetta domain model building

We used trRosetta to predict the structures of the following

components: FANCA, FANCB, FANCC, FANCE, FANCF,

FANCG, FANCL and Fanconi anemia core complex asso-

ciated protein 100 (FAAP100). trRosetta model building is a

two-step process: in the initial step a deep residual convolu-

tional neural network is used to generate inter-residue

distance and orientation predictions, and in the second step

these predictions are used to model a protein of interest (Yang
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et al., 2020). The MSAs were used as inputs to the neural

network, which generates residue pair distance distributions in

addition to orientation information between all residue pairs.

These predictions are then used as input to a custom Rosetta-

based folding protocol. This protocol works by randomly

setting backbone torsions and utilizing random subsets of the

predictions as restraints for a centroid (Rosetta’s reduced

residue representation) torsional quasi-Newton-based energy

minimization (MinMover). For each domain, 150 centroid

models are generated and each model is then refined with the

Rosetta full-atom FastRelax protocol. The results from this

refinement are used to sort the models based on the REF2015

score function, and the top three models are selected and

manually inspected. For all domains except the CC domains

and FAAP100 �/�+CtH we observed a well converged struc-

ture, and representative structures from this modeling are

shown in Fig. 3(a).

The original trRosetta pipeline was unable to generate

converged models for the sequence between the �-propeller

regions and the �-sandwich regions of FAAP100 and FANCB

and for the sequence of FAAP100 �/�+CtH, so we employed a

modified version of the network which, in addition to the

MSA, also used information on the top 50 putative structural

homologs as identified by HHsearch against the PDB100

database of templates. HHsearch hits were converted into 2D

network inputs by extracting pairwise distances and orienta-

tions from the structure of the template for the matched

positions only. Additionally, the positional (1D) similarity and

confidence scores provided by HHsearch as well as backbone

torsions were used; we tiled them in both axes of the 2D inputs

and stacked with them, producing the resulting 2D feature

matrix. Features for all unmatched positions were set to zero.

Templates were first processed independently by one round of

2D convolutions and were then merged together into a single

2D feature matrix using a pixel-wise attention mechanism.

This processed feature matrix was then concatenated with the

features extracted from the MSA as in the original trRosetta

network; the architecture of the upstream part of the network

remained unchanged. For the CC domains this improved the

quality of the models for the �-propellers as well as the models

for the extended helices C-terminal to the �-propellers. For

FAAP100 �/�+CtH we modeled FAAP100 CC+�sand+�/�+

CtH with this modified version and found strong convergence

for all of the domains. The coiled-coil domains of FANCB and

FAAP, and FAAP100 �/� and CtH, were manually extracted

for use in the next stages. The results from this modified

version of trRosetta are shown in Supplementary Fig. S2(b).

2.4. Inferring domain boundaries

To infer domain boundaries, we used the MSAs as initial

guidelines by adding cut points at residues with poor align-

ment coverage. Using these domain definitions, we then

performed structural modeling of the domains and used these

models to manually split the sequence further based on the

observed convergence and trimmed away floppy regions. The

following domain boundaries were determined: FANCA, 71–

260, 251–500, 500–651, 1011–1210; FANCB, 1–235, 1–370,

231–365, 441–660, 441–780, 466–626, 651–770, 665–755;

FANCC, 1–175, 1–335, 176–335, 331–570; FANCE, 1–150, 261–

520; FANCF, 1–130, 121–350, 142–350; FANCG, 1–175, 1–320,

181–320, 201–435, 204–315, 321–648, 350–564; FANCL, 1–100,

2–91, 101–205, 101–300, 104–373, 191–300, 301–373; FAAP100,

1–200, 1–300, 28–442, 186–480, 301–480, 491–615, 491–820,

510–609, 711–820, 717–820.

Then, based on the availability of homologous structures in

these regions, either RosettaCM (if homologous structures

were available; Song et al., 2013) or trRosetta (if homologous

structures were not available; Yang et al., 2020) were used to

generate models for each domain.

2.5. RosettaCM domain model building

We modeled FANCECtH, FANCFHR, FANCG,

FANCLELF+URD+RING and FAAP100�prop using RosettaCM

(Song et al., 2013). The following templates were used for each

subunit. FANCECtH: PDB entry 2ilr (chain A). FANCFHR:

PDB entry 2iqc (chain A). FANCG: PDB entries 6eou (chain

A), 2xpi (chain A), 3hym (chain J), 3cvp (chain A), 4rg9 (chain

A), 5dse (chain A), 3fp2 (chain A), 5orq (chain A), 5i9f (chain

A), 4g1t (chain B), 3ieg (chain A), 2y4t (chain A), 5aio (chain

A), 4pjr (chain A), 1fch (chain B), 4zlh (chain B), 2gw1 (chain

A), 6c9m (chain C), 3u4t (chain A), 4buj (chain B).

FANCLELF+URD+RING: PDB entries 3k1l (chain B), 4zdt (chain

A), 4ccg (chain Y), 1vyx (chain A), 5o6c (chain A), 2d8s (chain

A). (The resulting models were segmented further before

docking.) FAAP100�prop: PDB entries 4ggc (chain A), 5opt

(chain p), 5xyi (chain g), 6chg (chain A), 5oql (chain F), 2pbi

(chain D), 1r5m (chain A), 6eoj (chain D), 6f9n (chain B),

5m89 (chain B), 3odt (chain B), 5a31 (chain R), 5m23 (chain

A), 5kdo (chain B).

For each of the above, 200 models were generated using the

command line

The input XML file (hybridize.xml) is shown below:
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2.6. Docking of domain models into density

A new Rosetta tool, dock_pdb_into_density, and a wrapper

script (dgdp.py, for density-guided domain placement) were

used for the initial assembly of models. Briefly, dock_pdb_

into_density uses an FFT-accelerated six-dimensional search

to find the rigid-body placements of a molecule that maximize

the overlap between model and map. For all domains that

were modeled, we began by docking the top three models into

density using dock_pdb_into_density. This method carries out

FFT convolutions in rotational space, explicitly enumerating

over translations; the method identified 50 000 points with

high density (and >2 Å apart). For each domain, all solutions

were combined, and the top 1000 were filtered and rigid-body

minimized in Rosetta using a masked correlation function

(DiMaio et al., 2009). After minimization, the results were

filtered for redundancy (using an 11 Å r.m.s. cutoff) and the

top 200 solutions were selected.

The following command line carries out the procedure for

FANCC:

The typical CPU usage for docking one model is highly

dependent on the size of the density map and the number of

residues in the model, but for FAcc we generally see docking

take a total CPU time of 5.5 h. However this is highly paral-

lelizable, and by using the Python Dask library (Dask

Development Team, 2016) with ample computing resources

the total time taken can be reduced significantly (54 min with

ten CPUs).

2.7. Docked domain assembly

Given the docked domains from the previous section, we

used a modified version of the Monte Carlo simulated-

annealing (MC-SA) sampling protocol described in Wang et al.

(2016) to build a model of the complex. Briefly, the protocol

uses the top 200 placements for each model from our docking

protocol, in addition to the cross-linking data, in order to

determine a set of domain placements that are most consistent

with all available data. This MC-SA domain assembly assigns a

placement or ‘not found’ to each domain to account for the

possibility that either all of our predicted models are incorrect

or that the domains are correct but not present in the map.

Consistency is measured through the function (where dN is all

domains)

scoretotalðD ¼ fd0; . . . ; dNgÞ ¼ wdens

P

di2F

scoredensðdiÞ

þ wproximity

P

di;dj2F

scoreproximityðdi; djÞ

þ wcentroid energy

P

di;dj2F

scorecentroid energyðdi; djÞ

þ wdistance constraints

P

di;dj2F

scoredistance constraintsðdi; djÞ; ð1Þ

where scoredens measures the fit of the selected domains to the

density and the other terms assess interactions between all

domains. The term scoreproximity validates that when two

domains are part of the same peptide chain and not over-

lapping they are placed within a distance that is closable by a

subsequently built peptide linker. The scorecentroid_energy term

is Rosetta’s centroid energy score term, which is a coarse-

grained representation that is used to verify the quality of

domain–domain interfaces, as well as to screen for clashing

placements. The centroid energy between two domains is

evaluated by using Rosetta to combine the two domains into a

single system (Pose), evaluating the energy of the system and

then spatially separating the two domains and again evalu-

ating the energy of the system. The former is subtracted by the

latter, and this is used as the unweighted scorecentroid_energy.

Finally, the scoredistance_constraint term serves as a way to

incorporate experimental data such as cross-linking mass-

spectrometry data, and assesses the satisfaction of these

constraints. The inter-domain geometry terms are assessed as

scoreproximityðdi; djÞ ¼

1

1þ exp½�5� ðgap distancei;j � gap N residues� 3:4þ 1Þ�
;

scoredistance constraintsðdi; djÞ ¼

P

fi;jg2distance constraints

1

1þ exp½�0:6� ðjjxi � xjjj � 32Þ�
: ð2Þ

Weights were determined by fitting on a training set with

synthetic 10 Å resolution cryoEM data, and the weights used

were wdens = 260, wdistance_constraint = 30 000, wcentroid_energy = 150

and wproximity = 1000.

Using the scoring function above, we evaluated the

consistency of the results from docking for all domain–domain

pairs. Prior to score-function evaluation a custom pairwise

interface-optimization protocol was applied: domains are slid

along an axis through the center of mass of each domain to be

in contact, but not clashing, with each other, moving no more

than 5 Å. If after this domains are still clashing (defined as a

Rosetta vdw score of >1500), we remove all clashing residues

(Rosetta vdw score of >3) with (i) no secondary structure and

(ii) surface exposure (less than ten C� atoms within 12 Å) and

rescore. This is then followed by breaking both domains into

subdomains (using a re-implementation of DDomainParse in

Rosetta; Zhou et al., 2007) and rigid-body minimizing these

domains with respect to the energy function above.

Once all pairs of domains have been refined and their

refined inter-domain energies have been computed, MC-SA

sampling was carried out. Each MC-SA move reassigns one
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domain to either another placement or to ‘no placement.’ We

carried out 200 000 steps of MC-SA sampling, ending at a

temperature of kT = 1. 50 000 independent trajectories were

carried out and the top ten scoring assignments were assessed

for convergence. Convergence was assessed by manually

inspecting the ten domain assignments for domains that are

present in a majority of the models. This process was applied

iteratively; after each round of assembly, domains that

converged in location were locked into place, where conver-

gence was assessed, the density occupied by converged

domains was removed from the density map, and unassigned

domains were redocked and used as inputs for the next round.

In the case of FAcc, the iterative process progressed as

follows. After the first round, FANCB�/�, FANCC, FANCENtD,

FANCF, six helices of FANCG (residues 204–315) and

FANCL were found to have converged and were locked into

place. After the second round, eight helices of FANCG

(residues 350–564) were locked into place. After this round,

the density associated with the two �-propellers was

segmented out, and both the FANCB and FAAP100

�-propellers were docked into this segmented density and

were used as inputs for the next round. During the third

round, the �-propellers of FANCB and FAAP100 and the two

coiled coils of FANCB and FAAP100 were both frozen into

place. In the fourth round, we found converged placement of

FANCB�sand. After this round, utilizing the remaining models

and density, we manually docked the FAAP100�sand,

FAAP100�/� and FAAP100CtH domains into the density.

2.8. Structure finalization

In order to finalize the structure, all of the placed domains

from the previous step were combined and linked together

with RosettaCM (Song et al., 2013). There were five areas that

required directed rebuilding with Rosetta: the FANCB

�-propeller, the FANCB loop between the CC helix and the

�-sandwich, the FANCB C-terminal helix, FANCG and the

FAAP100�/�+CtH domain.

The FANCB �-propeller as solved by trRosetta was very

similar to the density, but the spacing between each propeller

blade was off by a significant enough margin to make it

difficult for RosettaCM to properly minimize into the density.

Therefore, we ran an automatic domain-splitting script and

used dock_pdb_into_density to place subdomains of the

propeller into the �-propeller density assembled using the

protocol described above.

The FANCB helix-to-�-sandwich loop required excessive

sampling to build owing to its length (41 residues) and lack of

density. The density around this area was segmented, and

Iterative Hybridize (Park, Ovchinnikov et al., 2018) was run

with the initial amount of structures generated being 5000,

followed by four rounds each generating 100 structures.

The FANCB extended helix built with trRosetta was added,

using UCSF Chimera’s ‘fit into map’ tool, after the �/� domain

of FANCB had been placed. This was performed because of

the unambiguous density leading from the �/� domain

extending into helical density.

For FANCG, assembly placed only two domains, corre-

sponding to residues 204–315 and 350–564. The remaining

structure was built in the following way. Firstly, the N-terminal

domain (1–204) was well converged in trRosetta and was

manually docked into the map by aligning it with overlapping

residues in one of the placed domains (residues 200–230

overlapped between the two). The same process was carried

out with the C-terminal domain (residues 565–648), where the

overlapping residues used were residues 551–562. These

placements were validated by manually inspecting the fit to

density.

The FAAP100�/� domain posed a particularly difficult

problem owing to low local resolution and poor connectivity

(this domain is preceded by a long unstructured loop). Owing

to these ambiguities, FAAP100CtH models had to be manually

aligned to the density (using UCSF Chimera’s ‘fit into map’

tool). Full-length trRosetta models were used as a reference

for placement.

Finally, after refining the structure with RosettaCM, we

applied fragment-based structural refinement (Wang et al.,

2016) and selected the top-scoring model as our final model.

2.9. Data accessibility

All methods are available in Rosetta releases after 2020.12.

The model has been deposited in PDB-Dev (https://

pdb-dev.wwpdb.org/) as entry PDBDEV_00000055. The cross-

linking data that were used as distance constraints during this

process are located in the PRIDE database (https://

www.ebi.ac.uk/pride/) with accession code PXD014282.

3. Results

A full description of our methodology is described below and

in Section 2. Briefly, Fig. 1 illustrates how we determine

complex structures using trRosetta models. The protocol is a

five-stage process where we first generate multiple sequence

alignments (MSAs) for the target proteins and use these to

manually segment sequences into domains. Secondly, trRosetta

is used to build models corresponding to these domains.

Thirdly, using dock_into_density in Rosetta, we search the

cryoEM reconstruction for the best-matching placements of

each domain model. In the fourth step, we take all docked

results in addition to cross-linking mass-spectrometry (XL-

MS) data, and using Monte Carlo sampling of domain

assignments in density we find the arrangement of (and choice

of) domain models that maximizes the agreement with the

cryoEM and XL-MS data. Finally, using RosettaCM we rebuild

the connections between domains and refine the entire

complex against the cryoEM map.

We illustrate the power of trRosetta predictions by applying

this approach to build an atomic model into the recently

determined cryoEM reconstruction of the Fanconi anemia

core complex (FAcc; Shakeel et al., 2019). These data were

obtained from a fully recombinant complex after the over-

expression of eight protein subunits (FANCA, FANCB,

FANCC, FANCE, FANCF, FANCG, FANCL and FAAP100)
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in insect cells. A 3D reconstruction at an overall resolution

of 4.6 Å and cross-linking mass-spectrometry data were

obtained. Secondary structure elements were previously

identified within the majority of the cryoEM map and fitted

with homology models [Fig. 2(a)]. Using cross-linking, native

and hydrogen–deuterium exchange mass spectrometry, as well

as EM of purified subcomplexes, the general locations of all

components were identified, except FANCA. However, in this

previous work, residue assignments were confidently deter-

mined only for FANCL. To gain further insight into the

molecular mechanisms of FAcc, atomic models of all subunits

are required.

Using trRosetta-predicted distance distributions, we were

able to determine a complete sequence assignment of the full

FAcc [Fig. 2(b)], encompassing 5182 residues out of an

expected total of 6154 residues, or 84% of the sequence, with

very little unexplained density (Supplementary Fig. S1).

Modeling did not make use of the domain assignments or the

backbone trace of the prior work. Our model validates many

of the putative subunit assignments from the prior study (with

minor differences) and provides residue-level detail of subunit

locations and interactions. The next several sections describe

the modeling process, followed by an analysis of our final

model.

3.1. Fold trRosetta models

Our protocol uses multiple sequence alignments (MSAs)

for individual proteins as the input to a deep residual convo-

lutional network which predicts the relative distances and

orientations of all residue pairs in the protein. These predic-

tions are applied to a restrained minimization using a Rosetta

model-building protocol. For FAcc, MSAs were generated for

every chain without known homologous structures [homology

models were available for portions of FANCE, FANCF,

FANCL and FAAP100; see Fig. 2(a)]. Although homologous

structures to FANCG also exist, there was significant struc-

tural variability within the family, and therefore we modeled

FANCG with trRosetta in addition to building homology

models.

From the MSAs, domains were manually parsed (see

Section 2), and models were built using trRosetta (in regions

with no known homologs) or comparative modeling (in

regions with known homologs). Modeling yielded converged

structures for almost all domains [Fig. 3(a)], with typical

maximal r.m.s.d.s over the top models of 2–4 Å. Several of the

domains that showed poor convergence (two of the domains in

FANCB and two of the domains in FAAP100) still contained

subregions (‘converged cores’) with small deviations (2–4 Å)

between models; for these cases, unconverged or poorly

packed segments of the models were manually trimmed. Three

of the domains (the coiled-coil domains of FANCB and

FAAP100 and the �/� and CTH domains of FAAP100) were

poorly converged with no ‘converged core’; a modified version

of trRosetta (unpublished work) in which structural informa-

tion on distant homologues was used as input to the neural

network led to well converged models. In total, trRosetta was

able to build all 42 attempted domains [Supplementary Fig.

S2(a)], which were used in the subsequent stages of the model-

building protocol.

3.2. Assembling domains into cryoEM density

While we found FANCL, FANCF and FANCENtD

straightforward to manually place into the map, ambiguity in

the placement of the other subunits necessitated a more

robust automated assembly procedure. Initially, the top five

models for each domain were docked using an FFT-acceler-

ated 6D search of the map. A modified version of the MC-SA

sampling protocol described in Wang et al. (2016) was then
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Figure 1
An overview of the workflow for modeling FAcc. Initially, multiple sequence alignments (MSAs) of all protein sequences are generated, the sequences
are segmented into domains using the MSAs and the individual domains are folded using trRosetta. These domains are individually docked into the
cryoEM density. Monte Carlo sampling finds the domain assignment that is maximally consistent with the experimental data (electron density, XL-MS
etc., Fig. S5). Finally, linkers between domains are sampled and the entire structure is refined.
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Figure 2
An overview of FAcc. (a) Domain organization of the seven subunits of
FAcc. Based on our modeling, we find that the complex consists of 18
domains, indicated with narrow bars. FANCB and FAAP100 have the
same domain organization, with a �-propeller (�prop) followed by a long
coiled coil (CC), a �-sandwich (�sand) and then an �/� domain, finally
followed by a C-terminal helical region. FANCC, FANCF and FANCG
are all comprised of a single helical-repeat domain, while we find FANCE
to have two separated helical-repeat domains (one N-terminal and one
C-terminal). Finally, FANCL is organized as an ELF domain followed by
a URD domain and then lastly a RING domain. Also indicated is the
availability of known structures or homologous proteins throughout the
modeling process with striations. Domains with known structures or
available homologous proteins used include the C-terminal helices of
FANCE, the helical repeats of FANCF, all of FANCG and FANCL, and
the �-propeller of FAAP100. (b) Three views of the complete model of
FAcc as determined by our modeling protocol. Colors are matched to the
diagram in (a), with those that have multiple copies (FANCB, FANCG
and FAAP100) having different shades of the coloring. The orientations
of the top, middle and bottom lobes are indicated.
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Figure 3
An overview of trRosetta-predicted domains. (a) The top three models from trRosetta for ten representative domains indicate a tight convergence of
modeling. The identity of the domains follows the coloring in Fig. 2(a). Domains from FANCB, FANCE and FANCC are shown in the top row, while
those from FAAP100 and FANCG are shown in the bottom row. (b) Several examples of trRosetta models docked into density before refinement,
showing the role that the map plays in the validation and selection of models. From left to right [the colors match those in Fig. 2(a)]: the helical repeats of
FANCC, the N-terminal repeats of FANCE, the �/� domain of FANCB and the �-sandwich of FAAP100. (c, d) Two examples illustrating the importance
of domain segmentation when docking trRosetta-generated models. (c) The trRosetta model of FANCG (magenta) poorly matches the final structure
(green); segmenting this model into two domains (red and blue) shows a much better match, as the individual domain structures are accurate, even
though their relative orientation is not. (d) Similarly, a trRosetta prediction of the FANCB �-sandwich–�/� domain (pink) is dissimilar from the final
structure (blue); splitting it into domains (brown and green) shows good overall agreement. (e) trRosetta models (blue) generally fit the map well,
although some refinement was necessary to maximize agreement with the density (orange).



used to identify the nonclashing placement of models that

maximized the overall fit of the complex model to the density.

This MC-SA domain assembly assigns a placement or ‘not

found’ to each domain to account for the possibility that either

all of our predicted models are incorrect or that domains are

correct but not present in the map. In this way, the map serves

not only to orient domains but also as validation for the

trRosetta predictions. Some examples of model validation with

the map are shown in Fig. 3(b). Two examples of incorrect

predictions (subsequently fixed by splitting models into two

domains) are shown in Figs. 3(c) and 3(d). For several domains

(the aforementioned coiled-coil domains of FANCB and

FAAP100 and the FAAP100 �/� and CtH domains), manual

docking was necessary.

In order to model FAcc in its entirety, this Monte Carlo

simulated-annealing assembly process was applied iteratively:

in each round, the converged domains from the previous

round were frozen, and all unassigned domains were redocked

and reassembled. Convergence was assessed by manually

inspecting the ten domain assignments with the best overall

agreement with the density and the XL-MS data. Once the

iterative process had converged (after five rounds), with the

vast majority of the density occupied, the connections between

domains were built and refined in the context of the cryoEM

density with RosettaCM (Song et al., 2013). Additionally, the

placed domains were individually inspected and poorly placed

segments were also rebuilt in RosettaCM.

When refining the final assembled model we found that

most trRosetta models were quite accurate, often requiring

only modest (<6 Å r.m.s.d.) modifications throughout the

refinement process [Fig. 2(e)]. Only one placed domain

required significant movement: the �-propeller domain of

FANCB. To refine this domain, the model was automatically

segmented into subdomains (see Section 2) and was redocked

and assembled using the same Monte Carlo procedure before

refinement. A comparison between the initial and final

structures of the �-propeller after this protocol is shown in

Supplementary Video S1.

Finally, for FANCG, a repeat protein for which homologous

structures were available, we additionally used trRosetta for

modeling, as predicting changes in repeat geometries can

prove challenging. As Supplementary Fig. S3 shows, trRosetta

yielded models that contained two long adjacent helices

between residues 416 and 491, while homology modeling

generated models which contained four shorter helices. In

assembly, both trRosetta and homology models were consid-

ered, and we found that the trRosetta models led to a much

better agreement between the model and the map. In contrast,

in previous work homology modeling was used for FANCG

resulting in the placement of only �280 residues into the map

(Shakeel et al., 2019).

3.3. Analysis of the final model

Using our protocol, we were able to build and assign 5182

residues (out of 6557 in the full complex); in previous work

only 337 residues were assigned. Still, the protein and domain

identities assigned previously were largely consistent with the

models obtained with this new method: we found similar

placements of FANCB, FANCF, FAAP100 and FANCL, as

well as of one of the two copies of FANCG. While we were

unable to identify any density associated with FANCA,

trRosetta provided well converged models [Supplementary

Fig. S2(a)]. Combining these models with the cross-linking

data, we speculate that a region of unassigned density in the

middle of the complex corresponds to FANCA (Supplemen-

tary Fig. S4). However, owing to the poor quality and

incompleteness of the density in this region, we were not able

to confidently dock the model into the map.

Our final model reveals that the ‘bottom lobe’ [Fig. 2(b)]

contains FANCB�prop, FANCL, FANCE, FANCF, FANCG

and FAAP100�prop [using the domain terminology of Fig. 2(a)].

In contrast, in previous work FANCC and FANCE were

identified within a region of density that we assign to FANCG.

The ‘middle lobe’ of our model consists of two copies of

FANCB�sand+�/�+CtH, a second copy of FANCG and two copies

of FAAP100�sand+�/�+CtH, all of which are consistent with the

previously proposed domain assignment (Shakeel et al., 2019).

Finally, the ‘top lobe’ was found to contain a second copy of

FANCB�prop, FANCLELF and a second copy of FAAP100�prop.

This also is consistent with the hypothesized model from the

prior work. Finally, both the top and bottom lobes were

connected to the middle lobe through a FANCB and

FAAP100 intermolecular coiled coil. Thus, in addition to

validating much of the domain assignment of previous work,

our new model now provides accurate positioning of all

protein residues.

3.4. Model validation

One potential source of model validation arises from the

cross-linking data. However, as these data were used in

domain assembly, they do not serve as independent validation

data. As a measure of confidence, we can still use these data by

analyzing the gap between the satisfied cross-links in our

model and the number satisfied by the second-best domain

arrangement. In our final model, we see good agreement

between the cross-links and the model (Fig. S5) (144 of 188 in

total; most of the 834 cross-links in the full data set involve

FANCA, which is not present in our model). Of the inter-

domain cross-links, 39 of 59 (66%) are satisfied to a CA–CA

distance of 30 Å, which is regarded as an acceptable distance

given the usage of the BS3 cross-linker (Merkley et al., 2014).

Freezing the unambiguously placed domains and redocking

the remaining potentially ambiguous domains (see Section 2)

finds that a second-best arrangement, which replaces FANCC

with the Ct-helices of FANCE, satisfies only 33 of 63 (52%)

inter-domain crosslinks. This loss of inter-domain cross-link

satisfaction provides fairly strong confidence in our final

model. Further analysis of the unsatisfied cross-links reveals

that most of the unsatisfied cross-links (14 of 19) occur

between the C-terminus (residues 103 onwards) of FANCL.

Our model suggests that one of the two copies of FANCL in

the complex has a disordered C-terminal domain, strongly
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suggesting that most of the unsatisfied cross-links come from

this disordered (and possibly dynamic) region.

One particularly strong criteria for model validation is the

agreement of the maps with individual domain models. The

trRosetta models of individual domains were predicted without

using density data at all, so rigid-body fitting of these domains

into density can be seen as ‘independent validation’. Aside

from domains that exhibit internal symmetry or pseudo-

symmetry (FANCB�prop and FAAP100�prop), we found that

the trRosetta predictions all matched with real-space correla-

tions of 0.72 or better (FANCC, 0.82; FANCENtD, 0.75;

FAAP100�sand, 0.75; FAAP100�/�, 0.72), while the second-best

solution (the best ‘wrong’ solution) has a correlation that is

worse by at least 0.05 in all cases. Subjectively, these second-

best, incorrect placements look significantly worse. For our

placed domains, this gap between the best and second-best

solutions is quite large and strongly suggests that these

domains are unlikely to match this well by random chance.

The overall agreement between the refined model and map

is consistent with what we would expect given the resolution of

the data. We were able to assess the quality of our model by

segmenting it against the three individual focused classifica-

tion maps (used to generate the composite map used in

modeling). We find that the model–map correlation for the

bottom and middle reconstructions crosses an FSC of 0.5 at

about 7.2 Å, while the top reconstruction crosses an FSC of 0.5

at about 7.1 Å. The overall model–map FSC curves [Supple-

mentary Fig. S6(a)] show that the model–map agreements are

worse at higher resolutions for the ‘bottom’ reconstruction

than the other two, which is consistent with local resolution

estimates [Supplementary Fig. S6(b)].

Additionally, we can validate models by mapping human

mutation data onto the final structure. Using the Fanconi

Anemia Mutation Database (http://www2.rockefeller.edu/

fanconi/), we identified 30 mutations that were not identified

as benign throughout the complex. While most (22) of these

are in the core of protein subunits (and are likely to destabilize

individual subunits), we identified four (of the remaining

eight) at protein–protein interfaces in our model of the FAcc

complex. Mutations of FANCB residues 230 and 236 would

appear to disturb the interface between FANCB�prop and

FANCGHR, while a mutation at FANCB residue 336 would

disturb the interface between FANCB�prop and FAAP100�prop.

Additionally, a mutation of FANCC residue 295 would be

likely to disturb the interface between FANCC and FANCE.

All interface mutations are marked as magenta spheres in

Fig. 4(a), while non-interface mutations are marked with tan-

colored spheres.
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Figure 4
Model validation by mutational and cross-linking data. (a) 30 nonbenign human mutations mapped to our model of FAcc. All interface mutations are
marked with magenta spheres; non-interface mutations are marked with tan spheres. (b) Close-up renderings of cross-links throughout the FAcc model.
Black lines indicate cross-links that are satisfied (<30 Å) by the final refined structure. Representatives from each cross-link cluster are shown for the
middle lobe (left) and the bottom lobe (right).



4. Discussion

Here we report a new computational method for deter-

mining atomistic models of protein complexes, guided by a

subnanometre cryoEM map and cross-linking mass spec-

trometry data. Using distance distributions predicted from

deep residual neural networks, we built accurate models of

42 domains of the FAcc, obviating the necessity for homo-

logous high-resolution structures for interpretation of

intermediate resolution maps. This provides a complete

picture of the full FAcc, while previous efforts had resulted

in atomic models for only three subunits (FANCL, FANCE

and FANCF) in the map. The strong agreement between

RosettaTR-predicted models and density (not used in

prediction) provides validation of our predictions, as does

the model’s consistency with biochemical data, including

cross-linking mass spectrometry and mutational studies. Our

all-atom model provides molecular insight into the under-

lying mechanisms of previously reported disease-causing

mutations, and illustrates the potential of combining inter-

mediate resolution cryoEM density and cutting-edge de

novo structure prediction.

The challenges faced when determining a model of the

FAcc are not unique (Chou et al., 2019; Kim et al., 2018). As

microscopists pursue larger, more difficult, and more dynamic

complexes, we will need more computational techniques that

are able to build models of subnanometre resolution data with

little to no homologous structure information available. While

tools have been developed for integrative modelling of

structures into subnanometre resolution density, all of these

tools require either the existence of homologous structures for

domains, or are necessarily low-resolution ‘domain level’

models. Previous attempts to model FAcc resulted in only 387

residues being assigned to the cryoEM data, while the

methods described in this paper – making use of 42 deep-

learning guided domain predictions, and a protocol able to

infer their arrangement – were able to increase the number of

assigned residues to 5182.

Our approach shows that, while maps at these resolutions

are not of sufficient quality to build models by direct chain

tracing, the resolution is sufficient to assess the tertiary

structure and accuracy of predicted models. In the absence of

high-resolution homologous structures, the method is able to

determine structures to an atomic level of detail. In addition to

cryoEM data, we have recently shown that a similar approach

can be applied to solve low-resolution crystal structure data

where traditional molecular replacement techniques were

unsuccessful (Bhargava et al., 2020). We expect that the

modeling power of trRosetta and related techniques will

continue to improve in the future as the number of known

sequences increases, coupled with improvements in deep-

learning methodologies. We anticipate that this combined

approach will be an important tool for determining atomic

models of protein complexes, particularly when combined

with low-resolution data sources, enabling accurate protein

complex structure determination without the requirement of

high resolution data.
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