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Macromolecular structures can be determined from solution X-ray scattering.

Small-angle X-ray scattering (SAXS) provides global structural information on

length scales of 10s to 100s of Ångstroms, and many algorithms are available to

convert SAXS data into low-resolution structural envelopes. Extension of

measurements to wider scattering angles (WAXS or wide-angle X-ray

scattering) can sharpen the resolution to below 10 Å, filling in structural details

that can be critical for biological function. These WAXS profiles are especially

challenging to interpret because of the significant contribution of solvent in

addition to solute on these smaller length scales. Based on training with

molecular dynamics generated models, the application of extreme gradient

boosting (XGBoost) is discussed, which is a supervised machine learning (ML)

approach to interpret features in solution scattering profiles. These ML methods

are applied to predict key structural parameters of double-stranded ribonucleic

acid (dsRNA) duplexes. Duplex conformations vary with salt and sequence and

directly impact the foldability of functional RNA molecules. The strong

structural periodicities in these duplexes yield scattering profiles with rich sets of

features at intermediate-to-wide scattering angles. In the ML models, these

profiles are treated as 1D images or features. These ML models identify specific

scattering angles, or regions of scattering angles, which correspond with and

successfully predict distinct structural parameters. Thus, this work demonstrates

that ML strategies can integrate theoretical molecular models with experimental

solution scattering data, providing a new framework for extracting highly

relevant structural information from solution experiments on biological

macromolecules.

1. Introduction

Ribonucleic acids (RNAs) comprise an important class of

biological macromolecules that not only transfer genetic

codes, but also signal their response to binding partners

through structural changes. Since the discovery of the first

catalytically active RNA in the 1980s (Cech et al., 1981), much

attention has been focused on how RNA sequence and

structure enable its responses to partners, including ions, small

ligands and proteins. For example, flexible and/or single-

stranded regions are known to facilitate various conforma-

tional states of RNA molecules (Denny et al., 2018). Recently,

two independent studies focused on the structural variation of

fully base-paired RNA duplexes, which exhibit sequence-

dependent (Yesselman et al., 2019) and salt-dependent (Chen

& Pollack, 2019) conformations. These works suggest that

subtle variations in the RNA stems can affect the precise

alignment of contacts that stabilizes tertiary structures,

imparting more selectivity to interactions and expanding the

http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252520008830&domain=pdf&date_stamp=2020-08-12


biological functionality of RNA (Chen et al., 2018). Here, we

report a new approach for detecting the small twisting and

compression of the RNA duplexes which may dramatically

impact the overall molecular structure.

Small-angle X-ray scattering (SAXS) has been widely

applied to reveal the conformations of biological macro-

molecules in vitro. SAXS maps orientationally averaged

macromolecular electron density distributions, measured in

vitro, to produce a 1D curve by Fourier transform. In SAXS

experiments, global structural parameters are readily

extracted, ranging from the molecular radius of gyration via

Guinier analysis to global structural envelopes (Blanchet &

Svergun, 2013). Established methods provide protocols for

modelling structures and solvent shells (Franke et al., 2017),

and even enable the determination of structural ensembles

that fit the data when coupled with atomic models and

computational algorithms (Mylonas et al., 2007; Tria et al.,

2015; Shevchuk & Hub, 2017). With recently developed

algorithms, it is now possible to compute low-resolution

electron densities for single- or multi-component systems

(Grant, 2018).

Higher spatial resolution can be achieved by acquiring data

at larger/wider scattering angles. Wide-angle X-ray scattering

or WAXS has been implemented in a few cases to study the

effects of crowding on protein conformation (Makowski et al.,

2008), or to determine ensembles of protein (Chen & Hub,

2014) or nucleic acid (Pabit et al., 2016) conformations in

solution samples. The inclusion of WAXS data, where higher

resolution details are mapped, has the potential to enhance

the extraction of finer molecular structures from a 1D dataset.

WAXS data are much more challenging to interpret than

SAXS data. No single global parameter, like radius of gyra-

tion, exists to constrain the structures, and WAXS profiles

reflect solvent molecules and excluded volumes as well as the

numerous small conformational variations in vitro (Park et al.,

2009; Nguyen et al., 2014). Only a few computational tools are

available to analyse WAXS data directly (Bardhan et al., 2009;

Knight & Hub, 2015); thus, the analysis is ad hoc and relies on

fitting the data with atomic models.

Although challenging to perform and interpret, WAXS

experiments can be especially insightful for certain classes of

structures. Periodic molecular features are well captured by

WAXS, including, for DNA and RNA duplexes, their diame-

ters or the distance between the two phosphate-heavy back-

bone strands. These periodic structures are manifested as

peaks and troughs in 1D scattering profiles (Chen & Pollack,

2019). Their presence or absence may lead to interpretable

changes in WAXS profiles (Tiede et al., 2002; Zuo et al., 2006).

However, it is a challenge to correlate WAXS fingerprints with

specific periodic structures because for nucleic acids many of

the structural features, such as helical radius and major groove

width, share similar length scales. As a result, without suffi-

cient knowledge of specific macromolecular systems, WAXS

data interpretation can be extremely hard to establish.

We recently proposed a new approach for interpreting

subtle, salt-induced changes in RNA duplex structure which

relies on comparing measured with computed WAXS scat-

tering profiles. Atomically detailed molecular conformations

were generated through molecular dynamics (MD) simula-

tions; each structure was subsequently populated with solvent

and ions. An ensemble optimization method was employed to

select sets of structures whose summed, computed scattering

profiles best recapitulate the measurement. We found that

only a small number of conformations was required to fit the

data and interesting salt-dependent conformational differ-

ences were recorded (Chen & Pollack, 2019).

Despite the broad range of information potentially avail-

able, it is important to recognize the intrinsic limited infor-

mation content of these types of data (Moore, 1980; Rambo &

Tainer, 2013). The amount of information contained in the

SAXS data is determined by the structure of the macro-

molecule itself; it is not uniformly distributed across the

scattering angles (Spill & Nilges, 2017). While the inclusion of

WAXS data increases the information content of solution

X-ray scattering, it also introduces unknowns. As inferred

above, certain expanses of scattering angles might contain

more information on the structures of the molecule than

others. These information-rich regions rely, of course, on the

specific structural features of interest.

The goal of this work is to describe a new approach for

extracting information from and interpreting features of

SAXS/WAXS (collectively SWAXS) data using machine

learning (ML). ML has been successfully applied to a classi-

fication of diverse molecular shapes using SAXS (Franke et al.,

2018). The deep learning model, a special case of ML, was

employed for model reconstruction from experimental SAXS

profiles via an auto-encoder and decoder network (He et al.,

2020). Here, we focus on the wide-angle regime and demon-

strate one way that ML models can aid WAXS data inter-

pretation, specifically when unique structural fingerprints are

present on the 10 Å length scale. SWAXS profiles, accurately

computed from molecular models with specified and known

structural descriptors, can serve as training, validation and

testing sets for supervised ML models which, ultimately, are

able to ‘recognize’ experimental scattering patterns of

unknown conformations.

Due to the complexity of mapping structures onto 1D

solution X-ray scattering profiles, simple approaches such as

linear regressive models are not suitable for this work. We

discuss the application of an ML approach to analyse and

interpret SWAXS profiles: extreme gradient boosting

(XGBoost) (Chen & Guestrin, 2016). Full scattering profiles

of MD-generated, double-stranded RNA duplex structures

are computed and associated with structural descriptors

extracted from the molecular models themselves. Features of

interest include helical radius, twist, rise, major groove width

and A-form fraction. The trained ML models are subsequently

applied to predict the corresponding structural descriptors

from noisy SWAXS data, either generated from distinct

models or experimentally acquired. In this work, we achieved

overall high accuracies (low errors) on all the structural

descriptors. We also found good agreement of XGBoost

models with results from a recent study that used a curve-

fitting modelling method to extract structural descriptors. In
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practice, XGBoost performs well on these data with little

effort on hyperparameter tuning and good interpretability.

Our ML approaches bridge theoretical molecular models

and experimental data with consideration of errors and

transform many ad hoc analyses and curve-fitting strategies

into a more general framework for different biological

systems. The use of raw and full spectra of SWAXS profiles

without customized transformation supports the success of

information extraction from momentum (q) space data by

XGBoost.

2. Material and methods

2.1. RNA sample and SWAXS measurements

A single-stranded 12-mer of RNA with sequence 50-CCU

CCU AAU CGC-30 was purchased from IDT (CoralVille, IA)

and annealed with its complement to create a 12-base-paired

duplex. Excess and unannealed single strands were separated

by spinning the samples in Amicon 3 kDa 0.5 ml Ultra

centrifugal filters (EMD Millipore, Billerica, MA) and the

samples were subsequently buffer-exchanged to contain 30,

50, 100, 200 or 500 mM KCl, and 0.25, 0.50, 1.00 or 5.00 mM

MgCl2. Each buffer contains a background of 10 mM K-

MOPS and 20 mM EDTA. The divalent ion-containing buffers

have an additional 100 mM KCl background. The final sample

(duplex) concentrations ranged from 130 to 300 mM.

Small- and wide-angle X-ray scattering experiments were

conducted at Cornell High Energy Synchrotron Source

(CHESS) beamline G1 using two PILATUS 100 K detectors

(Dectris AG, Switzerland) with sample-to-detector distances

of 1.7 and 0.4 m for SAXS and WAXS data collection,

respectively. The scalar value of X-ray photon momentum

transfer q is defined as q ¼ 4�=�ð Þ sin 2�=2ð Þ, where � and 2�
are the X-ray wavelength and scattering angle, respectively.

The coupled SAXS and WAXS measurements span a q range

from 0.01 to 0.97 Å�1. Absolute calibration was implemented

using the molecular weight of our dsRNA system under

known conditions.

2.2. Dataset preparation

Approximately 5000 ab initio dsRNA duplex conformations

were obtained from MD simulations (Templeton & Elber,

2018) of RNA 12-mers, where details of the MD simulations

are provided in the supporting material. In the simulations

performed on two tethered 12-mers, we selected the structure

of the 12-mer that was allowed to sample all conformations

(the other one was fixed). We included all the simulation

trajectories in our dataset, including those acquired in solu-

tions containing different salt ions. The sequence of the 12-

base-paired RNA duplex from the simulation is identical to

the one reported here. As described in the work by Chen &

Pollack (2019), we applied a 3D reference interaction site

model (3D-RISM) to model the surrounding (excess) solvent

molecules and ions (both cations and anions) for calculation of

SWAXS profiles. In order to include solvent and ions and

ensure accurate computation of the SWAXS profiles with

proper buffer subtraction (Chen & Hub, 2014, 2015), the edges

of the simulation box are more than 10 Å from all RNA atoms.

These full structural models are required to build an accurate,

large dataset for training, validation and testing of the

XGBoost model. This high-throughput computation of

SWAXS profiles was implemented in Julia (Bezanson et al.,

2012) on Cornell Red Cloud using a 28-core server node with

Intel Xeon E5650 (2.7 GHz, Santa Clara, CA). The calculation

takes 2 s for each pair of solute and solvent over 191 q points,

q = 0.000–0.950 Å�1 with a spacing of 0.005 Å�1. To account

for different experimental conditions and the effect of

different salts on buffer subtraction, 3D-RISM computations

were carried out in solutions containing 30, 50, 100, 200 and

500 mM KCl and 0.25, 0.50, 1.00 and 5.00 mM MgCl2. As a

result of imperfections in modelling, an additive constant (c) is

introduced (Chen & Hub, 2014; Knight & Hub, 2015;

Schneidman-Duhovny et al., 2013) to compensate for changing

salt conditions. For each theoretical SWAXS curve, I(q), we

determine c using the following formula:

c ¼ argminx2R

1

K � 1

XK

j¼1

log10 IðqjÞ þ x
� �

� log10 IexpðqjÞ
� �

�0ðqjÞ

� �2

:

ð1Þ

In general, c < 10% of the scattering intensity at qmax =

0.950 Å�1. In equation (1), Iexp(qj) is the absolute calibrated

experimental SWAXS intensity. This curve contains data

acquired at K different q values, qj, and �0(qj) is the propa-

gated experimental error:

�0 qj

� �
¼

� qj

� �
Iexp qj

� �
log 10

�����
����� ¼ 1

S=Nð Þj log 10
; ð2Þ

where �(qj) and (S/N)j are the experimental error and signal-

to-noise ratio at qj, respectively. Note that equation (1) here is

the same as equation (1) in the work by Chen & Pollack (2019)

with the exception of the scaling factor which provides abso-

lute calibration. The input data of our ML models consist of

about 50 000 curves representing the logarithms of the

corrected SWAXS profiles computed under all solution

conditions.

The helical parameters of interest are helical radius, twist,

rise, A-form fraction and major groove width because they are

the determinants of a dsRNA periodic helical structure and

are cast as 1D SWAXS features as a result of Fourier trans-

form by X-ray scattering. The structural descriptors of the

dsRNA duplexes from the MD simulations are analysed and

extracted by the program x3dna-dssr (Lu & Olson, 2008) and

used as labels under our supervised learning scheme. The

helical A-form fraction is treated as discrete with 12 possible

values corresponding to the number of base pairs (0/11, 1/11,

. . . 11/11). Major groove widths were computed by Curves+

(Blanchet et al., 2011). The overall data preparation procedure

is illustrated in Fig. 1.

The full dataset, consisting of about 50 000 computed

SWAXS profiles and their associated models, is divided into

three parts: training (68%), validation (17%) and testing
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(15%), as shown in Fig. 2. The data-splitting strategy was

based on random shuffling of the conformations; all the buffer-

subtraction-corrected profiles of a specific duplex conforma-

tion were included in the same dataset, be it training,

validation or testing. This ensured that the SWAXS features of

any one specific conformation are contained within the dataset

regardless of buffer conditions. The testing set was constructed

at the beginning of the ML process and saved as an individual

file, unseen by the ML models until the final testing stage. We

tuned the hyperparameters of XGBoost, for example, the

learning rate and number of training iterations based on the

performance on both training and validation sets.

2.3. XGBoost

The extreme gradient boosting (XGBoost) algorithm (Chen

& Guestrin, 2016) is based on classification and regression

trees (CARTs) and applies the ensemble idea to construct a

linear combination of CARTs with learnable weights (wi).

Suppose an ensemble T(K) contains K CARTs:

T Kð Þ ¼ T1 xi; yið Þ;T2 xi; yið Þ;T3 xi; yið Þ . . . ;TK xi; yið Þ
	 


: ð3Þ

In equation (3), xi is the SWAXS profile with i 2 1; 2; . . . ; nf g

where n is the size of training set and yi is the structural

descriptor that characterizes the duplex geometry. Each

CART Tj with j 2 1; 2; . . . ;Kf g assigns an output yij according

to the input xi. Tj can be represented as a function fj which

maps the data (scattering profile) to a structural descriptor.

The final prediction byiyi is the sum of all the yij values, i.e. the

sum of outputs from all CARTs (Chen & Guestrin, 2016):

byiyi ¼
PK
j¼1

yij ¼
PK
j¼1

fj xið Þ � � xið Þ: ð4Þ

In equation (4) fj 2 F , where F is the functional space of all

possible CARTs with specified depth. The training objective is

to minimize the regularized loss function defined as follows:

L �ð Þ ¼
Pn
i¼1

‘ byiyi; yið Þ þ
PK
j¼1

� fj

� �
: ð5Þ
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Figure 2
Data-splitting strategy. We split the models into training (68%),
validation (17%) and testing (15%) sets based on dsRNA conformations.
Each conformation is associated with nine buffer-subtraction-corrected
SWAXS profiles that should be kept together.

Figure 1
Schematic of the data pipeline. We used structures from unbiased MD simulations to calculate the SWAXS profiles and attached structural descriptors to
the profiles using x3dna-dssr and Curves+. The XGBoost models were trained using 68% of the dataset and the hyperparameters were tuned based on
the validation set. The unknown datasets, consisting of one synthesized profile from the testing set and two experimental SWAXS profiles, were sampled
and fed into the trained models to predict the corresponding structural descriptors.



The term ‘ byiyi; yið Þ is the loss between the predictionbyiyi and real

label yi and is chosen to be the mean-squared-error for

regression problems and multiclass-cross-entropy for classifi-

cation problems. The regularization function � penalizes the

complexity of each CART, fj, and avoids overfitting. As

described in the work by Chen & Guestrin (2016), � contains

the penalties on the number of weights, the L1 and L2 norm of

the weights, jjwjj, jjwjj2. The implementation is based on

xgboost and scikit-learn python libraries.

Since this method is based on decision-tree boosting algo-

rithms (Friedman, 2002; Natekin & Knoll, 2013), the impor-

tance of each feature to the eventual prediction might vary.

Two types of importance are of interest in this work. The first

is ‘weight-importance’ which reports the number of times a

certain feature is used in decision rules. Equivalently, it is the

number of times a feature appears at a branching point.

Therefore, the weight-importance reveals the decision-making

process of the model in predicting a label. The second type of

importance is the ‘gain-importance’ which reports the total

gain in all outputs yij if a certain feature is used in the decision

rule. In other words, the ‘gain-importance’ reports the effec-

tiveness of a certain feature in making predictions. In the

context of SWAXS profiles, the features are the logarithms of

absolute intensities at different q values. By reporting both

types of importance, we show in a later section that the

XGBoost model’s prediction processes are very similar for all

the structural descriptors, but intensities at some q values

appear to influence the prediction more strongly.

2.4. Sampling of noisy SWAXS profiles to account for errors

In modelling solution X-ray scattering data, it is important

to report how the experimental errors influence the results

(Hub, 2018). Distinct modelling frameworks propagate the

experimental errors differently, and some destabilize the

results given small experimental perturbations. These effects

might be especially significant in ML models due to their

nonlinearity.

Experimentally, the buffer-subtracted solution X-ray scat-

tering intensity can be approximated by a normal distribution

according to the central limit theorem. Therefore, the SWAXS

intensity, I(qi), can be written as the normal distribution,

N i Iexp qið Þ; � qið Þ
� �

, where Iexp(qi) and �(qi) are the experi-

mentally measured intensity and corresponding error at qi. To

simulate data obtained under noisy conditions, we treated

each data point as a sampled point from an independent

normal distribution, N i, ignoring molecule-dependent covar-

iances between different scattering angles (Spill & Nilges,

2017). Five thousand SWAXS profiles were sampled from

N i Iexp qið Þ; �� qið Þ
� �

with error level � > 0. We chose low,

medium and high error levels corresponding to � = 0.2, 1.0 and

2.0 to investigate how errors affect the final output of our ML

models. Note that the signal-to-noise ratio is proportional to

��1. The use of multiple curves is essential in obtaining good

statistics, especially when sampling from profiles with larger

errors frequently yields (unphysical) negative intensities in the

high-q regime. The 5000 sampled profiles were input into

trained ML models to obtain the distribution of structural

descriptors.

3. Results and discussion

3.1. XGBoost: training, validation and testing results

To assess the consistency of the ML models and explore the

effect of noise on the training data we trained five different

XGBoost models for each structural descriptor: noise-free,

noisy, sparsely sampled, densely sampled and random. The
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Figure 3
Summary of training, validation and testing of five XGBoost models on different structural descriptors. The variances are reported in the last row. The
10-fold CV results report the averaged regression mean-squared error (MSE) or classification accuracy and the standard deviation among 10 folds. Note
that we used 750 and 7500 CARTs in the 10-fold CV and training processes, respectively. The shaded models are identified subjectively as poor, based on
10-fold CV results, performance on all the datasets and comparison with other trained models on the same structural descriptor. Overall, the numbers
suggest that the XGBoost model is able to learn or recognize the patterns in the training data and generalize for unknown testing data. This characteristic
implies the potential to be applied to noisy experimental data and different molecular systems.



noise-free model was trained using the aforementioned dataset

with 191 q points, derived from direct computation based on

an MD structure. The noisy model was trained using the same

training set with 5% Gaussian noise added to the theoretical

intensities. Moreover, the theoretical SWAXS profile is

smooth, so one can sample an arbitrarily small or large

number of intensities from the profiles. We further trained the

sparsely sampled and densely sampled model using 100 and 400

uniformly sampled intensities as reduced and augmented

features. Finally, to test the sensitivity of XGBoost to under-

lying SWAXS patterns and to determine whether the SWAXS

profiles have strong correlations to the structural descriptors,

we randomly generated structural descriptors within the

corresponding domains and trained the random model. The

performance of each model is reported in Fig. 3. In general, all

the trained XGBoost models are stable and robust except for

the noisy models of helical twist and major groove width. As

expected, the random models all have significantly larger

errors, which implies the existence of underlying patterns and

a strong correlation between the SWAXS profile and struc-

tural descriptors of interest in this work. Fig. 4 shows the

confusion matrices of all the trained XGBoost models applied

to all training and testing sets.

Initially, we applied 10-fold cross validation (CV) using only

750 CARTs to quickly verify the statistical robustness of the

model and to determine whether or not the XGBoost models

suffer from overfitting. If the model is not robust, i.e. it might

be sensitive to the order in which the training data were used

or it can only be trained by a subset of training data, the

validation performance among all 10 folds would have a large

standard deviation. If the model overfits, the validation error

would be large because the model does not generalize the

learned pattern for an unknown dataset. We did not observe

either phenomena except in the case of the noisy models of

helical twist and major groove width. The 10-fold CV results

are also reported in Fig. 3. It is also important to investigate

how many SWAXS profiles (equivalent to the number of MD

structures) are required to train the XGBoost model. Fig. S1

of the supporting information shows the mean squared error

of 10-fold CV, training, validation and testing results versus

the number of SWAXS profiles used to train the XGBoost

model for a helical radius. The model error decreases mono-

tonically as more profiles are used. In order for the trained

model to generalize within an error tolerance of 0.01, about

15 000 profiles are required. The final XGBoost models are

trained using an ensemble of 7500 CARTs (instead of 750 in

10-fold CV) with early stopping (Zhang & Yu, 2005; Yao et al.,

2007). The hyperparameters of our XGBoost models were the

same and are reported in Table S1 of the supporting infor-

mation. A snippet python script used to train XGBoost

models to extract the helical radius and to reproduce some of

the numbers/figures in this manuscript can be found at https://

github.com/LP26/Pollack-Lab-Cornell/blob/master/WAXS-

XGBoost-Radius-Training.ipynb.

We previously stated that the mapping between SWAXS

profiles and structural descriptors is nonlinear, which justifies

our choice of nonlinear ML models. To demonstrate this

nonlinearity, we applied three linear models to the helical

radius dataset: unregularized linear regression, ridge regres-

sion and least absolute shrinkage and selection operator

(LASSO). The performance is reported in Table S2 and shows

significantly large MSEs in training, validation and testing sets.

All the noise-free, sparsely sampled and densely sampled

models were trained against the ‘over-sampled’ SWAXS

profiles, containing more than 100 uniformly distributed q

points. The Shannon sampling limit for our 12-base-paired

RNA duplex system is qmaxDmax ’ 31. These profiles can

successfully train the ML models, yielding consistent perfor-

mance. It is worth investigating the behaviour of models

trained by SWAXS profiles containing only the number of q

points close to or below the Shannon sampling limit. Fig. S2

shows the performance of trained ML models on 10-fold CV,

training, validation and testing sets versus the number of q
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Figure 4
Confusion matrices reporting the performances of all the XGBoost
models (noise-free, noisy, sparsely sampled, densely sampled in columns
2–5) on different structural descriptors. Compared with the truth–truth
matrices in column 1, all the trained models perform well on both the
training set and the testing set, suggesting the ability to generalize for
unknown datasets.



points sampled for all structural descriptors. The panel at the

bottom right shows the performance on random data

(featureless data) as a control. The sampling limit is shown as a

vertical line, to the left of which is the regime of ‘under-

sampling’. As expected, under-sampling undermined the

performance and stability of the XGBoost model, diminishing

extraction of underlying structural information.

In addition to sampling effects, noise can also undermine

the interpretation of SWAXS profiles. Our noisy models were

trained with 5% noise (signal-to-noise ratio, S/N = 20) and

demonstrate overfitting (as shown as the top two grey cells in

Fig. 3). We explored how different

signal-to-noise ratios affect our ML

models. Fig. S3 shows the performance

of trained ML models on 10-fold CV,

training, validation and testing sets for

all structural descriptors, versus

different simulated noise levels, ranging

from 7 to 30%. The panel at the bottom

right shows the performance on random

data as a comparison. This comparison

shows that noisier data undermine the

performance of the model, hiding

structural information as increasing

training MSE. Note that we used 750

CARTs in 10-fold CV and 7500 CARTs

in training. However, the validation and

testing traces fall close to the 10-fold

CV trace when the noise exceeds 20%

of the signal amplitude. This effect

suggests that the ML models overfit the

noise in the training data, performing

poorly in both the validation and the

testing sets. In other words, the ML

models ‘learn’ the noise instead of the

features which can be generalized for

unknown SWAXS profiles. Therefore,

to train ML models using a noisy input

dataset, much more data must be

included. These concerns are beyond

the scope of this paper, which used

simulated profiles (noise-free) from MD

models.

3.2. Performance on synthesized noisy
data

To investigate the effects of errors

propagated by the trained ML models,

we synthesized one noisy SWAXS

profile from the testing set by catenating

a third column of experimental error.

We used this synthesized profile to

compare the true values of structural

descriptors with the outputs of trained

ML models. The top panels of Fig. 5

show the synthesized data and errors

along with a few (20) sampled curves with different error

levels and corresponding predictions of the structural

descriptors: helical radius (blue), twist (red), rise (green),

major groove width (orange) and A-form fraction (purple)

using four trained XGBoost models. The vertical lines repre-

sent the true values derived directly from the corresponding

atomic conformation and the histograms show the distribu-

tions of the predictions. The transparency of the histograms

denotes the error levels: the higher the error, the more

transparent the histogram. In general, good performance is

observed from trained XGBoost models: the peaks of the
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Figure 5
Performance of four trained XGBoost models on the noisy synthesized data from the testing set.
Twenty sampled SWAXS profiles with low, medium and high error levels are shown in the top row.
The subsequent rows show a number of boxed panels containing four histograms of predictions
made by the different indicated models: noise-free, noisy, sparsely sampled and densely sampled.
The vertical lines represent the real values, extracted from detailed molecular analysis. The
transparency of the histograms is coded by the error levels: the higher the error, the more
transparent the lines. Generally speaking, all the trained models perform well on noisy data with
reasonable error levels (low and medium). As the error levels increase, corresponding to an
unphysically low signal-to-noise ratio, outlier values start to appear, and the prediction distribution
spreads. However, even under this extreme case, some of the peak values still recapitulate the real
ones.



histograms recapitulate or are very close to the true values. As

we increase our sampling error levels, larger variations are

introduced in the output and the distributions spread out.

However, the main peaks consistently recapitulate the real

values until undermined or smeared out by other peaks

incurred by noise. For noisy data, it is more robust to deter-

mine and interpret the most probable values of the structural

descriptors rather than the mean of the distribution. There-

fore, a trained XGBoost model can be applied to noisy data by

Gaussian sampling with reasonable error levels.

3.3. Performance on experimental data

Following the application of the ML approach to the

synthesized profile, the same sampling and prediction proce-

dures were applied to experimental data of the same 12-base-

paired RNA duplex system in 500 mM KCl and 5.0 mM

MgCl2. These conditions were selected based on recent results,

showing significant differences in duplex conformation

between the two salts. Previously, we established that divalent

ions, like Mg2+, unwind and compress the dsRNA double

helix, relative to the canonical A-form, distorting this

geometry by reducing the major groove width to form a more

compact conformation (Chen & Pollack, 2019). In contrast, at

500 mM KCl the duplexes are more relaxed and more

conformationally similar to canonical A-form helices. Fig. 6

shows the predictions of XGBoost models from sampled

experimental SWAXS profiles of duplexes in solutions

containing 5.0 mM MgCl2 and 500 mM KCl using the medium

error level and noise-free models. The ‘real’ values of the

structural descriptors were obtained by full profile fitting and

refinement of conformations described in the work by Chen &

Pollack (2019) with the exception of the major groove widths,

which were only inferred in the previous study. For compre-

hensive data visualization of different error levels and ML

models, see Figs. S4 and S5 in the supporting information.

Good agreement is found between our ML approach and

prior applied curve-fitting method. The dsRNA helical radius

parameter has the strongest periodicity in this macro-

molecular system and XGBoost predicts this. Consistent with

results from previous curve-fitting protocols, the helical twist

has strong correlations with the major groove width because

unwinding and over-winding of the duplex incur shrinkage and

elongation of the major grooves, respectively, causing

disruption or enhancement of helical periodicities. The helical

rise is also well predicted by our trained XGBoost model.

Although the length scale for helical rise is beyond the reso-

lution of these measurements, it is reflected by the overall

length of the duplex. Finally, the major groove exhibits strong

helical periodicity because it is formed by repeated structuring

of the phosphate backbones of the two hydrogen-bonded

RNA single strands. The major groove width is 8.7 Å for the

canonical A-form. However, the peak positions are about 3.5

and 7.5 Å for divalent and monovalent ions, respectively,

suggesting the helical axial compaction is induced by divalent

ions. The dsRNA adopts a more A-form-like conformation in

the presence of monovalent ions; divalent ions compress it

with significant deviation from the canonical A-form duplex.

Comparison of these results with those from a curve-fitting

method suggests that XGBoost models demonstrate the same

conformational trends.

3.4. Interpretation of XGBoost models

The molecular radius of gyration is obtained from inten-

sities in the lowest q region using a small-angle approximation
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Figure 6
Performance of noise-free XGBoost models applied to experimental data acquired on dsRNA in 5.0 mM MgCl2 (top row) and 500 mM KCl (bottom
row), respectively, using Gaussian sampling from medium-error levels. The real experimental values were obtained by curve-fitting using an extended
ensemble optimization method. The major groove width was not reported in previous work, so its real value is missing. However, the predicted major
groove width is about 3.5 and 7.5 Å for 5.0 mM MgCl2 and 500 mM KCl, respectively. For experimental data, the trained models still recapitulate the real
values as means of prediction distributions.



of the Debye formula. Beyond this lowest q region, different

molecular shapes have different 1D features. Some important

conformational information can be assessed from higher angle

data, for example through Kratky plots where compaction of a

molecular system is reflected by a strong peak, whereas an

unfolded random coil has a different shape. However, in

general, more detailed structural information is hidden in the

1D profile and is difficult to extract without knowledge of the

system or theoretical molecular models.

Our trained XGBoost model has the ability to correlate

features in the profiles to real-space structural descriptors. The

‘importance value’ of each feature provides essential insight

into decoding the 1D scattering profile. Fig. 7 shows the

normalized ‘gain importance’ of the trained XGBoost models

on different structural descriptors. The gain importance

reports a prediction power of scattering angles. Among all

four trained XGBoost models (noise-free, noisy, sparsely

sampled and densely sampled), the gain-importance traces are

consistent, suggesting that the models extract and detect the

same underlying features regardless of the sampling or noise

in the training data. Interestingly, for some structural

descriptors, certain regions along the q axis are more critical in

making predictions. For example, scattering intensities in the

region near q = 0.30 and 0.55 Å�1 appear to be critical for

helical radius prediction. This correlation is intuitive, because

these q regions correspond to real-space dimensions of the

duplex diameters and radii, which are well represented in

these structures. On the other hand, counter-intuitively,

intensities near the relatively low q region q ’ 0.25 Å�1 are of

high significance in predicting the structural descriptor of the

smallest length scale: the helical rise. However, the helical rise

can be cast as the average di-base-pair distance in the axial

direction, and therefore reflect the total length of the RNA

duplex. In this work, the 12-bp duplex ranges from 25 to 30 Å

in length, consistent with the appearance of a signature near q

’ 0.25 Å�1. Moreover, from Fig. 7, the helical twist is reflected

near q ’ 0.25 and 0.35 Å�1 in the SWAXS profiles while the

major groove width is correlated to the second local

extremum. The A-form fraction summarizes of all these

helical structural determinants and is mostly predicted by

combining all the SWAXS features; it relies on features

present over the full angle range sampled.

It is also interesting to understand and visualize how the

XGBoost model makes predictions. This decision-making

process is evident by considering the other type of importance:

‘weight-importance’, which reports the number of times a

feature is used by the model in the decision rules. The

normalized ‘weight-importance’ traces are shown in Fig. S6.

All of the traces are very similar regardless of structural

descriptors or XGBoost models, suggesting that the prediction

is made through almost identical processes distinguished by

the gain, shown in Fig. 7.

The ML model mines those hidden patterns and structural

information. The structural information is not distributed

uniformly across the scattering angles, but perhaps not

surprisingly, appears at or near q values that report on a

particular length scale.

3.5. Final remarks

Over the past few years, increasing efforts have been made

to bridge MD simulations with experimental data to gain

understanding of macromolecular systems and hence biolo-

gical insight. The application of ML opens the door to a new

perspective. To help guide future explorations and based on

the work described above, we briefly discuss some potential

limitations of this approach and, where we can, provide

suggestions that may benefit future studies. First, the confor-

mational sampling of MD might undermine any structural

interpretation based on features found in the scattering

profiles. Researchers are advised to check the diversity of

conformations found in the simulations. For example, we

ensured that the experimental data in the full SWAXS regime

is bound by scattering profiles computed from conformations

in the MD simulations. One must also be aware of limitations

caused by the inaccuracies of force fields or other sampling

issues. However, even with well sampled MD models, perfect

agreement between a certain model and experimental data is

not expected. ML can help by identifying or ‘learning’ which

features of the data reflect specific aspects of the structure.
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Figure 7
Normalized ‘gain-importance’ traces for four trained models. The ‘gain-
importance’ reports the significance of the scattering intensities in
predicting a certain structural descriptor. Intensities at different locations
along the q axis have different significance, suggesting that the
information content is not uniformly distributed in q. A more detailed
description is provided in the text.



Second, the structural descriptor of interest must be ‘detect-

able’ in the simulated data. Its presence can be verified using

the training set to allow the model to recognize a descriptor,

then verifying the recognition. It is important to ensure that

significant patterns, visible to humans or not, are accurately

mapped by this structural descriptor. Third, overfitting the

data is always a concern. We recommend that researchers

perform validation tests on the ML models, especially those

trained by noisy data. Moreover, the trained ML models are

specific to one type of macromolecule (e.g. 12-base-pair

duplex), unless a training set that incorporates a diverse set of

systems is employed. Importantly, this analysis pipeline can be

readily extended to different molecular systems by bridging

MD simulations and experimental data. Finally, we would like

to emphasize the benefits of ‘learning from’ the ML inter-

pretations. In the best case, researchers build intuition based

on feature identification from the trained ML models, e.g. the

feature at this q value contains information about the helical

radius. We envision future applications where both people and

machines ‘learn’ from the data to increase our understanding

of biological macromolecules.

4. Conclusions

Our goal is to propose ML frameworks for the analysis of

solution X-ray scattering data when MD predictions are

available. To the best of our knowledge, this is a novel

approach to model scattering over a full spectrum of angles;

importantly, this includes wide angles that provide informa-

tion about smaller length scales.

This work presents an ML framework based on extreme

gradient boosting (XGBoost) that bridges models from

molecular dynamics simulations with experimental solution

X-ray scattering measurements. Taken together, this approach

provides important structural descriptors for regular macro-

molecular motifs, such as the important dsRNA double helical

structure. Our models accurately predict helical radius, twist,

rise, major groove width and A-form fraction. Trained ML

models were applied to experimental SWAXS data of the

same system in different salt-containing solutions, 500 mM

KCl and 5.0 mM MgCl2, where helical conformational changes

are known to vary. Previously published results have been

reproduced, and the ML models confirm that divalent ions

unwind and shrink the dsRNA duplex, rendering a tighter

major groove and further deviation from canonical A-form

geometry.

Improved performance of XGBoost models may be

achieved by further variation of hyperparameters, training

strategies and even differing data representation [for example,

changing from logI(q) � q to logI(q) � q2]. Better perfor-

mance may be realized by complex ML models such as neural

networks. This ML methodology can be applied to a wide

range of molecular systems to derive structural parameters of

interest with high confidence to understand conformational

changes and structures encoded in SWAXS profiles. We

envision potential applications of similar or improved frame-

works in different molecular systems, data acquired by other

experimental techniques or analyses that do not require

predetermination of structural parameters. In such context,

this work can be viewed as a case study for applying ML

algorithms to bridge theoretical models with experimental

work on complex yet essential molecular systems.

5. Related literature

The following references are cited in the supporting infor-

mation: Macke & Case (1998); Phillips et al. (2005); Huang et

al. (2017); Jorgensen et al. (1983); Humphrey et al. (1996);

Essmann et al. (1995).

Acknowledgements

The authors thank Arthur Woll, Richard Gillilan and Pollack

Laboratory members for experimental assistance. The authors

thank TJ Lane for thoughtful comments and careful review of

the manuscript, Clark Templeton and Ron Elber for sharing

the simulation structures and Sumanta Basu for suggestions of

the ML model selection. Experimental SWAXS data were

acquired at the Cornell High Energy Synchrotron Source

(CHESS).

Funding information

This work was supported by NIH (grant No. R35GM122514).

CHESS is supported by the NSF and NIH/NIGMS (award No.

DMR-1332208), and the MacCHESS resource is funded by

NIGMS (award No. P41-GM103485). This research was also

conducted with support from the Cornell University Center

for Advanced Computing, which receives funding from

Cornell University, the National Science Foundation and

members of its Partner Program.

References

Bardhan, J., Park, S. & Makowski, L. (2009). J. Appl. Cryst. 42, 932–
943.

Bezanson, J., Karpinski, S., Shah, V. B. & Edelman, A. (2012). SIAM
Rev. 59, 1–27.

Blanchet, C., Pasi, M., Zakrzewska, K. & Lavery, R. (2011). Nucleic
Acids Res. 39, W68–W73.

Blanchet, C. E. & Svergun, D. I. (2013). Annu. Rev. Phys. Chem. 64,
37–54.

Cech, T. R., Zaug, A. J. & Grabowski, P. J. (1981). Cell, 27, 487–496.
Chen, P. C. & Hub, J. S. (2014). Biophys. J. 107, 435–447.
Chen, P. C. & Hub, J. S. (2015). Biophys. J. 108, 2573–2584.
Chen, T. & Guestrin, C. (2016). Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD16), 13–17 August 2016, San Francisco, CA,
USA. New York: Association for Computing Machinery.

Chen, Y. & Pollack, L. (2019). J. Phys. Chem. B, 123, 9773–9785.
Chen, Y.-L., Sutton, J. L. & Pollack, L. (2018). J. Phys. Chem. B, 122,

11363–11372.
Denny, S. K., Bisaria, N., Yesselman, J. D., Das, R., Herschlag, D. &

Greenleaf, W. J. (2018). Cell, 174, 1–14.
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. &

Pedersen, L. G. A (1995). J. Chem. Phys. 103, 8577.
Franke, D., Jeffries, C. M. & Svergun, D. I. (2018). Biophys. J. 114,

2485–2492.
Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A.,

Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R.,

research papers

IUCrJ (2020). 7, 870–880 Chen and Pollack � Machine learning deciphers structural features of RNA duplexes 879

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB105
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB105
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB13


Franklin, J. M., Jeffries, C. M. & Svergun, D. I. (2017). J. Appl.
Cryst. 50, 1212–1225.

Friedman, J. H. (2002). Comput. Stat. Data Anal. 38, 367–378.
Grant, T. D. (2018). Nat. Methods, 15, 191–193.
He, H., Liu, C. & Liu, H. (2020). iScience, 23, 100906.
Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.

L., Grubmuller, H. & MacKerell, A. D. (2017). Biophys. J. 112,
175A.

Hub, J. S. (2018). Curr. Opin. Struct. Biol. 49, 18–26.
Humphrey, W., Dalke, A. & Schulten, K. (1996). J. Mol. Graphics, 14,

33.
Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.;

Klein, M. L. (1983). J. Chem. Phys. 79, 926.
Knight, C. J. & Hub, J. S. (2015). Nucleic Acids Res. 43, W225–W230.
Lu, X. J. & Olson, W. K. (2008). Nat. Protoc. 3, 1213–1227.
Macke, T. J. & Case, D. A. (1998). ACS Symp. Ser. Am. Chem. Soc.

682, 379–393.
Makowski, L., Rodi, D. J., Mandava, S., Minh, D. D. L., Gore, D. B. &

Fischetti, R. F. (2008). J. Mol. Biol. 375, 529–546.
Moore, P. B. (1980). J. Appl. Cryst. 13, 168–175.
Mylonas, E., Petoukhov, M. V., Bernado, P., Mylonas, E., Petoukhov,

M. V., Blackledge, M. & Svergun, D. I. (2007). J. Am. Chem. Soc.
129, 5656–5664.

Natekin, A. & Knoll, A. (2013). Front. Neurorobot. 7, 21.
Nguyen, H. T., Pabit, S. A., Meisburger, S. P., Pollack, L. & Case, D. A.

(2014). J. Chem. Phys. 141, 1–15.

Pabit, S. A., Katz, A. M., Tolokh, I. S., Drozdetski, A., Baker, N.,
Onufriev, A. V. & Pollack, L. (2016). J. Chem. Phys. 144, 205102.

Park, S., Bardhan, J. P., Roux, B. & Makowski, L. (2009). J. Chem.
Phys. 130, 134114.

Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa,
E., Chipot, C., Skeel, R. D., Kale, L. & Schulten, K. (2005). J.
Comput. Chem. 26, 1781.

Rambo, R. P. & Tainer, J. A. (2013). Nature, 496, 477–481.
Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A.

(2013). Biophys. J. 105, 962–974.
Shevchuk, R. & Hub, J. S. (2017). PLoS Comput. Biol. 13, e1005800.
Spill, Y. G. & Nilges, M. (2017). PLoS One, 12, e0177309.
Templeton, C. & Elber, R. (2018). J. Am. Chem. Soc. 140, 16948–

16951.
Tiede, D. M., Zhang, R. & Seifert, S. (2002). Biochemistry, 41, 6605–

6614.
Tria, G., Mertens, H. D. T., Kachala, M. & Svergun, D. I. (2015).

IUCrJ, 2, 207–217.
Yao, Y., Rosasco, L. & Caponnetto, A. (2007). Constr. Approx. 26,

289–315.
Yesselman, J. D., Denny, S. K., Bisaria, N., Herschlag, D., Greenleaf,

W. J. & Das, R. (2019). Proc. Natl Acad. Sci. USA, 116, 16847–
16855.

Zhang, T. & Yu, B. (2005). Ann. Statist. 33, 1538–1579.
Zuo, X., Cui, G., Merz, K. M., Zhang, L., Lewis, F. D. & Tiede, D. M.

(2006). Proc. Natl Acad. Sci. USA, 103, 3534–3539.

research papers

880 Chen and Pollack � Machine learning deciphers structural features of RNA duplexes IUCrJ (2020). 7, 870–880

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB104
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB104
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB103
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB103
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yu5020&bbid=BB11

