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A modified Fourier shell correlation (mFSC) methodology is introduced that is

aimed at addressing two fundamental problems that mar the use of the FSC: the

strong influence of mask-induced artifacts on resolution estimation and the lack

of assessment of FSC uncertainties stemming from the inability to determine the

associated number of degrees of freedom. It is shown that by simply changing

the order of the steps in which the FSC is computed, the correlations induced by

masking of the input data can be eliminated. In addition, to further reduce

artifacts, a smooth Gaussian window function is used to outline the regions of

reciprocal space within which the mFSC is computed. Next, it is shown that the

number of degrees of freedom (ndf) of the system is approximated well by

combining the ndf associated with the Gaussian window in reciprocal space with

further reduction of the ndf owing to the use of the mask in real space. It is

demonstrated through the application of the mFSC to both single-particle and

helical structures that the mFSC yields reliable, mask-induced artifact-free

results as a result of the introduced modifications. Since the adverse effect of the

mask is eliminated, it also becomes possible to compute robust local resolutions

both per voxel of a 3D map as well as, in a newly developed approach, per

functional subunit, segment or even larger secondary element of the studied

complex.

1. Introduction

In single-particle reconstructions, it is essential to have a

robust measure of the reliability of the resulting 3D structure

derived from 2D cryo-EM projection images. Cryo-EM

structure determination is a complicated multi-step process

that includes selection and alignment of the data (Penczek,

2008; Cheng et al., 2015). A suitable reliability measure was

introduced into the field early on as a 2D Fourier ring corre-

lation (Saxton & Baumeister, 1982) and was later extended to

3D as a Fourier shell correlation (FSC; Harauz & van Heel,

1986). The principle is simple: the available 2D data are

randomly split into nonoverlapping half-sets, the structure-

determination process is carried out independently and the

two results are correlated in reciprocal space shell by shell

to yield a 1D curve of FSC coefficients as a function of the

modulus of spatial frequency. High values indicate consistent

Fourier components within a given shell, while those close to

zero mean that there is no reliable signal. A simple propor-

tionality relationship between the FSC and the spectral signal-

to-noise ratio (SSNR) facilitates interpretation and decision

making: one would want to retain Fourier components with

high SSNR in the final, filtered structure, down-weight those

with low SSNR and entirely eliminate those with an SSNR

close to zero, which is based on the sensible rationale that one

would not want to add noise to the result. Thus, it can be

argued that the shape of the entire FSC/SSNR curve is an

indicator of the structure quality. However, this would make it
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difficult to compare different results and it is preferable to

have a single numerical indicator. Such a number is deter-

mined from the FSC curve as the spatial frequency at which

the curve drops below a predefined threshold and is called the

resolution (and is typically given in units of inverted spatial

frequency, thus length). The procedure is appealing in its

simplicity as the complex notion of the structure quality is

reduced and expressed by a single number. However, it is

apparent that two different structures can have the same

resolution but quite different quality, as the latter is given by

all FSC coefficients, not just one point that might be shared

between two different results (Penczek, 2010).

Currently, the FSC is the only resolution measure that is

commonly used in cryo-EM. While in the past other measures

have been introduced, for example the 2D SSNR (van Heel &

Hollenberg, 1980), Q-factor (Unser et al., 1987) and differ-

ential phase residual (Frank et al., 1981; this latter was for a

while commonly used in 2D analysis), the eventual exclusive

adoption of the FSC is understandable given its robustness,

its ease of calculation and, most of all, its intuitively clear

meaning. It is therefore somewhat surprising that despite its

history of over three decades, it is still a subject of research

and vigorous discussion both in publications and particularly

on various social media. The controversies include both the

computational methodology as well as the interpretation of

the results. A closer look at the definition and in particular at

calculation methods reveals that these discussions are indeed

justified as, despite its simplicity, the usage of the FSC is

marred by the subjective decisions that one has to make even

for the simplest applications. In addition, the situation has

been further complicated by the introduction of various ‘local’

resolution measures (Kucukelbir et al., 2014), only some of

which are based on the FSC (Cardone et al., 2013) (see Vilas et

al., 2020).

FSC controversies can be broadly divided into two cate-

gories: (i) meaning and (ii) calculation methods. It is common

to interpret the FSC outcome as an indicator of the ‘resolu-

tion’ of the structure, even though the ‘meaning’ of the FSC is

not resolution as understood in optics or more broadly as a

characteristic of imaging or sampling systems. The FSC reso-

lution is simply the spatial frequency at which its value is

above some preselected threshold; thus, it is obviously

subjective. In addition, depending on this threshold and the

way that the final map is filtered, this may or may not corre-

spond to the highest spatial frequency Fourier components

included in the map. Thus, it is not necessarily the spatial

frequency limit of the map. It also follows that such a reso-

lution cannot be interpreted as a smallest distance between

details that can be resolved as separate, as is the case for the

resolution as understood in optics. To an extent, this problem

is caused by the lack of agreement about an acceptable

threshold. Three thresholds are so far commonly used: (i) the

0.5 threshold, which is based on the corresponding level of the

SSNR being equal to one and the fact that a value of 0.5 is a

common characteristic of analytical low-pass filters (Malhotra

et al., 1998), (ii) the 3� threshold (van Heel, 1987), which

essentially corresponds to FSC = 0, or more precisely to the

FSC value which under the normality assumption is three

standard deviations of its variability larger than zero, and thus

the signal component as expressed by the SSNR is significantly

larger than zero, and (iii) the more recent 0.143 threshold,

which is not based on the SSNR level but on an even harder to

justify expected level of phase error in Fourier components

(Rosenthal & Henderson, 2003). The first and third criteria

are often referred to as ‘constant threshold’ criteria and are

criticized for neglecting statistical variability (or simply error)

of the FSC estimates and thus presumably leading to an

overestimation of the resolution. The 3� criterion is argued to

be superior owing to the inclusion of the statistical uncertainty

of the estimate. As a result, the effective cutoff threshold (the

FSC value that is determined to be significantly larger than

zero) varies depending on the number of Fourier coefficients

included in the calculation. It can thus be considered to be

‘adaptive’, even though the test itself is based on a constant

threshold, which is simply the multiplicity of the standard

deviations used and which is arbitrarily set to three. Although

this approach is in principle the most sensible, in practice it is

compromised by as yet insurmountable difficulties. It is

intuitively clear that the numbers of degrees of freedom has to

be much smaller than the number of Fourier coefficients used

for the calculation of the FSC, as (i) various image-processing

operations use interpolation and thus introduce correlations in

the data, (ii) masking of the noise surrounding the map also

introduces correlations, (iii) the statistical distribution of the

FSC is normal only for an expected value of zero, while for

values approaching �1 it is increasingly asymmetric, and (iv)

in practice it is impossible to achieve full statistical indepen-

dence of half-maps. Interestingly, there are no convincing

methods that would address these issues or even quantify their

effects.

The calculation of the FSC is straightforward. (i) A 3D mask

is constructed such that it follows the shape of the structure as

closely as possible, while at the same time the mask values are

attenuated at the edges to minimize the introduction of data

correlations. Also, the overall shape is made to be as ‘simple’

as possible, as highly variable shapes increase the severity of

artifacts. While this step is in principle optional, in practice it is

all but necessary as otherwise the computed FSC values are

unrealistically low owing to the presence of background noise.

Sometimes, as a compromise, spherical masks are used. (ii)

Both maps are multiplied by the same mask. (iii) 3D FTs of

both maps are computed. (iv) A Fourier shell width is selected

and the FSC is computed, yielding its values as a function of a

modulus of spatial frequency. (v) In some implementations the

result is supported by an error analysis, which normally

requires knowledge of the number of degrees of freedom

within each shell. The main issue with this straightforward

strategy is the application of the mask. Firstly, it introduces the

same ‘shape’ into both maps; secondly, it introduces correla-

tions between Fourier components whose range and strength

depend on the shape and attenuation of the edges of the mask.

Even more challenging is the determination of the number of

degrees of freedom (ndf) to assess the significance for

computed FSC coefficients. The ndf is sometimes referred to
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as the ‘effective sample size’, which is rather misleading. So

far, no methods have been put forward to quantify these

effects. Some measure of the impact can be obtained by

repeating the FSC calculation using a progression of smooth-

edge spherical masks with increasing radius. As the outcome

of the FSC calculation using the existing protocol depends so

dramatically on the mask used, it puts into question its value

as an objective measure of the quality of a structure deter-

mined by single-particle cryo-EM analysis. Indeed, it is well

known that unless both half-maps are given and, more

importantly, the mask is supplied, it is impossible to obtain the

same FSC curve as reported with the map and, in many cases,

it is also difficult to obtain the same resolution value asso-

ciated with the map. Since the construction of a mask given a

3D density map is not exactly an exact science, the FSC result

is essentially irreproducible unless a detailed description of

the mask-design protocol is provided, Worse, as there is no

objective way to determine which mask is ‘better’ or more

suitable, in practice it means that a consensus resolution

cannot be agreed upon, as different researchers have different

favorite protocols for mask design.

Of increasing interest, therefore, is the determination of the

local resolution of 3D maps. Since cryo-EM analyses yield

projection images of macromolecular complexes in close to

the native state, it is to be expected that many reconstructed

maps will show evidence of structural flexibility. Similarly,

substoichiometric ligand binding adversely affects the align-

ment of data and therefore the local resolution. The applica-

tion of an FSC for local resolution estimation of a map is

however marred with difficulties. Typically, the FSC would be

computed within boxes centered on all voxels within a region

of interest (Cardone et al., 2013). This direct approach suffers

from three limitations. (i) The small size of the real-space box

severely limits the spectral resolvability of the FSC estimate.

(ii) The spatial resolvability can be improved by padding small

boxes with zeros to a larger size, but this suffers from artifacts

induced by the sharp edges of the box. The problem can be

remedied by real-space window functions that taper the signal

at the edges, but this compromises the spatial resolvability. (iii)

Using a small number of voxels within the box dramatically

increases the error of the FSC estimate. The estimate can be

improved by increasing the box size, but this in turn decreases

the spatial localization of the resolution estimate. Cardone

and coworkers used window sizes of about 1/5 to 1/10 of the

volume size, which might be sufficient to estimate the reso-

lution of a region or a subunit of a complex, but not of small

elements. An interesting and efficient approach has recently

been proposed by Kucukelbir et al. (2014). However, the

outcome is not a resolution as understood in the EM field.

In particular, the result is computed in wavelet bases, not in

Fourier terms, as is performed in the FSC approach. Finally,

the results obtained have to be ‘calibrated’ by the variance

of the noise present in the data, but the sample of this noise

is obtained from the region surrounding the structure which,

as is shown here, is normally higher than that within the

structure and the proportionality factor is unknown.

Therefore, we propose a local resolution-estimation method

that is rooted in, and thus directly related to, the FSC/SSNR

methodology.

In the following, we will demonstrate that the adverse

impact of the mask on FSC estimation can be all but elimi-

nated by a simple change in the order of calculations. Next, we

will show that the ndf can be approximated well by accounting

for the influence of the window function in reciprocal space

and the number of nonzero coefficients of the real-space mask

used. We will also demonstrate that in all but extreme cases

FSC significance tests only mildly depend on the precise value

of the ndf and thus the proposed method is acceptable for our

purpose. We will then extend our objective mFSC method to

an estimation of local resolution that is also mask-independent

and yields reliable and detailed results.

2. Methods

2.1. Notation

The lower-case letters k, c, s denote integers or real-space

numbers (scalars); they also denote real-space (discrete)

functions u, v, m, f, r.

The bold letters s, x denote real vectors.

|.| denotes an absolute value of a scalar.

||.|| denotes the Euclidean norm of a vector, i.e. the square

root of the sum of the squares of the elements of the argument.

Upper-case letters denote complex functions U, V, M.

Fourier transforms (FT) are denoted by a carat, U ¼ ûu, and

the inverse FT is u ¼ ÛU.

An asterisk (*) denotes the complex conjugate of a complex

variable or function.

uv is the inner product of two real vectors or vector

representations of two volumes (i.e. the vector containing all

elements of a discrete volume in an arbitrary order), that is the

sum of pairwise products of respective elements, and the result

is a scalar.

UV* is the inner product of two complex vectors or vector

representations of FTs of two volumes, with the second one

being conjugated. Since in our case volumes are real, their FTs

have Friedel symmetry, i.e. for U ¼ ûu and for all elements

indexed by s, we have U(s) = U(�s)*. Therefore, the result of

UV* is a scalar (a real number), as for each complex product

of elements there exists a Friedel-related conjugated complex

product. This also holds for the calculation of inner products

within Fourier ‘shells’. Therefore, to make it transparent, the

inner product of the Friedel symmetric complex vectors is

often written as 2Re(UV*).

2.2. Modified Fourier shell correlation (mFSC)

We begin by noting that the signal-to-noise ratio (SNR) in

the image, defined as the ratio of the variance of the signal to

the variance of the noise in the data, can be equivalently

estimated either in real or reciprocal space. Indeed, given two

zero-mean half-volumes u and v and their Fourier transforms

U ¼ ûu and V ¼ v̂v, the correlation coefficient is

cðu; vÞ ¼
uv

jjujj jjvjj
¼

UV�

jjUjj jjVjj
; ð1Þ
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which is a normalized inner product of two vectors and has

values in the interval (�1, 1), with both extremes indicating

perfect agreement, while zero indicates no relation between

arguments. The correlation coefficient is related to the SNR by

(Saxton, 1978)

SNR ¼
jcj

1� jcj
: ð2Þ

Since by definition the SNR cannot be negative, we used the

absolute value of the correlation coefficient. This agrees with

the intuitive notion that c = �1 means that both volumes are

identical, albeit with opposite contrast (note that this cannot

happen in the standard practice of cryo-EM). Another

possibility would be to have SNR = 0 for c < 0. The choice of

either possibility is irrelevant for the purpose of the following.

What matters is that the values of the correlation coefficient

(or FSC, as will be shown) map nonlinearly to the SNR. The

value c = 0 means that there is no shared signal in the half-

volumes, while c = 1 means that the SNR is infinite, which

implies that the volumes are noise-free. Of interest are inter-

mediate values; for example, c = 0.143 yields an SNR of merely

0.17 and thus a signal over five times lower than the noise.

c = 0.5 yields SNR = 1, which means that the amplitudes of the

signal are of the same magnitude as those of the noise. Only

for c = 0.91 do we have SNR = 10, a level of signal that is

comfortably above the level of noise.

The relationships between (1) and (2) form the basis for the

FSC methodology. The SNR given by (2) informs us about the

quality of the data within the entire real-space window within

which the structure is computed and for all spatial frequencies

simultaneously. The goal is to restrict calculations of the

correlation to a certain region in order to obtain a value that is

‘localized’ in real or Fourier space or preferably in both spaces

at the same time. So, for FSC calculations we chose a sequence

of nonoverlapping Fourier space rectangular spherically

symmetric concentric window (binary) functions W, referred

to as ‘shells’, with preselected width (usually set to one Fourier

pixel). These shells in 3D are centered on the origin of Fourier

space and have radii corresponding to the sequence of

magnitudes of spatial frequency s = ||s||,

FSCðu; v; sÞ ¼
WðsÞUV�

jjWðsÞUjj jjWðsÞVjj
: ð3Þ

For each shell, the spectral SNR (SSNR) at spatial frequency s

is given by

SSNRðu; v; sÞ ¼
jFSCðu; v; sÞj

1� jFSCðu; v; sÞj
; ð4Þ

where a semicolon separates groups of variables. While both

the FSC and the SSNR are functions of both half-volumes and

spatial frequency (they are also a function of shell width,

which we have omitted for simplicity), we separate variables to

indicate that for typical calculations we consider half-volumes

to be fixed and we only analyze the FSC (and the SSNR) as a

function of spatial frequency. We also note that as elaborated

in Section 2.1, the outcome of the numerator calculation in (3)

is real, and so is the FSC.

For the vast majority of practical applications it is necessary

to restrict the real-space region of support to the area m

occupied by the structure of a complex, and thus to exclude

surrounding noise. m is a real-space function of the same size

as the half-volume and, in the ideal case, is binary, i.e. contains

only ones that indicate the structure and zeroes elsewhere:

FSCðu; v; m; sÞ ¼
WðsÞdðmuÞðmuÞdðmvÞðmvÞ�

jjWðsÞdðmuÞðmuÞjj jjWðsÞdðmvÞðmvÞjj
: ð5Þ

Here we treat the mask as a variable, as in later parts of the

text we show results in which both m and s vary. The calcu-

lation of (5) calls for the multiplication of both half-volumes

by the mask, followed by the computation of FTs, and finally

calculation, in Fourier space and within shells defined by the

window function, of the inner product of the processed half-

volumes as well as the norms. The result is the FSC, a one-

dimensional real-valued function of spatial frequency that

informs us how well two volumes agree in Fourier space. The

decrease of the FSC below a predefined threshold is called the

frequency limit or resolution of the structure represented by

the half-volumes.

From (5), it is immediately apparent that the outcome of

this simple procedure is bound to be marred by artifacts. The

problem is owing to the real-space mask entering the calcu-

lation prior to the FT of the maps u and v. Firstly, it is intui-

tively clear that even if the half-volumes were two realizations

of independent random noise, and thus the expected value of

the FSC should be zero for the entire frequency range, the

multiplication of both by the same mask function m introduces

a ‘common’ signal, that is the shape of the mask, which results

in significant FSC coefficients. The more elaborate the mask,

the stronger the effect. On a more fundamental level, we

consider the convolution theorem, which states that the FT of

a product of two functions is a convolution of their FTs, and

this holds for the product of real as well as complex functions.

Therefore, the multiplication of a real half-volume by a mask

followed by an FT, as in the right-hand side of (5), is

equivalent to the convolution of the FT of the half-volume

with the FT of the mask. Such a convolution introduces

correlations between the coefficients of the FT of a half-

volume, and as a result superfluous correlations and artificially

high FSC values.

To solve the problem of the mask-induced artifacts and thus

incorrect estimates of resolution by the FSC technique, we can

change the order of calculations in (5) and have

mFSCðu; v; m; sÞ ¼
jm d½WðsÞU�½WðsÞU� d½WðsÞV�½WðsÞV�j

jjm d½WðsÞU�½WðsÞU�jj jjm d½WðsÞV�½WðsÞV�jj
: ð6Þ

The modified FSC (mFSC) is computed in real space. Firstly,

the FTs of both maps are multiplied by the reciprocal-space

window W, retaining only information within a shell with a

radius of the magnitude of spatial frequency s. Secondly, after

inverse FTs, the real-space correlation coefficient is computed

within a region defined by the real-space mask m. The second

operation simply restricts the number of elements used for

calculation and thus cannot induce any spurious correlations.
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In order to reduce ringing artifacts (Gibbs phenomenon)

induced by the truncation of the Fourier expansion by the

rectangular window W, we instead use a Gaussian bandpass

filter with a preselected width (we usually set its standard

deviation to one Fourier pixel). Admittedly, this diffuses the

localization of the mFSC in reciprocal space but focuses the

resolution measure in real space. This is an unavoidable trade-

off between localization in the two respective spaces inherent

to the finite Fourier transform of a finite series. One also has

to note that the computational complexity of the mFSC is

enormously higher than that of the FSC, as in the latter,

reciprocal-space approach only two 3D FTs have to be

computed, while the mFSC requires two 3D FTs for each

Fourier shell s. While the specific wall-clock time depends on

the details of the implementation and computer used, the FSC

can be calculated within seconds, while the mFSC requires

minutes of calculation time. However, if a message-passing

interface (MPI) parallelized implementation is used, given

that the algorithm is trivially parallelizable, the time of the

mFSC calculation is reduced by the number of cores used and

for large clusters corresponds to that for the FSC.

2.3. Local resolution estimation with the mFSC

Local resolution calculation follows trivially from the

concept of the mFSC: we compute a local real-space mFSC by

evaluating the correlation coefficient (4) within a small region

m(x) (say a box of 15 � 15 � 15 voxels, or a small-radius

sphere) in real space at all real-space locations x,

mFSCðu; v; m; s; xÞ ¼
jmðxÞ d½WðsÞU�½WðsÞU� d½WðsÞV�½WðsÞV�j

jjmðxÞ d½WðsÞU�½WðsÞU�jj jjmðxÞ d½WðsÞV�½WðsÞV�jj
: ð7Þ

We present the outcome of the local resolution calculation as a

3D volume whose voxel values are local spatial frequencies at

which the local resolution drops below a predetermined mFSC

threshold level t, for example t = 0.5 or t = 0.143. In addition to

the direct interpretation in the familiar FSC or SSNR terms,

the volume provides the necessary input for the local filtration

step.

We implemented local resolution estimation based on the

mFSC concept espoused previously (Penczek, 2014b), but we

found the quality of the results to be lacking. Without esti-

mation of the ndf and with the small local window sizes used

the results were unstable, noisy and difficult to interpret. To

somewhat improve the results we used t = 0.5, but this did not

eliminate the noise problem entirely. The current imple-

mentation is based on adjustment of the local window size

based both on the ndf and on the desired smoothness of the

local mFSC curve.

2.4. Estimation of the number of degrees of freedom (ndf) in
single-particle maps

The resolution estimates discussed here involve the calcu-

lation of correlation coefficients. Normally, a threshold is

preselected based on a more-or-less convincing rationale and a

point is identified at which the resolution curve decreases

below this threshold. The inverse of the spatial frequency at

which this happens is called the ‘resolution’. A more sophis-

ticated approach calls for a statistical test, i.e. the determina-

tion of a point at which the resolution curve is still significantly

higher than the preselected threshold. In this case one also has

to choose the significance level; thus, such an approach

requires the selection of values for two arbitrary parameters.

Tests of the correlation-coefficient significance exist and

require only mild assumptions about the underlying statistical

distributions. However, they do require the noise in the data to

be approximately Gaussian and call for the determination of

the number of degrees of freedom (ndf). This constitutes a

challenge which until now has not been satisfactorily

addressed.

For many problems in image processing one can either

ignore the exact nature of the relations between samples or at

least assume that the assumption of the normality of noise

distribution is not severely violated. It is then reasonable to

argue that the ndf should be close to the number of samples.

However, in cryo-EM this is far from true as image formation

in electron microscopy (modeled by the contrast transfer

function and envelope functions; Zhu et al., 1997) and the final

stages of single-particle analysis, such as the calculation of 2D

class averages or the 3D reconstruction of maps which involve

interpolation, Fourier filtration and masking of the data,

introduce pixel-wise correlations. As a result, the ndf is

expected to be significantly lower than the number of samples.

A standard way to make the noise component in the data

have the statistical properties of white noise is to apply a

‘prewhitening’ step, i.e. to divide the Fourier transform (FT) of

the signal by the FT amplitudes. This makes the power spec-

trum flat and the autocorrelation function close to a delta

function, as expected for white noise. However, this does not

necessarily mean that the Fourier components are statistically

independent, as prewhitening in reciprocal space does not

result in a stationary distribution of noise amplitudes in real

space. Any unevenness in real space means there is a residual

convolution of Fourier components and thus the ndf is lower

than the number of samples.

In the following, we will demonstrate that in the case of

cryo-EM single-particle reconstruction prewhitening is suffi-

cient to accomplish a degree of independence of noise

components; moreover, the step is implied in the FSC/mFSC

methodology. We next show that the reduction of the ndf

owing to the Gaussian window W can be accurately accom-

plished using principal component analysis (PCA). Finally,

given that the mFSC uses only a binary mask, the resulting

adjustment of the ndf is obtained in a straightforward manner

by taking into account the fraction of the entire volume

occupied by the mask.

Given the two half-maps u and v with the image-formation

model

u ¼ f þ r1;

v ¼ f þ r2; ð8Þ

where f is the shared signal and r1 and r2 are independent

realizations of random noise, we estimate the residual noise in

the determined structure as
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e ¼ u� v: ð9Þ

The prewhitening simply requires the division of the FT of an

image by the rotational average of the square root of its power

spectrum, resulting in an image whose power spectrum is flat

and constant. In Fourier space we will write this as

êeflatðsÞ ¼
êeðsÞ

jjWðsÞêeðsÞjj
; ð10Þ

where the window function W(s) has the same meaning as in

(3), i.e. it is a binary ‘shell’, and, for each spatial frequency s,

the denominator is a norm within such a shell. The subscript

‘flat’ denotes the result of prewhitening; that is, an image with

a flat power spectrum. We recognize that the right-hand side of

(10) corresponds to those of (5) and (6), i.e. the computation

of both the FSC and the mFSC involves normalization within

spatial frequency shells, therefore the prewhitening is implied.

While it cannot be proven in general, for the cryo-EM struc-

tures that we tested the autocorrelation function of eflat(x) is

very narrow (below one pixel). More importantly, while the

rotational average (in real space) of e(x) has a distinct profile

(as expected, the solvent noise level external to the structure is

higher than the noise within the region of the structure), the

rotational average of eflat(x) is reasonably flat (Supplementary

Fig. S1). Therefore, we conclude that owing to the way that the

FSC (and mFSC) are computed, the implied prewhitening is

sufficient and no explicit step is needed. Finally, this implies

that the overall ndf ffi n3, where n is the linear size of the

reconstruction volume in voxels.

It follows that in the simple case of the FSC and in the

absence of a real-space mask, the ndf is given by the number

of Fourier components included in the calculation. Assuming a

shell width of one pixel, we have

ndf ffi 4�k2; ð11Þ

where we have replaced the spatial frequency s by an integer

index k of a Fourier transform pixel, with the two being

related by s = k/n, k = 0, 1, . . . , n/2. The latter is more

convenient to use in the context of ndf analysis.

For the mFSC we use a Gaussian window, and in this case an

exact calculation of the ndf is not straightforward. Therefore,

we used principal component analysis (PCA) to determine the

number of independent components by using an array of

random noise multiplied by a Gaussian window function. The

Monte Carlo simulation procedure comprises the following

steps.

(i) Initialize.

(1) Set the array length n.

(2) Initialize the covariance matrix c(n, n) = 0 and a

shuffled covariance matrix d(n, n) = 0.

(3) Set the number of Monte Carlo procedure iterations.

(ii) Generate an array of n independent randomly distrib-

uted samples from a Gaussian distribution N(0, 1).

(iii) Multiply the array by a Gaussian window function

wg(k).

(iv) Compute the outer product of the array and add it to

the covariance matrix c.

(v) Shuffle the order of the entries in the array, compute the

outer product of the outcome and add it to the shuffled

covariance matrix d.

(vi) Repeat steps (ii)–(v) a preset number of times.

(vii) Perform eigenanalysis of the covariance matrices c

and d.

(viii) Find the highest index c-matrix eigenvalue that is

larger than the corresponding d-matrix eigenvalue.

In step (v) of the procedure we incorporated the randomiza-

tion test for the number of principal components that suffi-

ciently represent the data set. Briefly, randomization

(‘shuffling’) of the order of the entries results in a data set that

no longer has any common structure. However, the resulting

pure noise data set has the same noise properties as the

original, nonrandomized set and can serve as a control.

Indeed, we retain only those components of the original data

set whose eigenvalues are larger than the corresponding

eigenvalues of the shuffled set.

The eigenvalue index found in step (viii) is the effective ndf

associated with a Gaussian window function wg(�g). We found

that to a good approximation ndf ffi 3�g (Supplementary Fig.

S2). It follows that for a 3D volume we have

ndfðkÞ ffi
4

3
�½ðkþ 1:5�gÞ

3
� ðk� 1:5�gÞ

3
�

ffi 12��gk2; k> 1:5�g: ð12Þ

The ndf is a quadratic function of the spatial frequency index k

and for typical volume sizes used in cryo-EM its values range

from ndf(5) ffi 1000 to ndf(200) ffi 1 500 000 (Supplementary

Fig. S2).

(12) gives ndf values in the absence of any masking during

mFSC calculation. In all practical applications the use of a

mask is a necessity as otherwise the resolution will be under-

estimated owing to the presence of noise surrounding the

structure. It is straightforward to notice that for a real-space

mask with |m| nonzero elements, (12) has to be modified to

reflect the fact that only a fraction of |m|/n3 real-space voxels is

included in the calculations:

ndfmðkÞ ffi
jmj

n3
12��gk2: ð13Þ

We note that molecules typically occupy a relatively small

region of the volume. The reasons for this are (i) imperfect

particle picking, meaning that the center of the projected

molecule can be far from the center of the 2D window, so as a

precaution window size has to be considerably larger than

particle size, (ii) the necessity to represent the contrast

transfer function (CTF) faithfully (Penczek et al., 2014) and

(iii) the need to avoid artifacts induced by reciprocal-space

operations in the discrete domain. It is often suggested that

the window size should be about 30% larger than the diameter

of the molecule. A spherical mask with a diameter of 0.7n

voxels thus occupies merely 18% of the volume. For high-

resolution structures and masks that closely follow the shape

of the molecule, given the presence of many invaginations and

openings, the occupied space can be less than 10% of the

volume.
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2.5. mFSC one-sided confidence interval

We previously showed that using Fisher’s z-transformation

of a correlation coefficient and the associated ndf, it is

straightforward to compute two-sided confidence intervals

(CIs) for a given value of FSC (Penczek, 2010). Further, we

showed that asymptotically, for FSC = 0 and at a confidence

level of 95% (statistical significance � = 5%), CIs correspond

to the 3� criterion introduced over three decades ago. This is

however incorrect, as the FSC/mFSC does not oscillate wildly

(unless serious data-processing mistakes were made); instead,

in all practical situations it decreases quasi-monotonically

from a value of one at low spatial frequencies (structures are

computed from random halves of the same data set, so at the

very least they are expected to have the same overall shape) to

zero beyond the resolution limit of the structure (in the higher

spatial frequency region, in which the signal is entirely

dominated by noise). We are instead interested in the spatial

frequency at which the FSC/mFSC is no longer higher than

some resolution cutoff threshold t. The inverse of the spatial

frequency at which this occurs we call the resolution of the

structure. Therefore, a sensible approach is to select t, the

confidence level, or equivalently to select statistical signifi-

cance � as the criterion and compute the one-sided CI. The

use of a CI has two major advantages: (i) the test incorporates

information about the statistical distribution of the FSC/mFSC

(associated with the error of measurement) and (ii) it includes

the number of degrees of freedom (effective sample size), thus

preventing the acceptance of results computed from a small

number of elements, which are unreliable. The latter point is

of particular importance for cryo-EM, where it is easy to

notice that the smaller the area of the mask, the ‘better’ the

resolution results, if read from the FSC curve directly.

We use a z-transformation of the mFSC,

z ¼ arctanhðmFSCÞ ¼ 0:5 log
ð1þmFSCÞ

ð1�mFSCÞ

� �
: ð14Þ

For a number of samples larger than 25 and mFSC < 0.95, z is

approximately normally distributed with variance

�2
z ¼

1

ndfm � 3
; ð15Þ

and the one-sided upper confidence interval is

zU ¼ z�
z1��

ðndfm � 3Þ1=2
: ð16Þ

(Note that to obtain the two-sided CI, � should be replaced by

�/2.) Finally, zU has to be transformed back to obtain a one-

sided upper CI for the mFSC,

CIU ¼ tanhðzUÞ ¼
expð2zUÞ � 1

expð2zUÞ þ 1
: ð17Þ

For each spatial frequency index k, we check the condition

CIUðkÞ 	 t ð18Þ

and we select the highest s for which it remains fulfilled. We

then set the resolution to n/k pixels, or given a pixel size p Å,

to pn/k Å.

We first note that for large ndfm, CIU is a slowly decreasing

function. This justifies our approach for the estimation of ndfm,

as given that in general we consider only two significant digits

of mFSC (the accuracy limit is predominantly imposed by the

size of a reciprocal-space pixel, i.e. the sampling of the mFSC

curve), such an approximate value of ndfm is entirely sufficient

to obtain a sensible confidence interval. Secondly, the two-

sided CI for the correlation coefficient can be related to the

standard deviation of the z-transformed coefficient and � =

5% corresponds to 2�. However, the 3� criterion was prob-

ably inspired by the use of more stringent standards in fields

where data are well behaved, as it corresponds to the statis-

tical significance � = 0.3%, a level that is excessive in biolo-

gical statistical data analysis. It is also likely that it was chosen

to compensate for the overestimation of the ndf prevalent at

the time in 3D cryo-EM structure determination. For a one-

sided CI scaling the use of units of standard deviations is

inappropriate as the test is asymmetric. Indeed, the upper

interval is

z�
z1��

ðndfm � 3Þ1=2
;1

� �

and replacing z1�� by the number of standard deviations is not

informative. Moreover, for 2� we have � = 2.3%, while for 3�
we have � = 0.1%, which is excessive. For these reasons we

scale CIU in significance levels and give preference to � = 1%.

Admittedly, the choice of statistical significance depends on

the data and ultimately it is the decision of the researcher.

3. Results

3.1. Single-particle reconstruction resolution estimation

For tests of single-particle resolution estimation by the

mFSC, we used the data set for the Plasmodium falciparum

80S ribosome bound to the antiprotozoan drug emetine

deposited in the EMPIAR archive as entry EMPIAR-10028.

The data set comprised 105 247 single-particle projection

images, with a window size of 360 � 360 pixels and a pixel size

of 1.34 Å on the specimen scale (for the remaining details, see

Wong et al., 2014). The diameter of the complex was 
295 Å

or 220 pixels. The 3D refinement was performed using the ML-

based program sxmeridien.py implemented in SPARX (Hohn

et al., 2007). The nominal resolution using a soft mask (the

same as used in the refinement) was 3.24 Å at 0.143 cutoff FSC

(149 Fourier pixels). All resolutions given in the following and

in the figure legends are obtained using a threshold of t =

0.143, unless otherwise noted.

We first observe that in the absence of a mask the FSC and

mFSC results coincide, as in this case (5) and (6) are equiva-

lent. The only difference is the reciprocal-space window

function, which in the former case is rectangular and in the

latter is a Gaussian function. In the absence of a mask, the

FSC and mFSC curves coincide, but owing to the use of

Gaussian function the mFSC curves are smoother (Fig. 1). The

smoothness of the mFSC curves is proportional to the value of

the half-width �g. At the same time, while �g = 3 may yield
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visually more appealing results, each point of the curve

represents a broader range of resolution values than for �g = 1,

so the curve is less detailed.

Of main concern in resolution estimation is the influence of

a real-space mask. To test the comparative performance of the

FSC and mFSC, we generated a series of three smooth-edged

masks with a cosine fall-off, with edges extending to five pixels

(for use with FSC, and after binarization at a threshold of 0.5

for use with mFSC; Fig. 2). The first, generous mask was used

in the 3D refinement. Since this particular 80S sample had

previously been documented to have extensive conforma-

tional variability (Wong et al., 2014), to avoid the suppression

of any peripheral and poorly resolved structural details this

mask was much broader than one would normally use in

refinement. The second mask was created in order to assess

the final resolution of the 80S map and closely follows the

overall shape of the ribosome. The third mask was created to

assess the influence of solvent within the structure and thus it

was generated using the surface threshold selected to display

the structure, at which the solvent is not visible. All mFSC

curves were computed with �g = 1 and a one-sided confidence

interval (CI) at � = 1%.

In the absence of a mask the CI resolution was 123 pixels

(3.92 Å), and it was only one Fourier pixel less than the mFSC

resolution (Fig. 3). Similarly small differences between the

resolution values occurred in the case of a generous mask:

FSC yielded 144 pixels (3.35 Å), while the mFSC CI resolution

was 142 pixels (3.40 Å). This is expected as the ndf in the latter

case was very large. Although this mask occupied only 11.5%

of the volume, the ndf at t = 0.143 was 88 000. For the tight

mask, which was used to yield the ‘reported’ resolution, FSC

yielded 151 pixels (3.19 Å), while the mFSC CI gave 147 pixels

(3.28 Å), which is significantly lower and attests to the exag-

gerated resolution estimates obtained with the traditional

FSC, even though this mask remains conservative by currently

acceptable standards. The mFSC estimate is robust even

though the tight mask occupies only 6.5% of the volume. The

solvent-excluding mask was very tight and essentially coin-

cided with the displayed structure [Fig. 2(d)]. As expected, the

FSC was artifactual as it never reached the zero level and

yielded an unrealistic resolution of 171 pixels (2.82 Å), which

can be dismissed by visual examination of secondary elements

within the map. However, the mFSC CI yielded a resolution of

152 pixels (3.17 Å), which is only two Fourier pixels or 0.11 Å

better than that for the tight mask, a difference which arguably

would not change the visual appearance of the map if used for

final low-pass filtration. Moreover, the curve is correct as it

decreases to zero at very high frequencies despite the fact that

the mask occupies only 0.6% of the volume, and at t = 0.143

the ndf was 11 700. This proves that the mFSC CI is a proper

and robust resolution measure that is immune to the influence

of the mask.

3.2. Helical reconstruction resolution estimation

The introduction of the iterative helical real-space recon-

struction (IHRSR) protocol two decades ago revolutionized

the structural determination of helical assemblies (Egelman,

2000). It employs a modified single-particle projection-

matching approach (Penczek et al., 1994), and by using rela-

tively short, consecutive filament segments made it possible to

process specimens that resisted analysis with the previously

dominant diffraction-based approach to high resolution (Diaz

et al., 2010). Indeed, the use of short segments alleviates the

problems caused by the natural flexibility of helical assemblies,

the wobbling of helical symmetry parameters and also struc-

tural heterogeneity (Egelman, 2015). However, estimation of

the resolution by the FSC has so far proved to be unreliable

and no sensible approach has been put forward. This is owing

to a combination of factors: (i) helical structures can be

thought of as a sequence of ‘unique’ disks (a concept similar to

asymmetric subunits in point-group symmetries) that are

rotated and stacked in the z direction. It is all but impossible

to isolate one using a classical FSC mask approach without

inducing severe artifacts. In many cases these disks are very

short, barely exceeding a few pixels. The inclusion of more

than one within a mask induces spurious correlations owing to

helical relations between them. Finally, a helical structure is

infinite from a mathematical point of view and has to be

truncated to fit a given box size, the dimensions of which only

rarely coincide with integer multiplicity of unique disks, thus

introducing undesirable relations between the Fourier trans-

form components. In the following we will show that the

mFSC approach all but eliminates all of these obstacles and

yields a reliable measure of the resolution of helical assem-

blies.

For tests of helical resolution estimation by the mFSC we

used the CARDMAVS filament data set (Wu et al., 2014). The

published structure was determined using the HELICON
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Figure 1
The reciprocal-space window is responsible for the smoothness of FSC
and mFSC curves. Red: FSC curve, shell width one Fourier pixel. Light
blue: mFSC, �g = 1. Dark blue: mFSC, �g = 3. All three curves coincide, so
for the purpose of illustrating their shape they were shifted along the x
axis by five pixels with respect to each other.



helical processing suite of programs (Penczek, 2014a), which

employs a modified IHRSR strategy and is implemented in

SPARX (Hohn et al., 2007). The data set comprised 12 817

projection images of filament segments, with a window size of

256 � 256 pixels and a pixel size of 1.24 Å on the specimen

scale. The radius of the filament was 46 Å (or 37 pixels). The

axial rise per asymmetric unit in the filament was 5.13 Å and

the azimuthal rotation per subunit was 101.15� (for the

remaining details, see Wu et al., 2014). It follows that the

‘unique disk’ was 5.13/1.24 ffi 4.14 pixels in height. In order to

minimize the problem with fractional disk size, we created a

cylindrical mask with a radius of 37 pixels and of 4.14 � 8 =

33.12 ffi 33 pixels in height (Fig. 4). During mFSC calculations

we adjusted the estimated ndf by dividing it by the number of

included disks; that is, eight.

The FSC resolution of the CARDMAVS filament structure

was 86 pixels (3.69 Å). The resolution curve was however

artifactual, as while it did intersect the zero threshold, it

subsequently rose and oscillated, adopting only positive values

(Fig. 5). Conversely, the mFSC CI resolution based on the
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Figure 2
3D reconstruction of the 80S ribosome (data set EMPIAR-10028). (a) Surface representation of the low-pass-filtered ribosome after power-spectrum
adjustment with a Gaussian high-pass filter. The structure has multiple flexible surface components and there is a residual ratchet movement of the 40S
subunit (the left part of the structure in the orientation shown). (b) A generous mask used during structure refinement fills 11.5% of the volume. (c) A
tight mask that typically would be used for resolution assessment fills 6.5% of the volume. (d) A very tight mask following the outline of the structure and
eliminating the most flexible regions and any solvent noise fills 0.6% of the volume.



eight-disk region was 79 pixels (4.02 Å). Not only is the curve

correct, oscillating about the zero level at very high frequen-

cies,1 but the resolution obtained appears to better correspond

to the visual appearance of the secondary elements in the

structure. This demonstrates that the mFSC is a proper tool

for bias-free resolution estimation of helical assemblies

determined by the quasi-single-particle approach of IHRSR.

3.3. Local resolution estimation

For tests of local resolution estimation in single-particle

maps by the mFSC, we used the data set for the P. falciparum

80S ribosome described in Section 3.1. In order to find

conditions that would reduce the noisiness of the outcome, we

performed a number of trials. We computed a set of mFSC

curves for box sizes of 113, 133 and 153, and set the box

location within the ribosome map and varied it within �1

pixel. We also set the Gaussian window width to �g = 3 and the

one-sided confidence interval (CI) to � = 1%. We compared

resolution determination at t = 0.143 and we determined that

an acceptable dispersion of values between neighboring box

locations was for a box size of 153 (results not shown).

Moreover, the smaller window size of 113 reduces the ndf in

comparison with a box of 153 about 2.5 times; thus, the reso-

lution estimates are accordingly lower and are below the

overall resolution estimate for the 80S ribosome structure.

The local resolution map is shown at five resolution values

from 3.69 to 2.98 Å, with the highest resolution value present

in the map being 2.79 Å [Fig. 6(a)]. The average value of the

local resolution within the map region was 3.26 Å. The overall

resolution of the map computed with a tight mask [Fig. 2(c)]

and �g = 3 was 3.24 Å, which demonstrates excellent agree-

ment between the overall mFSC estimate and the local reso-

lution mFSC estimate. The resolution map is highly detailed

and supports the previous interpretation of the P. falciparum

80S ribosome structure. The peripheral elements are either

flexible or substochiometric and thus have lower resolution,

the head of the small 40S subunit swivels, and internal parts of

the structure are more rigid and have higher resolution.

Of concern is the appearance of the central section of the

local resolution 80S map [Fig. 6(b)]. It is striking that the local

resolution has a pronounced radial fall-off, i.e. the central part

has high resolution and it becomes progressively worse

towards the outer part of the complex. There are various

possibilities why this is the case. (i) It reflects the actual
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Figure 3
The influence of a mask on FSC and mFSC resolution estimation. Black:
mFSC without a mask; resolution 124 pixels (3.89 Å), CI (not shown) 123
pixels (3.92 Å). Solid red: FSC using a generous mask [Fig. 2(b)];
resolution 144 pixels (3.35 Å). Solid blue: mFSC using a generous mask
[Fig. 2(b)]; resolution 143 pixels (3.37 Å). Solid light blue: CI of the
mFSC; resolution 142 pixels (3.40 Å). Dotted red: FSC using a tight mask
[Fig. 2(c)]; resolution 151 pixels (3.19 Å). Dotted blue: mFSC using a tight
mask [Fig. 2(c)]; resolution 147 pixels (3.28 Å). Dotted light blue: CI of
the mFSC; resolution 147 pixels (3.28 Å). Dashed red: FSC using a very
tight mask [Fig. 2(d)]; resolution 171 pixels (2.82 Å). Dashed blue: mFSC
using a very tight mask [Fig. 2(d)]; resolution 154 pixels (3.13 Å). Dashed
light blue: CI of the mFSC; resolution 152 pixels (3.17 Å). The horizontal
line marks the t = 0.143 resolution-cutoff threshold. All mFSC curves
were computed with �g = 1 and one-sided confidence interval (CI) at � =
1%.

Figure 4
Cryo-EM structure of the CARDMAVS filament. Black: a single ‘unique’
disk. Transparent blue: the cylindrical mask used for mFSC calculation.
Its height is eight ‘unique’ disks.

1 In the absence of common signal, the expected value of a correlation
coefficient is zero and its variance is 1/ndf. Thus, at very high frequencies
where there is no common signal, the FSC values computed for quasi-
independent half-volumes should have positive or negative values (with their
average approaching zero), creating a visual effect of the FSC curve
‘oscillating’ about the zero axis. If the FSC values remain positive (or in
some cases only negative) at high frequencies, this indicates that severe
mistakes have been made in the structure-determination process (or in the
manner in which the FSC is computed) and such a resolution curve cannot be
used for resolution determination.



properties of the complex. This is however unlikely as the

radial dependence is too regular to be accidental and the same

effect has been observed in other results published by us and

others. There seems to be growing awareness that the varia-

bility of external parts of cryo-EM complexes is likely to be

owing to data-processing artifacts (Liu et al., 2018). (ii) The

effect is owing to a combination of sample properties and the

way that the 3D refinement was carried out. Indeed, most

ribosome samples contain a combination of various states. In

particular, the presence of the so-called ratchet rearrangement

of subunits is often observed (Frank & Agrawal, 2000; Ratje et

al., 2010). This is a relative rotation of small (40S) and large

(60S) subunits with respect to each other. As a result, in local

resolution maps all peripheral elements will appear to have a

lower resolution, but this is simply an artifact induced by the

choice of system of coordinates. This was noted and counter-

acted by the development of a dedicated refinement proce-

dure in which multi-particle 3D sorting was combined with

focusing 3D refinement of the large ribosomal subunit

(Penczek et al., 2014; Behrmann et al., 2015). While this

explains at least part of the strong resolution dependence in

the case of ribosome samples, it does not explain the similar

dependence observed for other systems. (iii) Finally, the radial

dependence might be to a large extent a trivial reflection of

the distribution of 3D alignment errors. The alignment

involves two estimates for each 2D projection image: firstly

the in-plane translation, which is believed to have small errors

and which moreover would not manifest itself in a radial

fashion in 3D, and secondly angular errors, as 3D projection

images are oriented in polar coordinates and three Eulerian

angles have to be established. These rotational errors are

typically larger than the translational errors and, needless to

say, would exhibit a strong radial dependence in local reso-

lution maps.

3.4. Segment-focused resolution estimation

We extracted 100 segments from the 80S map using the

e2segment3d.py utility, k-means option, as available in
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Figure 6
Local resolution map of the 80S ribosome. (a) Side view: left, 40S subunit; right, 60S subunit. (b) Central section of the resolution map in the orientation
shown in (a). The resolution is color coded as follows: red, 3.69 Å; yellow, 3.57 Å; green, 3.35 Å; light blue, 3.15 Å; dark blue, 2.98 Å.

Figure 5
Resolution estimation for the CARDMAVS filament structure. Red: FSC
with a cylindrical mask, height 256 pixels (entire volume), radius 37
pixels; resolution 86 pixels (3.69 Å). Dark blue: mFSC with a cylindrical
mask, height 80 pixels (eight ‘unique’ disks), radius 37 pixels; resolution
85 pixels (3.73 Å). Magenta: CI at a 5% significance level; resolution 79
pixels (4.02 Å). Light blue: CI at a 1% significance level; in this case the
resolution is the same as for the 5% CI.



EMAN2 (Baker et al., 2012). This roughly corresponds to the

number of component proteins in the eukaryotic ribosome,

which is 79–80. From these, we chose six such that they would

represent various regions of the 80S ribosome (Fig. 7). We

made no attempt to make sure that the extracted segments are

biologically meaningful, as this would require expertise and

effort far exceeding the scope and purpose of this work.

e2segment3d.py extracted segments as binary masks, so we

used them directly to compute, independently for each of

them, segment-focused mFSCs using �g = 3, CI at a 1%

significance level and t = 0.143.

The resolution of the entire 80S ribosome using the very

tight mask (which follows the structure closely and thus best

corresponds to the results of segmentation) and �g = 3 was 156

pixels (3.09 Å). The resolution of segments varied between

126 pixels (3.83 Å) and 158 pixels (3.05 Å) (Fig. 8). These

results generally agree with those of local resolution based on

the moving box: peripheral segments (green, light blue,

magenta) that are located close to the external surface of the

ribosome have a lower resolution, while those buried inside

(red, dark blue) have a higher resolution.

The segment-based mFSC yields results that are easier to

interpret as it eliminates the problem of gradual changes in

local resolution, which stem from the limited spatial resolva-

bility of the box-based method. The method also allows one to

probe the resolution of functionally relevant subunits of a

structure or even secondary-structure elements such as larger

�-helices or �-sheets. We also note that on average each

segment occupies 0.008% of the volume, which is about the

same as the 153 box used in the local resolution in Section 3.2.

However, the masks of the segments only include protein (or

RNA in the case of ribosome), while the boxes contain a large

percentage of solvent areas, so segment-focused mFSC yields

a more reliable assessment of the local resolution of the

structure.

4. Implementation

The methodology described here was implemented in the

SPARX system (Hohn et al., 2007) as the sxresolution
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Figure 8
Resolution CI curves at a 1% significance level of six selected segments
(out of 100) extracted from the 80S map. The resolution was estimated
using �g = 3, CI at a 1% significance level and t = 0.143. The color coding
of the curves matches the color coding of the segments in Fig. 7.

Figure 7
Resolution of six selected segments (out of 100) extracted from the 80S map. (a) Side view. (b) Top view. In both views the small subunit (40S) is on the
left and the large subunit (60S) is on the right. The resolution was estimated using �g = 3, CI at a 1% significance level and t = 0.143. The overall
resolution of the 80S ribosome with the very tight mask was 156 pixels (3.09 Å). Segments: green, 126 pixels (3.83 Å); yellow, 154 pixels (3.13 Å); red, 158
pixels (3.05 Å); light blue, 144 pixels (3.35 Å); dark blue, 152 pixels (3.17 Å); magenta, 141 pixels (3.42 Å).



command (Penczek, 2020). SPARX is distributed jointly with

the EMAN2 system (Tang et al., 2007). The program was

written in high-level Python3, with the CPU-intensive

components written in low-level C++. Statistical special

functions are computed with SciPy (Oliphant, 2007). The 3D

Fourier transforms are computed using the FFTW3 library

(Frigo & Johnson, 2005). Since the most time-consuming part

of the execution of the code is the calculation of the 3D FTs,

we used a threaded version of FFTW3.

5. Discussion

We have addressed two fundamental issues in resolution

estimation of cryo-EM maps using the FSC methodology: (i)

the strong influence of a mask on the results and (ii) the

estimation of the number of degrees of freedom (ndf) in the

data, which allowed us to properly calculate one-sided confi-

dence intervals (CIs) for FSC coefficients. We termed the new

method modified FSC (mFSC) and we stress the fact that it

affords the user freedom to choose almost any mask. We

showed that not only does the mFSC yield a reliable map of

local resolution values, but also segment-focused resolution

curves, and thus it permits quality exploration of functionally

significant regions, segments and even larger secondary

elements of cryo-EM maps.

We demonstrated that the mFSC is free of mask-induced

artifacts. However, we determine the resolution not based on

the mFSC values, but using associated CIs, which take into

account not only the ndf, and thus the size of the mask, but

also the user-decided significance level of the outcome. For

generous masks the results agree very well with the traditional

FSC. For very tight masks, including masks that coincide with

the threshold at which the structure is visualized, the mFSC

yields sensible results, while the FSC is dominated by artifacts

and cannot be used. We also demonstrated that the mFSC is

an ideal tool for resolution estimation of helical assemblies;

that is, for systems that so far have lacked reliable quality

measures. These properties of the mFSC make it easy to

extend it to the estimation of local resolution. In this case, the

estimation of the ndf is particularly valuable as the CI-based

resolution prevents users from accepting statistically unreli-

able or exaggerated results, which is normally the case when

the ndf is very small.

The results presented, while convincing, are only valid

under the broad statistical assumptions under which mFSC

calculations can be justified. The mFSC, being essentially a

correlation coefficient, requires the data to be normally

distributed and, in order to use Fisher’s z-transformation, to

be based on at least 20–30 samples. In our applications the

latter is almost always the case, not to mention that smaller

sets would mean a very small ndf and, as a result, the CI would

always yield very low resolution, so that the results would not

be informative.

We have put forward arguments that normality assumptions

usually hold well for cryo-EM maps. While this may be

disputed for 2D projection images owing to the low electron

count, 3D voxels are averages of hundreds if not thousands of

samples, so that the number of added elements is more than

sufficient to justify the normality assumption. Another

concern is noise additivity. Owing to alignment, one would

expect that higher-density regions would have lower errors

(noise) than low-density regions, so the noise is correlated

with the signal (3D structure). However, following our

approach to noise estimation (9), we tested this possibility by

correlating the difference between 80S ribosome half-maps

with their sum and the result was zero. While this is reassuring,

this subject requires broader studies.

Of greater concern is the independence of the Fourier

coefficients. Owing to the high quality of the results, many if

not most cryo-EM structures in the last decade have been

determined using the maximum-likelihood (ML) method-

ology (Sigworth et al., 2010). Briefly, for a 3D refinement and

reconstruction this means that each 2D projection image is

backprojected into the 3D volume using a number of

(‘probability’-weighted) in-plane translations and 3D projec-

tion directions. The number of these orientations depends

mainly on the resolution of the current structure approxima-

tion. Ideally, upon convergence there would be one unique

orientation per projection image, but in current implementa-

tions this is not the case. On the contrary, the number of

assigned orientations appears to increase upon convergence.

While on the one hand this gives the surface representation of

the structure a visually appealing, smooth appearance, it also

means that the Fourier components of this map are strongly

correlated, even if these correlations are short-range. Worse,

the natural basis for these correlations are polar coordinates

(owing to the rotation of 2D projections about the origin of

the system), while the resolution is computed using Fourier

expansion in Cartesian coordinates. It was observed that as a

result the resolution of a map computed using full ML-derived

orientations of projections is higher by several Fourier pixels

than the resolution of a map computed using only a proper,

unique set of 2D projections of highest probability with one

direction per projection (Cheng et al., 2015). While this effect

is easy to demonstrate, quantifications of the resolution bias of

ML results are lacking. One possibility would be to enhance

the mFSC methodology by additional tests of independence,

for example using concepts of local correlations of 3D Fourier

coefficients of maps (Sousa & Grigorieff, 2007).

In conclusion, the mFSC yields reliable results that are free

of mask-induced artifacts and, owing to the inclusion of the

ndf and thus reporting the resolution based on its statistical

significance, the mFSC methodology reduces some of the

arbitrariness associated with cryo-EM resolution estimates.

This is not to say that the results are entirely objective. As we

have described above, unresolved issues remain and it is still

possible to bias the 3D refinement towards higher resolution

values.

Acknowledgements

The author declares that no competing financial interests exist.

research papers

IUCrJ (2020). 7, 995–1008 Pawel A. Penczek � Cryo-EM resolution estimation 1007



Funding information

This work was supported by the National Institutes of Health

(P01 121203 to PAP).

References

Baker, M. R., Rees, I., Ludtke, S. J., Chiu, W. & Baker, M. L. (2012).
Structure, 20, 450–463.

Behrmann, E., Loerke, J., Budkevich, T., Yamamoto, K., Schmidt, A.,
Penczek, P., Vos, M., Bürger, J., Mielke, T., Scheerer, P. & Spahn,
C. T. (2015). Cell, 161, 845–857.

Cardone, G., Heymann, J. B. & Steven, A. C. (2013). J. Struct. Biol.
184, 226–236.

Cheng, Y., Grigorieff, N., Penczek, P. & Walz, T. (2015). Cell, 161, 438–
449.

Diaz, R., Rice, W. J. & Stokes, D. L. (2010). Methods Enzymol. 482,
131–165.

Egelman, E. H. (2000). Ultramicroscopy, 85, 225–234.
Egelman, E. H. (2015). Arch. Biochem. Biophys. 581, 54–58.
Frank, J. & Agrawal, R. K. (2000). Nature, 406, 318–322.
Frank, J., Verschoor, A. & Boublik, M. (1981). Science, 214, 1353–

1355.
Frigo, M. & Johnson, G. (2005). Proc. IEEE, 93, 216–231.
Harauz, G. & van Heel, M. (1986). Optik, 73, 146–156.
Heel, M. van (1987). Ultramicroscopy, 21, 95–100.
Heel, M. van & Hollenberg, J. (1980). Electron Microscopy at

Molecular Dimensions, edited by W. Baumeister, pp. 256–260.
Berlin: Springer.

Hohn, M., Tang, G., Goodyear, G., Baldwin, P. R., Huang, Z.,
Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D. & Ludtke,
S. J. (2007). J. Struct. Biol. 157, 47–55.

Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. (2014). Nat. Methods,
11, 63–65.

Liu, Y., Gonen, S., Gonen, T. & Yeates, T. O. (2018). Proc. Natl Acad.
Sci. USA, 115, 3362–3367.

Malhotra, A., Penczek, P. A., Agrawal, R. K., Gabashvili, I. S.,
Grassucci, R. A., Jünemann, R., Burkhardt, N., Nierhaus, K. H. &
Frank, J. (1998). J. Mol. Biol. 280, 103–116.

Oliphant, T. E. (2007). Comput. Sci. Eng. 9, 10–20.

Penczek, P. A. (2008). International Tables for Crystallography, Vol.
B, 3rd ed., edited by U. Shmueli, pp. 375–388. New York: Springer.

Penczek, P. A. (2010). Methods Enzymol. 482, 73–100.
Penczek, P. A. (2014a). sxhelicon. http://sparx-em.org/sparxwiki/

sxhelicon.
Penczek, P. A. (2014b). sxlocres. http://sparx-em.org/sparxwiki/

sxlocres.
Penczek, P. A. (2020). sxresolution. http://sparx-em.org/sparxwiki/

sxresolution.
Penczek, P. A., Fang, J., Li, X., Cheng, Y., Loerke, J. & Spahn, C. M.

(2014). Ultramicroscopy, 140, 9–19.
Penczek, P. A., Grassucci, R. A. & Frank, J. (1994). Ultramicroscopy,

53, 251–270.
Ratje, A. H., Loerke, J., Mikolajka, A., Brünner, M., Hildebrand,
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