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In cryogenic electron microscopy (cryo-EM) of radiation-sensitive biological

samples, both the signal-to-noise ratio (SNR) and the contrast of images are

critically important in the image-processing pipeline. Classic methods improve

low-frequency image contrast experimentally, by imaging with high defocus, or

computationally, by applying various types of low-pass filter. These contrast

improvements typically come at the expense of the high-frequency SNR, which

is suppressed by high-defocus imaging and removed by low-pass filtration.

Recently, convolutional neural networks (CNNs) trained to denoise cryo-EM

images have produced impressive gains in image contrast, but it is not clear how

these algorithms affect the information content of the image. Here, a denoising

CNN for cryo-EM images was implemented and a quantitative evaluation of

SNR enhancement, induced bias and the effects of denoising on image

processing and three-dimensional reconstructions was performed. The study

suggests that besides improving the visual contrast of cryo-EM images, the

enhanced SNR of denoised images may be used in other parts of the image-

processing pipeline, such as classification and 3D alignment. These results lay

the groundwork for the use of denoising CNNs in the cryo-EM image-processing

pipeline beyond particle picking.

1. Introduction

In single-particle cryogenic electron microscopy (cryo-EM),

high-resolution three-dimensional (3D) structures of bio-

logical macromolecules are determined by iteratively aligning

and averaging a large number of noisy two-dimensional (2D)

projection images of molecules embedded in a thin layer of

vitreous ice (Cheng, 2015). This process requires the identifi-

cation of individual particles in bright-field images (particle

picking), sorting the particle images according to conforma-

tional state (classification), iteratively determining the orien-

tation of each particle (alignment) and finally calculating a 3D

reconstruction. The success of each of these steps is critically

dependent on the signal-to-noise ratio (SNR) of the cryo-EM

images at all frequencies (Jensen, 2001). The frequency-

dependent SNR is mathematically well defined (Bershad &

Rockmore, 1974; Frank & Al-Ali, 1975). The visual contrast of

cryo-EM images is less strictly defined but is closely related to

the low-frequency amplitudes. Both are fundamentally limited

by the radiation sensitivity and transparency of the frozen-

hydrated cryo-EM specimen, which necessitates low-dose

phase-contrast imaging (Glaeser, 1999). They are further

limited by the shape of the contrast transfer function (CTF),
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which is a sine function and suppresses the amplitude at the

low-spatial frequencies that are responsible for producing

image contrast (Wade, 1992).

Within these constraints, the SNR of cryo-EM images is

typically well below 1 (more noise than signal; Frank & Al-Ali,

1975). The conventional approach to maximizing low-

frequency SNR and increasing image contrast is to increase

the defocus of the objective lens. Higher defocus alters the

CTF of the electron microscope, producing higher amplitudes

and thus a greater contrast and SNR at low spatial frequencies.

This comes at the expense of reducing the amplitude (and thus

the SNR) at the intermediate and high spatial frequencies

required for high-resolution structure determination (Cheng,

2015). This intrinsic issue becomes more acute for small or

irregularly shaped particles and greatly increases the difficulty

of determining the 3D structures of such specimens (Herzik et

al., 2019).

Another method to generate image contrast is to use a

phase plate to induce a phase shift in the CTF, improving the

contrast at low spatial frequencies without intentionally

perturbing the information at high spatial frequencies (Danev

& Nagayama, 2001). The most successful phase-plate device

currently available is the Volta phase plate, which is a

continuous carbon film placed in the back focal plane (Danev

et al., 2017). In practice, however, the Volta phase plate does in

fact cause a noticeable loss of SNR at high frequency, although

the precise reason remains unknown (Buijsse et al., 2020). A

new type of laser phase plate that is currently being developed

will presumably not have such issues (Schwartz et al., 2018,

2019). Nevertheless, complementary and alternative methods

of image-contrast enhancement in cryo-EM could therefore

be of great value.

Here, we evaluate the performance of a novel computa-

tional image-restoration approach that has recently been

demonstrated by several groups to increase contrast in cryo-

EM images (Buchholz et al., 2019; Tegunov & Cramer, 2019;

Bepler et al., 2019). The basic idea of this approach is to train

a parameterized image operator (a convolutional neural

network; CNN) as an image denoiser. The training scheme

used in our approach and others, called noise2noise (Lehtinen

et al., 2018), uses noisy cryo-EM data as a training signal and is

fully compatible with existing strategies for cryo-EM data

acquisition. As similarly demonstrated previously by others,

we show that CNNs trained with noise2noise significantly

enhance the contrast of cryo-EM images, similar to the effects

of the Volta phase plate. We further show that in terms of

SNR, the denoising CNNs greatly reduce the noise power at

all spatial frequencies. At low and intermediate spatial

frequencies, this corresponds to a genuine increase in the

relative strength of the true signal in the image. At higher

spatial frequencies, noise reduction by CNNs also introduces

false signal or ‘bias’. We developed general methods to

quantify the bias induced by the denoiser and evaluated its

influence on image alignment and 3D reconstruction. Bias

introduced by denoising CNNs does not prevent the highly

accurate alignment of denoised particles and largely averages

out during 3D reconstructions. It is likely that the practical and

broad use of denoised images in all stages of the cryo-EM

image-processing pipeline will require some minor adapta-

tions of the existing 3D reconstruction software to account for

the heavily modulated amplitude spectra. However, our

results demonstrate that there is no reason, in principle, why

denoising CNNs could not be used to great benefit in single-

particle cryo-EM. Our quantitative characterization of the

influence of denoising CNNs on the SNR broadens the

potential applications of denoising CNNs in single-particle

cryo-EM image-processing pipelines.

2. Training a convolutional neural network to denoise
cryo-EM images

CNNs are powerful parameterized function approximators

(Krizhevsky et al., 2017). They consist of a large number of

small convolution filters with learnable parameters. Each

convolutional filter is applied to the input image in real space

and passed through a pixel-wise nonlinear function with a

shape parameter (typically a threshold-based masking func-

tion called a ‘rectified linear unit’ or ‘ReLU’). By stacking a

large number of these simple operations in series (convolu-

tional layers), complex input–output maps (functions) can be

approximated (Goodfellow et al., 2016). Since each operation

in a CNN is differentiable, the parameters of a CNN can be

learned from a large set of input–output image pairs using

gradient-based stochastic optimization. To train a CNN to

approximate an image denoiser, these input–output pairs

typically consist of an image with and without noise (Zhang et

al., 2017). Training consists of calibrating the parameters of the

CNN such that applying the CNN to the noisy image produces

the noiseless image. To ensure that the CNN generalizes

properly to unseen images, the content of the images and the

distribution of the noise in the training data set must be

representative of those expected during use. These require-

ments, however, pose a major problem for training a denoising

CNN for cryo-EM images: the radiation sensitivity of frozen-

hydrated biological samples makes it impossible to obtain a

noiseless cryo-EM image in principle (Glaeser, 1999).

Lehtinen and coworkers recently demonstrated that pairs of

noisy images of the same object can be used in place of noisy/

noiseless pairs to train denoising CNNs (Lehtinen et al., 2018).

Training is performed as if the noisy image pair were a noisy/

noiseless pair: the CNN is applied to the first noisy image and

the discrepancy between the output and the second noisy

image is calculated (the loss). The loss is used to calculate the

direction in which each parameter should be optimized to

make the output and the second noisy image more similar (the

loss gradient). Lehtinen and coworkers showed that given a

sufficiently large set of noisy image pairs, the parameters of

the denoiser converge on the same parameter values as would

be obtained using conventional noisy/noiseless training data.

This training strategy, termed noise2noise, enables the

parameters of a denoising CNN to be learned without ever

seeing noiseless images. It simply requires that the noise in the

training pairs be statistically uncorrelated given the signal. In

fact, noise2noise training makes no other assumptions about
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the structure of the signal or the distribution of the noise and

learns both implicitly from the training data. A more mathe-

matical description of the noise2noise training scheme is

provided in Section S1, and we also refer the reader to the

original noise2noise paper and the more general framework

for self-supervised denoising described in noise2self (Batson &

Royer, 2019; Lehtinen et al., 2018).

Nowadays, cryo-EM images recorded using direct electron-

detection cameras are dose-fractionated movies containing

many frames. We can generate two images with the same

signal but uncorrelated noise by summing up disjoint sets of

movie frames, such as the even and odd frames after motion

correction (Zheng et al., 2017), and electron dose-weighting

(Grant & Grigorieff, 2015). Applying the noise2noise scheme

to cryo-EM images therefore requires no alteration in data

collection and can work on previously collected data sets.

Note that the noise considered here is mostly shot noise and

not amorphous features in the sample such as particle debris

or the background added by vitreous ice. Such features are

considered ‘structural noise’ when calculating 3D recon-

structions, but the denoising CNN has no way of distinguishing

them from the desired particle signal and cannot remove

them. Nevertheless, shot noise is the dominant source of noise

in cryo-EM imaging (Baxter et al., 2009).

3. Results

3.1. Implementing a denoising CNN for cryo-EM

In principle, the noise2noise training scheme only requires a

large data set of noisy image pairs to train a denoising CNN.

In practice, we found that the denoising performance depends

strongly on the structure of the CNN and the preprocessing of

the training images. We implemented the noise2noise proce-

dure in a denoising program, restore, in which we used a CNN

architecture similar to the U-net used by Lehtinen and

coworkers but with some modifications (Ronneberger et al.,

2015). We replaced each block of convolutional layers in the

U-net with a wide-activation convolutional layer (Yu et al.,

2018) and used depth-to-space up-sampling to minimize

aliasing artifacts (Odena et al., 2016). We found that these

modifications improved the training loss and the visual quality

of the output compared with a standard U-net. In the

supporting information, we provide a full description of the

CNN architecture used in this work (Supplementary Fig. S2,

Section S1).

Currently, for each specific cryo-EM data set, we use part of

the data set as training pairs to train a specific CNN and use

the trained CNN to denoise cryo-EM images of the entire data

set. This is possible because a typical cryo-EM data set consists

of thousands of movies and the training process is relatively

fast (a few hours). With such an abundance of training data,

overfitting the CNN is unlikely.

To generate training data from a set of dose-fractionated

electron movies, we first generate motion-corrected and dose-

weighted sums of the even and odd frames using MotionCor2

(Zheng et al., 2017). We have tested our procedure on a

number of examples (discussed below). The physical pixel

sizes of these data sets are approximately 1 Å. Each cryo-EM

image is modified by the CTF of the electron microscope.

Considering that the defocus and astigmatism of each image is

different, the CTF modifies otherwise similar signals in unique

but predictable ways, and a denoising CNN would need to

learn to distinguish all CTF-aberrated signals from noise. We

reasoned that it would be advantageous to correct the CTF in

the noisy images upfront, so that the CNN would not need to

learn to be invariant to CTF modulations of the underlying

signal. Thus, before training and applying the CNN to denoise

all images in a data set, we performed phase-flipping on the

images by multiplying their Fourier transforms by the sign of

the CTF and computing the inverse Fourier transform. While

the examples we show in the following are phase-flipped prior

to training the CNN and denoising the image, it may be

unnecessary to phase-flip the training images prior to the

denoising procedure.

Considering that the spectral SNR at high spatial frequen-

cies is very low [i.e. below �0.25 beyond 0.2 Å�1 in Fig. 2(e)]

(Baxter et al., 2009), we do not expect any denoising algorithm

to recover the signal under such conditions. We typically bin

training images by Fourier cropping, which effectively reduces

the total noise in the image and makes it smaller. In the

example of the 20S proteasome shown later, we Fourier crop

the training images to a pixel size of �1.5 Å. To facilitate

training in batches, we break up the phase-flipped, Fourier-

cropped training images into square patches (typically 192 �

192 pixels). For most of the macromolecular specimens

examined, a patch of this size contains at least several parti-

cles. We normalize each patch by subtracting the mean pixel

value and dividing by the standard deviation.

Finally, we train the CNN using the Adam stochastic opti-

mization algorithm with weight normalization (Kingma & Ba,

2014; Salimans & Kingma, 2016). We find that training CNNs

with noise2noise is fast, typically achieving a stable plateau in

the value of the loss function in several epochs (20–30 min on

a single modern GPU). We train for 100 epochs.

Once trained, the CNN can be used to denoise full images.

We preprocess these images in the same way as during

training, except that we do not break the image into patches.

This is possible because CNNs can operate on images with

arbitrary shape and size. Finally, we unbin the denoised image

by zero-padding its Fourier transform, low-pass filtering with a

soft radial Fourier mask and calculating the inverse Fourier

transform. The result is a denoised image with the shape and

pixel size of the original image, band-limited to the same

frequency as the binned training data.

3.2. Contrast enhancement for diverse cryo-EM specimens

We trained denoising CNNs on several previously collected

cryo-EM data sets with a range of specimen types and imaging

conditions: the Plasmodium falciparum 80S ribosome

(�3.2 MDa), the human TRPM4 ion channel (�700 kDa), a

human integrin–Fab complex (�280 kDa) and the catalytic

domain of human protein kinase A (�43 kDa). Despite
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differences in particle shape, molecular

weight and imaging conditions, all of

the denoised images show significantly

enhanced visual contrast, with particle

shapes that are clearly defined and

consistent with the shape of these

molecules [Figs. 1(a)–1(d)] (Autzen et

al., 2018; Campbell et al., 2020; Herzik

et al., 2019; Wong et al., 2014). We show

four cases here, but we have not found

any case in which the contrast of single-

particle cryo-EM specimens is not

significantly enhanced by training and

applying a denoising CNN.

To understand how a denoising CNN

affects information at different spatial

frequencies in the image, we trained a

denoising CNN on a data set for a well

characterized test specimen: the Thermo-

plasma acidophilum 20S proteasome

(T20S; Fig. 2). For this data set, we used

all images in the data set to train the

denoiser and we band-limited the

resolution of the training data to 3 Å

by Fourier cropping. Compared with

the original image [Fig. 2(a)], the

denoised image [Fig. 2(b)] shows

significant image contrast without the

blurring shown in the low-pass-filtered

image [Fig. 2(c)]. The Fourier power

spectrum [Fig. 2(d)] and spectral SNR

(SSNR) [Fig. 2(e)] calculated from the

image before and after denoising show

that the SNR is boosted at the low-

frequency Fourier components without

a reduction at high frequency. This

behavior is different from a linear

Fourier filter (such as the typically used

low-pass filter), which boosts the low-

frequency amplitude by suppressing

the high-frequency amplitude but

without any improvement in the SSNR

at any frequency. Thon rings associated

with the CTF are present and correctly

located in the denoised images, and the

defocus values estimated from the

denoised images are mostly close to

those estimated from the original noisy

image [Figs. 2(d) and 2( f)]. A few

images that have obviously different
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Figure 1
Performance of denoising CNNs on real cryo-
EM images. (a) P. falciparum ribosome
particles, (b) TRPM4 particles, (c) integrin–
Fab particles and (d) protein kinase A
particles before (left) and after (right)
denoising.



estimated defocus values after denoising [upper left quadrant

of Fig. 2( f)] are heavily contaminated with crystalline ice.

These examples demonstrate that CNNs trained by the

noise2noise scheme are effective in denoising and contrast

enhancement on a wide range of real single-particle cryo-EM

specimens. Visualization of particles is significantly enhanced,

facilitating more efficient manual image evaluation and

particle picking. While we preprocess our images differently,

use a novel CNN architecture and train a single CNN model

per data set, our results are broadly consistent with other

efforts using similar denoising approaches (Bepler, Morin et

al., 2019; Bepler, Noble et al., 2019; Tegunov & Cramer, 2019)

and illustrate the robustness of the noise2noise algorithm.

3.3. Quantitative estimation of signal enhancement and noise
suppression

A major question concerning the denoising procedure that

we describe here is whether the signal is faithfully retained

at all spatial frequencies. A related question is whether the

denoising procedure can facilitate any other steps in the

single-particle cryo-EM pipeline beyond the visual evaluation

of images and particle picking.

To answer these questions, we extended the conventional

cross-correlation-based estimators for SNR and spectral SNR

(SSNR) to handle images modified by a deterministic, arbi-

trary operation such as denoising (Section S3; Baxter et al.,

2009; Bershad & Rockmore, 1974; Frank & Al-Ali, 1975). Our

approach estimates the magnitude of any ‘false signal’ or ‘bias’

added to each image during denoising. This is possible because

pairs of denoised images of the same object will share signal

and bias in common, while a denoised image and its paired

noisy image will only share the signal. By estimating the signal

variance, bias variance and noise variance, we can compute

quantities such as SNR and other similar quantities that take

bias into account. Importantly, we can compute these quan-

tities as a function of spatial frequency.

We estimated the SNR for noisy and denoised images of the

entire T20S data set [Fig. 3(a)]. While the mean SNR of the

noisy images is 0.14, the mean SNR of the denoised images is
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Figure 2
Effects of denoising on Fourier amplitudes. (a) Cryo-EM image of 20S proteasome recorded at a defocus of 0.4 mm. (b) The same cryo-EM image after
denoising. (c) The same image after applying a low-pass filter in Fourier space to 1/20 Å. The image contrast in (a), (b) and (c) is manually scaled so that
the histograms of pixel intensities are similar (small insert in each panel). (d) Fourier transforms calculated from the original (upper left) and denoised
cryo-EM images (right). Thon-ring simulation for CTF determination is shown on the lower left. (e) Spectra signal-to-noise ratio (SSNR) profile
calculated from cryo-EM images before (orange) and after (blue) denoising. SSNR = FRC/(1 � FRC), where FRC is calculated between sums of even
and odd frames. ( f ) Scatter plot of defocus values determined from images before and after denoising. Defocus values were estimated using Gctf (Zhang,
2016) and the major and minor defocus values were averaged. The small population of off-diagonal images (24 of 843) appear to be heavily contaminated
with crystalline ice.



8.3. This enhancement, however, could have resulted from

some noise being transformed into bias by the denoiser,

inducing spurious correlations between denoised images. We

define another quantity, the signal-to-noise-and-bias ratio

(SNBR), which is the ratio of the signal variance and the sum

of the noise and bias variances (Section S3). Intuitively, the

SNBR represents the relative power of true signal compared

with the power of all other components in the image. For the

T20S data set the mean SNBR is 1.4, which is still a significant

improvement over the original SNR of the noisy images.

We estimated the frequency-dependent variance (power) of

the signal, bias and noise before and after denoising [Fig. 3(b)].

When we plot the average of these quantities over all micro-

graphs in the T20S data set, we find that the noise in the

original image dominates the signal at all but the lowest spatial

frequencies. After denoising, the noise is much smaller than

the signal at all spatial frequencies. Additionally, the signal is

significantly larger than the bias at low spatial frequencies

(>0.1 Å�1) but has similar power at higher spatial frequencies.

Taken together, these results indicate that denoising

increases the strength of the true signal in the denoised images

by a sizable factor. However, denoising also transforms a

portion of the uncorrelated noise into statistically correlated

bias, which is undesirable. The nature of this bias is not clear.

One possible interpretation is that high spatial frequency

patterns of signal may be impossible to disambiguate in images

with low SNR. For example, the precise arrangement of side

chains in an image of a folded protein will be encoded by

high spatial frequency Fourier components. When heavily

corrupted with noise, an image of such a signal may have

several plausible interpretations. Because the CNN could be

wrong about any particular arrangement of side chains, the

best guess for minimizing the mean-squared error is a pixel-

wise average over all possible interpretations. This average

would appear blurred and would match no single arrangement

exactly, but would not be far off (in the mean-squared error

sense) from any single plausible arrangement.

If this is the case, low spatial frequencies should be rela-

tively less biased than high spatial frequencies in denoised

images because the higher SNR at low spatial frequencies

should make it easier for the CNN to identify the signal

unambiguously. This is what we observe in Fig. 3(b) and is

consistent with the denoising CNN enhancing the true signal

at low spatial frequencies while mostly transforming the noise

into bias at high spatial frequencies.

3.4. 3D reconstructions with denoised particles

There are two questions concerning the bias being intro-

duced into the denoised images. Firstly, is the bias correlated

between images of different particles? Assuming that the

correct angular orientation of each individual particle image

is known, correlated bias will generate artificial structural

features in the 3D reconstruction, but uncorrelated bias will be

averaged out without generating artifacts. Secondly, would

such bias interfere with the image-alignment procedure and

prevent direct structure determination from denoised images?

We explore these two questions by performing 3D recon-

structions and refinements on denoised images of the 20S

proteasome.

Using the T20S proteasome data set mentioned above, we

performed standard single-particle cryo-EM structure deter-

mination on the original noisy micrographs, from particle

picking to iterative refinement and 3D reconstruction, using

an initial model that was calculated from the atomic model of

T20S proteasome and low-pass filtered to 60 Å. The final

reconstruction was refined to 3.3 Å resolution [estimated from

the Fourier shell correlation (FSC) = 0.143 criterion (Rosen-

thal & Henderson, 2003)] from 302 290 particles using

cryoSPARC without applying symmetry [Fig. 4(a), Supple-

mentary Fig. S2(a), blue curve]. Even without sharpening,

densities for side chains are clearly visible. This reconstruction

and the orientational parameters of each particle in the final

data set are then treated as references to quantitatively eval-

uate the behavior of denoised particles in both 3D recon-

struction and structure refinement.

We extracted the same particles from the denoised micro-

graphs and calculated a 3D reconstruction using relion_

reconstruct by using the orientation and CTF parameters

determined from the original noisy images [Fig. 4(b)]. The

reconstruction of denoised particles has the correct overall

shape and some detailed structural features, but appears to be

significantly blurred compared with the 3D reconstruction
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Figure 3
Quantitative analysis of signal, noise and bias in denoised images. (a)
Histograms of SNRs before (blue) and after (orange) denoising and
SNBRs after denoising (green) for images from the T20S proteasome
data set. Smooth lines represent kernel density estimates of the
distribution. The x axis is on a logarithmic scale. (b) Spatial frequency-
dependent variance (power) of the signal (blue), bias (orange) and noise.
Noise power is calculated before (purple) and after (green) denoising.
The y axis is on a logarithmic scale. Curves represent the mean of the
quantities for all images in the T20S proteasome data set. Shaded regions
show one standard deviation above and below each mean curve. All
quantities were calculated as described in Sections S2 and S3.



of the original particles [Fig. 4(b)], although the resolution

estimation from FSC extends to 3.4 Å [Supplementary Fig.

S2(b), red curve]. The resolution is not uniform, as some

helices are well resolved, with visible helical grooves, while

others are completely unresolved [Fig. 4(b)]. However, after

sharpening by a negative B factor, �40 Å2 for the raw particle

reconstruction and �180 Å2 for the denoised particle recon-

struction, all high-resolution features, including side-chain

densities, are similar in both reconstructions [Figs. 4(c) and

4(d)]. The rotational averaged Fourier amplitudes of these two

density maps also indicate the need for a larger negative

B-factor sharpening for the reconstruction of denoised images

[Fig. 4(e)]. An FSC curve calculated from the two recon-

structions is close to 1 before 4 Å and falls off at 3.3 Å

[Fig. 4( f), blue curve]. Because the denoised particles are

band-limited to 1/3 Å�1, this suggests that the denoised images
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Figure 4
3D reconstructions of denoised T20S proteasome images. (a) Reconstruction of the original particle images without sharpening for the T20S proteasome
in top (upper) and side (bottom) views. Iterative structure determination and refinement were performed using cryoSPARC (Punjani et al., 2017) with
D7 symmetry. For consistency with the other panels, the final reconstruction was calculated by transferring all parameters into RELION and using
relion_reconstruct without symmetry (Zivanov et al., 2018). (b) Reconstruction of denoised particle images in top (upper) and side (bottom) views, with
the same orientation parameters as used in (a). (c) Reconstruction of the original particles after sharpening by �40 Å2. (d) Reconstruction of the
denoised particles after sharpening by �180 Å2. (e) Comparison of rotational averages of the Fourier amplitude of reconstructions of original images
(blue) and denoised images (red) calculated using the same parameter refined from the original images. ( f ) FSC curves between reconstructions of
original and denoised particles using orientational parameters determined from the original particles (blue), between reconstructions of original and
denoised particles using parameters determined from the denoised particles (orange) and between reconstructions of original particles using parameters
determined from either the original or denoised particles (green). (g) Histogram of errors in the orientation parameters estimated during the refinement
of denoised particles.



contain high-resolution information until nearly the point

where it was explicitly truncated. Importantly, it also suggests

that the bias introduced by the denoising procedure is suffi-

ciently random and can be removed by averaging large

numbers of particle images. The large B factor needed to

sharpen the reconstruction of denoised particles may be

caused by the significantly enhanced low-frequency SNR of

denoised particle images.

We further used the same stack of denoised particles for a

standard iterative procedure of particle alignment and 3D

reconstruction using the same initial reference model and

RELION 3D refinement (cryoSPARC does not support the

refinement of phase-flipped particle images). The resolution of

the final reconstruction estimated by the gold-standard FSC

is 3.4 Å [Supplementary Fig. S2(b), orange curve]. Similarly,

the reconstruction without sharpening shows strong low-

resolution features, but B-factor sharpening reveals correct

high-resolution features [Supplementary Figs. S2(c), S2(d) and

S2(e)]. The angular differences in the orientations determined

from the original noisy and denoised particles are small

[Fig. 4(g)], and the ResLog plots (Stagg et al., 2014) of both

reconstructions are comparable [Supplementary Fig. S2( f)]. A

3D reconstruction calculated from original noisy particles but

using orientation parameters determined from the denoised

particles has a slightly better resolution [3.3 Å; Supplementary

Fig. S2(b), green curve] and is highly correlated with the 3D

reconstruction determined from the original particle images

[Fig. 4( f), green curve]. We speculate that the small angular

errors are caused either by bias introduced into the denoised

images or by the overweighting of low-frequency information

during alignment of the denoised images.

4. Conclusions and discussion

Denoising CNNs can significantly enhance the contrast of

noisy cryo-EM images. The most immediate applications

should be the visual evaluation of specimens before large-

scale data collection and particle picking for small or irregu-

larly shaped macromolecules. Beyond these applications, the

quantitative evaluation of frequency-dependent signal, noise

and bias show that the true signal in the denoised images is

enhanced at the low and intermediate spatial frequencies

required for particle alignment and is maintained at high

frequency.

Iterative refinement of denoised particles leads to recon-

structions with nearly correct structural features at high

resolution, demonstrating the potential of using denoised

particles directly for single-particle cryo-EM structure

determinations. Small errors in the orientation parameters

determined from denoised images could be corrected by

substituting and further refining the original noisy images. This

reversibility is advantageous for cryo-EM image processing,

unlike phase plates, which improve contrast by irreversibly

modulating the image.

Although we have not demonstrated it here, CNN

denoising also has the potential to facilitate the better iden-

tification of small classes of particles that correspond to

weakly populated intermediate states of macromolecular

machines. This will be especially true if the intermediate states

differ in low- or intermediate-resolution structural features,

such as the relative positioning of a protein domain. Consid-

ering that the bias is more pronounced at high frequency, it

may be desirable to merge denoised and original images in

Fourier space by combining the low-frequency signal from the

denoised image with the high-frequency signal from the

original image. We envision that such merged images could be

used for the entire single-particle cryo-EM image-processing

pipeline. In the supporting information, we discuss a method

of merging the original noisy and denoised particle images.

The major impediment to directly using denoised images or

merged images for alignment and classification appears to be

that the current procedures implemented in widely used cryo-

EM software are not tuned to handle the heavily modulated

amplitude spectra of denoised images. It may also be useful to

consider other uses for denoised images. With higher SNR

single particles, the particle is clearly delineated from the

background. This would make per-particle real-space masking

possible for small particles with irregular shapes, eliminating

most of the noise surrounding the particle and presumably

enhancing alignment. Similarly, it could make previously

proposed pseudo-atom approaches for estimating initial

models and measuring macromolecular flexibility more tract-

able (Joubert & Habeck, 2015).

5. Related literature

The following references are cited in the supporting infor-

mation for this article: Abadi et al. (2016), Asarnow et al.

(2019), Booth et al. (2004) and Mindell & Grigorieff (2003).
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