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New Nd–Fe–B crystal structures can be formed via the elemental substitution of

LA–T–X host structures, including lanthanides (LA), transition metals (T) and

light elements, X = B, C, N and O. The 5967 samples of ternary LA–T–X

materials that are collected are then used as the host structures. For each host

crystal structure, a substituted crystal structure is created by substituting all

lanthanide sites with Nd, all transition metal sites with Fe and all light-element

sites with B. High-throughput first-principles calculations are applied to evaluate

the phase stability of the newly created crystal structures, and 20 of them are

found to be potentially formable. A data-driven approach based on supervised

and unsupervised learning techniques is applied to estimate the stability and

analyze the structure–stability relationship of the newly created Nd–Fe–B

crystal structures. For predicting the stability for the newly created Nd–Fe–B

structures, three supervised learning models: kernel ridge regression, logistic

classification and decision tree model, are learned from the LA–T–X host crystal

structures; the models achieved maximum accuracy and recall scores of 70.4 and

68.7%, respectively. On the other hand, our proposed unsupervised learning

model based on the integration of descriptor-relevance analysis and a Gaussian

mixture model achieved an accuracy and recall score of 72.9 and 82.1%,

respectively, which are significantly better than those of the supervised models.

While capturing and interpreting the structure–stability relationship of the Nd–

Fe–B crystal structures, the unsupervised learning model indicates that the

average atomic coordination number and coordination number of the Fe sites

are the most important factors in determining the phase stability of the new

substituted Nd–Fe–B crystal structures.

1. Introduction

The major challenge in finding new stable material structures

in nature requires high-throughput screening of an enormous

number of candidate structures, which are generated from

different atomic arrangements in three-dimensional space. In

fact, only a handful of structures among these candidates are

likely to exist. Therefore, for the non-serendipitous discovery

of new materials, candidate structures must be generated

strategically so that the screening space is reduced without

overlooking potential materials.

Multiple strategies have been proposed for the high-

throughput screening processes (Butler et al., 2018; Curtarolo

et al., 2013; Saal et al., 2013) for finding various new materials.

Almost all well known screening methods consider first-prin-
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ciples calculations as the basis for the estimation of physical

properties. Screening processes have been successfully devel-

oped for theoretically understanding rare-earth-lean inter-

metallic magnetic compounds (Körner et al., 2016, 2018),

Heusler compounds (Ma et al., 2017; He et al., 2018; Balluff et

al., 2017), topological insulators (Yang et al., 2012; Li et al.,

2018), perovskite materials (Emery et al., 2016; Michalsky &

Steinfeld, 2017), cathode coatings for Li-ion batteries (Aykol

et al., 2016) and M2AX compounds (Ashton et al., 2016). In

recent years, various screening processes have been used to

replace canonical approaches by machine learning (ML)

methods. A few notable works based on ML models involve

searching for hard-magnetic phases (Möller et al., 2018),

Heusler compounds (Kim et al., 2018), bimetallic facet cata-

lysts (Ulissi et al., 2017), BaTiO3-based piezoelectrics (Xue et

al., 2016b), polymer dielectrics (Mannodi-Kanakkithodi et al.,

2016), perovskite halides (Pilania et al., 2016) and low-

thermal-hysteresis NiTi-based shape memory alloys (Xue et

al., 2016a).

ML is expected to play three different roles in performing

screening processes. The first role is to replace the density

functional theory (DFT) calculation and reduce the calcula-

tion cost of physical property estimation, e.g. convex hull

distance (Kim et al., 2018) and adsorption energy (Ulissi et al.,

2017). The reported models have achieved reasonable results

in statistical evaluation tests such as cross validation.

However, ensuring the reliability of extrapolating the physical

properties of new materials is a major problem because the

new screening materials do not always possess the same

distribution as the training materials.

The second role of ML is to increase the success rate in

screening processes. Given a list of hypothetical structures,

ML methods are utilized for recommending the most likely

new potential materials using probabilistic models [e.g.

Bayesian optimization techniques (Yamashita et al., 2018; Xue

et al., 2016b)]. This approach requires a list of potential

candidates to be prepared as input, which is primarily based

on human intuition. The bottleneck of the current recom-

mendation methods is that a large number of known property

materials are required as references for the system to start an

effective recommendation process. This number increases

dramatically with the material description dimension.

Furthermore, the computational cost of the recommended

process increases significantly with the number of reference

materials.

The third role of ML is to effectively generate new structure

candidates. The notable algorithms for this purpose are

random search-based algorithms (Pickard & Needs, 2006,

2007, 2011; Wang et al., 2010; Zhang et al., 2017), evolutionary-

algorithm-based algorithms such as USPEX (Glass et al., 2006;

Oganov et al., 2011; Lyakhov et al., 2013), XtalOpt (Lonie &

Zurek, 2011) and recent deep-learning-based models (Noh et

al., 2019; Ryan et al., 2018). In practice, it is possible to

generate random structures by forcibly combining different

crystal structures in silico. The successful discovery of novel

material structures under high pressure demonstrates the

effectiveness of this approach when certain constraints can be

set. However, it is not easy to rationally combine different

crystal structures with different compositions and symmetry in

a plausible manner. Therefore, oversight in the search for a

small number of potential materials cannot be controlled. The

combination of first-principles calculations and ML is required

for creating effective methods for exploring materials.

One of the most common strategies for generating possible

crystal structure candidates is to appropriately combine or

apply the atomic substitution method to previously known

structures. Beginning with a dataset of host crystal structures

with known physical properties and predefined substitution

operators, we can employ the atomic substitution method to

create new hypothetical crystal structures with the same

skeleton as that of the host crystal structure. Widely used

substitution operators such as single-site, multisite or element

substitution operators are selected depending on the host

dataset and experts’ suggestions. These suggestions are typi-

cally based on domain knowledge about the physicochemical

similarity between elements, atom–atom interactions, struc-

tural stability mechanisms and target physical property

mechanisms. Consequently, the substitution method can work

well with knowledge about material synthesis and lead directly

to material synthesis ideas. Finally, an ‘understanding’ of the

structure–stability relationship can be directly obtained from

screening results, which can help in systematically correcting

researchers’ suggestions.

1.1. Our contribution

In this study, we propose a protocol for exploring new

crystal structures under a given combination of constituent

elements and the use of data mining to elucidate the struc-

ture–stability relationship (Fig. 1). As a demonstration

example, we search for the new crystal structures of Nd–Fe–B

materials by applying the atomic substitution method to a

dataset containing host crystal structures composed of

lanthanides, transition metals and light elements. We apply

high-throughput first-principles calculations (Fig. 1, block A)

to estimate the formation energy. Based on this, we evaluate

the phase stability (hereinafter referred to as stability) of all

generated Nd–Fe–B crystal structures (Section 2.2). The new

Nd–Fe–B structures discovered after the screening steps are

presented in Section 2.3. Supervised models are trained to

mimic first-principles calculations from the host and substi-

tution crystal structures and their calculated formation energy.

Based on results from supervised learning models, relevance

analysis is performed to extract the hidden structural

descriptors that determine the formation energy of the

generated Nd–Fe–B crystal structures (Fig. 1, block B).

Finally, we trained an unsupervised learning model (Fig. 1,

block C) that uses the obtained relevant descriptors to

appropriately group newly generated crystal structures. We

compare the obtained group labels and potentially formable

states of all crystal structures to determine the relationship

between the structure and stability of the Nd–Fe–B crystal

structures.
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2. Screening for potential Nd–Fe–B crystal structures

2.1. Creation of new crystal structure candidates

In this study, we focus on crystalline magnetic materials

comprising a lanthanide (LA), a transition metal (T) and a

light element (X). We selected the LA atoms from Y, La, Ce,

Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu; T

from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru,

Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au and Hg; and X

from H, B, C, N and O. We collected the details of 5967 well

known crystal structures with formation energies from the

Open Quantum Materials Database (OQMD) (Saal et al.,

2013) (version 1.1) to form the host material dataset, denoted

D
host
LA�T�X . Each host crystal structure consists of one or two

rare-earth metals, one or two transition metals and one light

element. Additionally, from Dhost
LA�T�X we selected a subset of

all the crystal structures comprising Nd, Fe and B, denoted

D
host
Nd�Fe�B.

We create new candidates for crystal structures consisting of

Nd, Fe and B with the same skeleton as the host crystal

structures in Dhost
LA�T�X using a substitution method. For each

host crystal structure, a substituted crystal structure is created

by substituting all lanthanide sites with Nd, all transition metal

sites with Fe and all light-element sites with B. The new

structures are compared with each other and with the crystal

structures in the Dhost
LA�T�X dataset to remove duplication. We

follow the comparison procedure proposed by qmpy (the

python application programming interface of OQMD) (Saal et

al., 2013b). The structures of the materials are transformed

into reduced primitive cells to compare the two lattices; all

lattice parameters are compared. The internal coordinates of

the structures are compared by examining all rotations

allowed by each lattice and searching for rotations and

translations to map the atoms of the same species into one

another within a given level of tolerance. Here, any two

structures in which the percentage deviation in lattice para-

meters and angles are smaller than 0.1 are considered to be

identical. Furthermore, we apply our designed orbital field

matrix (OFM) (Section 3.1) to eliminate duplication. Two

structures are considered to be the same if the L2 norm of the

difference in the OFM is less than 10�3. Note that two struc-

tures with the same shape but slightly different in size are

considered to be identical. Finally, we obtain a dataset for the

substituted crystal structures, denoted Dsubst
Nd�Fe�B, with 149 new

non-optimized Nd–Fe–B crystal structures. These structures

are then optimized using the first-principles calculations

described in detail in Section 2.2.

2.2. Assessment of phase stability

First-principles calculations based on DFT (Kohn & Sham,

1965; Hohenberg & Kohn, 1964) are one of the most effective

calculation methods used in materials science. DFT calcula-

tions can accurately estimate the formation energy of mate-

rials, which is used to build phase diagrams for systems of

interest. Hence, the phase stability of a material – in other

words, the decomposition energy of a material (C—H

distance) – is obtained via the convex hull analysis of phase

diagrams and the decomposition of the material into other

phases. We used the formation energy obtained from OQMD

(Saal et al., 2013b; Kirklin et al., 2015) of Dhost
LA�T�X to build

phase diagrams and calculate the C—H distance. The C—H

distance of a material is defined as follows:

�E ¼ �Ef � EH; ð1Þ

where �Ef is the formation energy and EH is determined by

projecting from the chemical composition position to an end

point appearing on the convex hull facets. Details of the

algorithm for finding these convex hull facets from hull points

can be found in the work by Barber et al. (1996) and Saal et al.

(2013). Hereafter, we consider the C—H distance �E as the

degree of the phase stability of a material. A material that lies

below or on the C—H surface, �E = 0, is a potentially

formable material in nature, and a material associated with
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Figure 1
Workflow for extracting the structure–stability relationship of Nd–Fe–B crystal structures by integrating high-throughput first-principles calculations,
supervised learning and unsupervised learning techniques.



�E > 0 is unstable. A material associated with �E slightly

above the C—H surface is considered to be in a metastable

phase.

Metastable phases are synthesized in numerous cases, for

which we consider a reasonable range for the C—H distance

(Balachandran et al., 2018). Referring to the prediction

accuracy of formation energy [�0.1 eV per atom by OQMD

(Saal et al., 2013)], we define all materials with �E � 0.1 eV

per atom as potentially formable structures and as unstable

materials otherwise. Following this definition,Dhost
LA�T�X can be

divided into subsets Dhost stb
LA�T�X and Dhost unstb

LA�T�X for potentially

formable crystal structures and unstable crystal structures,

respectively.

D
host
Nd�Fe�B includes 35 Nd–Fe–B crystal structures, which can

be used as references to construct the Nd–Fe–B phase

diagram. Seven materials were found for ternary materials,

which were comprised of Nd, Fe and B. To verify the reliability

of the dataset used to construct the phase diagram as well as

the stability definition, we removed each ternary material and

used the remaining materials in Dhost
Nd�Fe�B to estimate its

corresponding convex hull distance. Under this test, among

the seven ternary crystal structures, there are two formable

ternary materials, NdFe4B4 and Nd5Fe2B6, which lie on the

surface of the CH of the phase diagram with �E = 0.0.

Additionally, one material, NdFe12B6, is potentially formable

(metastable) with a stability of less than 0.1 eV per atom, as

shown in Table VI of the supporting information. It should be

noted that the important magnetic material, Nd2Fe14B, did not

exist in the OQMD database at the time when we conducted

this study. Based on the Nd–Fe–B phase diagram and the

formation energy of �0.057 eV per atom calculated using

DFT, the corresponding �EDFT is 1.4 � 10�4 eV per atom.

This result implies that Nd2Fe14B is in the stable phase. To

conclude, we confirm that the experimentally synthesized

structures all satisfy the stability definition given in equation

(1) in this section.

We followed the computational settings of OQMD (Saal et

al., 2013b; Kirklin et al., 2015) for estimating the formation

energy of the newly created Nd–Fe–B crystal structures in

D
subst
Nd�Fe�B. The calculations were performed using the Vienna

Ab initio Simulation Package (VASP) (Kresse & Hafner, 1993,

1994; Kresse & Furthmüller, 1996a,b) by utilizing projector-

augmented wave method potentials (PAW) (Blöchl, 1994;

Kresse & Joubert, 1999) and the Perdew–Burke–Ernzerhof

(PBE) (Perdew et al., 1996) exchange-correlation functional.

We employed DFT + U for Fe, and all calculations were

spin-polarized with ferromagnetic alignment of the spins and

with initial magnetic moments of 5, 0 and 0 �B for Fe, Nd and

B, respectively. For each newly created structure, we

performed coarse optimization, fine optimization and a single-

point calculation, following the ‘coarse relax’, ‘fine relax’ and

‘standard’ procedures of the OQMD. The k-grid for these

calculation series is selected by the k-points per reciprocal

atom (KPRA): 4000, 6000 and 8000 for ‘coarse relax’, ‘fine

relax’ and ‘standard’, respectively. We used a cutoff energy of

520 eV for all calculations. The total energies of the standard

calculations are used for the formation energy calculations,

�EDFT
f . The C—H distance of a newly created structure can be

estimated from �EDFT ¼ �EDFT
f � EH.

After calculating the formation energy, we found 20 new

Nd–Fe–B crystal structures that are not in Dhost
LA�T�X , in which

the C—H distance of the corresponding optimized structure is

less than 0.1 eV. These structures originate from different host

structures with different skeletons. Note that we found one

structure, Nd2FeB10, with a stability of less than �0.01 eV per

atom. Thus, this structure is also used as a reference to

construct the Nd–Fe–B phase diagram. Among the 20 new

Nd–Fe–B structures, there are three pairs of indistinguishable

structures sharing the same chemical compositions (NdFe2B2,

NdFeB4 and NdFe4B). Details about these structures are given

in Table 1. The phase diagram of the Nd–Fe–B materials,

including the 20 new substituted structures, is shown in Fig. 2.
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Table 1
Properties of new Nd–Fe–B materials: formation energy by DFT EDFT

f (eV per atom), stability by DFT �EDFT, magnetization M (�B per formula unit
and �B Å�3 in parentheses) and mean displacement �r, estimated by hypothesized structures and final-optimized structures.

Formula EDFT
f (eV per atom) �EDFT (eV per atom) M [�B (�B Å�3)] �r (Å) Host materials OQMD id of host materials

Nd2FeB10 �0.522 �0.011 13.11 (0.050) 0.038 Ce2NiB10 2025052 (Jeitschko et al., 2000)
NdFe2B6 �0.473 0.008 3.30 (0.040) 0.150 CeCr2B6 94775 (Kuzma & Svarichevskaya, 1972)
Nd4FeB14 �0.506 0.030 26.30 (0.063) 0.069 Ho4NiB14 2107958 (Geupel et al., 2001)
NdFe2B2-� �0.343 0.046 4.41 (0.067) 0.085 DyCo2B2 1852452 (Niihara et al., 1987)
NdFeB4-� �0.462 0.052 17.42 (0.073) 0.041 CeNiB4 2023354 (Akselrud et al., 1984)
NdFeB4-� �0.455 0.060 18.73 (0.072) 0.050 CeCrB4 2023373 (Kuzma et al., 1973)
Nd2Fe3B5 �0.374 0.066 6.85 (0.055) 0.143 Eu2Os3B5 180411 (Schweitzer & Jung, 1986)
Nd2Fe5B4 �0.284 0.069 10.31 (0.077) 0.206 Eu2Rh5B4 183842 (Jung, 1990)
NdFe4B-� �0.092 0.070 21.64 (0.134) 1.769 CeCo4B 185365 (Kuzma & Bilonizhko, 1973a)
NdFe12B6 �0.231 0.072 45.56 (0.117) 1.012 CeNi12B6 2077072 (Akselrud et al., 1985)
Nd5Fe21B4 �0.052 0.077 57.73 (0.140) 2.342 Nd5Co21B4 126928 (Liang et al., 2001)
Nd5Fe19B6 �0.115 0.080 50.02 (0.128) 1.820 Nd5Co19B6 125302 (Liang et al., 2001)
NdFe4B-� �0.081 0.081 65.19 (0.135) 0.241 NdNi4B 2069928 (Salamakha et al., 2003)
Nd3Fe13B2 �0.027 0.081 36.12 (0.144) 2.961 Ce3Ni13B2 1778822 (Kuzma, 1981
Nd3Fe11B4 �0.131 0.085 28.22 (0.122) 0.150 Ce3Co11B4 1852403 (Kuzma & Bilonizhko, 1973b)
Nd2Fe3B6 �0.375 0.088 16.02 (0.066) 0.132 Ce2Re3B6 1966804 (Kuzma et al., 1989)
NdFe4B4 �0.342 0.090 17.30 (0.048) 0.140 CeRu4B4 2074891 (Poettgen et al., 2010)
NdFe2B2-� �0.297 0.092 7.25 (0.057) 0.142 CeIr2B2 180315 (Jung, 1991)
Nd3Fe8B6 �0.249 0.094 16.06 (0.079) 0.543 Eu3Rh8B6 1771853 (Jung, 1990)
Nd2Fe7B3 �0.147 0.096 35.04 (0.116) 0.209 Ce2Co7B3 2016489 (Kuzma & Bilonizhko, 1974)



We also calculated the magnetization of these materials. We

used open-core approximation to treat the 4f electrons of Nd.

The contribution of 4f electrons to the magnetization is

JgJ
¼ 3:273. The magnetization is normalized to the volume of

a unit cell:

M ¼ MDFT þ JgJ
nNd ¼ MDFT þ 3:273nNd; ð2Þ

where MDFT is the magnetization given by DFT and nNd is the

number of Nd atoms in the unit cell. All calculation results are

summarized in Table 1.

2.3. Newly discovered Nd–Fe–B crystal structures

Fig. 3 shows five specific crystal structures of the predicted

formable crystal structures. A common characteristic of these

crystal structures is that boron atoms form a network structure

and Nd and Fe atoms are surrounded by the cages formed by

the boron atom network. In the Nd4FeB14 crystal structure,

these boron cages are arranged in parallel and Fe atoms are

sandwiched between two halves of the boron atom octahe-

dron. In the crystal structure of Nd2FeB10, which is confirmed

by DFT calculations and selected as the hull point in the phase

diagram, Nd and Fe atoms are trapped in the boron atom

cages; however, these cages are arranged in herringbone

patterns. Interestingly, two stable crystal structures of NdFeB4

were found as the proportion of Fe increased. One NdFeB4-�
structure was obtained by the elemental substitution of the

original CeNiB4 crystal structure [id: 2023354 (Akselrud et al.,

1984)]. This crystal structure is similar to the Nd4FeB14 crystal

structure, with cages formed by boron networks that trap Nd

and Fe atoms and are arranged in parallel. In contrast, in the

other predicted crystal structure for NdFeB4 {NdFeB4-�
structure obtained by the elemental substitution of the

CeCrB4 [id: 2023373 (Kuzma et al., 1973)] crystal structure},

the boron atoms form a planar network structure comprised of

heptagon–pentagon ring pairs. Another form of boron cage is

found in the NdFe2B6 crystal structure. All potentially form-

able crystal structures are shown in detail in the supporting

information.

3. Mining structure–stability relationship of Nd–Fe–B
crystal structures

3.1. Materials representation

We must convert the information regarding the materials

into descriptor vectors. We employ the OFM (Lam Pham et al.,

2017; Pham et al., 2018) descriptor with a minor modification.

The OFM descriptors are constructed using the weighted

product of the one-hot vector representations, O, of atoms.

Each vector O is filled with zeros, except those representing

the electronic configuration of the valence electrons of the

corresponding atom. The OFM of a local structure, named �, is

defined as follows:

� ¼ O>central � 1:0;
X

k

�k

�max

Ok

 !
; ð3Þ

where �k is the solid angle determined by the face of the

Voronoi polyhedra between the central atom and the index k

neighboring atom, and �max is the maximum solid angle

between the central atom and neighboring atoms. By

removing the distance dependence in the original OFM

formulation (Lam Pham et al., 2017; Pham et al., 2018), we

focus exclusively on the coordination of valence orbitals and

the shape of the crystal structures. The mean over the local
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Figure 2
Phase diagram of Nd–Fe–B including materials obtained from OQMD
(blue circles) and 20 new substituted structures confirming it is potentially
formable (red squares). Hull points are denoted in green. The total
number of disparate structures with the same chemical composition is
shown in parentheses.

Figure 3
Representative Nd–Fe–B structures discovered by applying the elemental substitution method to the lanthanide, transition metal and rare-earth material
dataset. Left to right: Nd4FeB14, Nd2FeB10, NdFeB4-�, NdFeB4-� and NdFe2B6. All 20 structures discovered are shown in the supporting information.



structure descriptors is used as the descriptor of the entire

structure:

OFMp ¼
1

Np

XNp

l¼1

�l
p; ð4Þ

where p is the structure index, and l and Np are the local

structure indices and the number of atoms in the unit cell of

the structure p, respectively.

Note that owing to the designed cross product between the

atomic representation vectors of each atom, each element in

the matrix represents the average number of atomic coordi-

nates for a certain type of atom. For example, an element of a

descriptor obtained by considering the product of a d6 element

of the center atom representation and an f4 element of the

environment atom representation, denoted (d6, f4), shows an

average coordination number of f4 (Nd) sites surrounding all

d6 (Fe) sites. As the term s2 appears at all descriptors for Fe,

Nd and B sites, the element (s2, s2) represents the average

coordination number of a given structure. All of these OFM

elements provide a foundation for the intuitively interpretable

investigation of the structure–stability relationship.

3.2. Mining of formation energy data of LA–T–X crystal
structures with a supervised learning method

We trained the ML models that can predict the formation

energy of the crystal structures, �Ef, from Dhost
LA�T�X , which is

represented using the OFM descriptor and the corresponding

known formation energy data. We applied kernel ridge

regression (KRR) (Murphy, 2012), which is demonstrated to

be useful for predicting material properties. In the KRR

algorithm, the target variable, y = �Ef, is represented by a

weighted kernel function as follows:

ŷyp ¼
X

k

ckKðxp; xkÞ ¼
X

k

ck expð��jxp � xkjÞ; ð5Þ

where ŷyp is the predicted formation energy of crystal structure

p; xp and xk are the representation vectors of crystal structures

p and k based on the OFM descriptor, respectively; k runs

over all crystal structures in the training set; Kðx; xkÞ is the

Laplacian kernel function. The ck coefficients are estimated by

minimizing the total square error regularized by the L2 norm

as follows:
P

kðŷyk � ykÞ
2
þ �

P
k c2

k, where yk and ŷyk are the

observed and predicted target values of the structure k,

respectively. We perform a ten-times tenfold cross-validation

process to determine parameters � and � in the KRR models.

These parameters are selected by minimizing the mean

absolute error (MAE) of the validation set.

Fig. 4 shows the ten-times tenfold cross-validated compar-

ison of the formation energies calculated using DFT and those

predicted by the KRR model for the crystal structures in

D
host
LA�T�X (blue circles). Fig. 4 also shows a comparison of the

formation energies calculated using DFT and those predicted

using the KRR model (trained using all crystal structures in

D
host
LA�T�X) for the crystal structures in Dsubst

Nd�Fe�B (red circles).

In the cross-validated comparison of materials in Dhost
LA�T�X ,

the formation energies predicted via KRR show good agree-

ment with those calculated using DFT, with an R2 (Kvålseth,

1985) value of 0.990 (1), see Table 2.

It should be noted that this predictive model is learned from

the data (Dhost
LA�T�X ) containing only the optimized crystal

structures. Thus, when applied to a newly generated non-

optimized crystal structure (in Dsubst
Nd�Fe�B), it is clear that the

possibility of correctly predicting the formation energy is low.

The MAE of the KRR-predicted formation energy of the

crystal structures in Dsubst
Nd�Fe�B after structure optimization is

approximately 0.3 (eV per atom), which is three times larger

than the cross-validated MAE result. The results of applying

the KRR prediction model to estimate the stability of these

hypothetical materials are shown in detail in Section 3.5.

3.3. Descriptor-relevance analysis

Furthermore, we focus on Dhost
Nd�Fe�B and evaluate the rele-

vance (Nguyen et al., 2019; Yu & Liu, 2004; Visalakshi &

Radha, 2014) of each element in the OFM descriptor with

respect to the formation energy of the crystal structure. We

utilize the change in prediction accuracy when removing or

adding a descriptor [from the full set of descriptors (Nguyen et

al., 2018) in the OFM] to search for the descriptors that are

strongly relevant (Nguyen et al., 2019; Dam et al., 2018) to the
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Figure 4
Comparison of formation energies calculated using DFT and those
predicted through ML using the KRR model with the OFM descriptor.
The blue and red solid circles represent the cross-validated results for
D

host
LA�T�X and the prediction results for Dsubst

Nd�Fe�B, respectively.

Table 2
Ten-times tenfold cross-validation results provided by the KRR model in
predicting formation energy.

Model R2 MAE (eV per atom) RMSE (eV per atom)

Kernel ridge 0.990 (1) 0.094 (2) 0.137 (1)



formation energy (i.e. C—H distance and phase stability) of

the Nd–Fe–B crystal structures.

In detail, for a given set S of descriptors, we define the

prediction capacity PC(S) of S by the maximum prediction

accuracy that the KRR model can achieve using the variables

in a subset s of S as follows:

PCðSÞ ¼ max
8s�S

R2
s ; sPC ¼ argmax8s�SR2

s ; ð6Þ

where R2
s is the value of the coefficient of determination R2

(Kvålseth, 1985) achieved by the KRR using a set s as the

independent variables. sPA is the subset of S that yields the

prediction model having the maximum prediction accuracy.

Let Si denote a set of descriptors after removing a

descriptor xi from the full descriptor set S; Si = S � {xi}. A

descriptor is strongly relevant if and only if

PCðSÞ � PCðSiÞ ¼ max
8s�S

R2
s �max

8s�Si

R2
s>0: ð7Þ

Fig. 5 summarizes the results obtained from the descriptor-

relevance analysis. The black-triangled curve shows the

dependence of the maximum prediction capacity (max. PC, in

R2 score) on the number of variables/OFM descriptors used in

regression models. Other curves show the dependence of the

maximum prediction capacity on the number of OFM

descriptors used in regression models when a specific OFM is

removed from the whole set of OFM descriptors. For example,

the orange-dotted curve illustrates the max. PC of the OFM

descriptor set without the appearance of the (p1, s2) descriptor.

It is evident that the descriptor (s2, s2) (red-squared curve) is

highly relevant to the prediction of the formation energy of

the crystal structures in Dsubst
Nd�Fe�B. For further investigation,

we project all substituted crystal structures in Dsubst
Nd�Fe�B into

the space of the KRR-predicted formation energy, EKRR
f and

(s2, s2), as shown in Fig. 6. One can easily deduce that the

distribution of Dsubst
Nd�Fe�B is a mixture of two distribution

components. The larger distribution component is located in

the region (s2, s2) < 6.5, whereas the other is located in the

region (s2, s2) � 6.5. We infer the existence of two distinct

groups of substituted crystal structures. The first group

contains structures with average atomic coordination numbers

lower than 6.5, and the second group contains structures with

average atomic coordination numbers higher than 6.5.

Furthermore, most newly discovered potentially formable

crystal structures belong to the second group.

3.4. Mining of substituted Nd–Fe–B crystal structure data
with an unsupervised learning method

In this section, we demonstrate the use of the proposed

generative model, which applies the relevance analysis results

and unsupervised learning, in contrast to the conventional

supervised learning approach. As a result, this model performs

detailed investigations at particular sites whose coordination

numbers are highly correlated to the structure–stability rela-

tionship.

The underlying hypothesis of this approach is that there are

various correlation patterns between crystal structure prop-

erties and their formation energies. Naturally, most of these

patterns are for unstable crystal structures and only a few of

these pertain to potentially formable crystal structures. These
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Figure 6
Distribution of substituted materials in space with the x axis showing the
KRR-predicted formation energy, EKRR

f , with non-optimized structures
and the y axis showing the extracted strongly relevant descriptor (s2, s2).
The black dotted line shows the limitation of (s2, s2), which maximizes the
separation between two mixture distributions.

Figure 5
Results of the relevance analysis performed for predicting Ef of all Nd–
Fe–B materials present in Dhost

LA�T�X . By removing the descriptor (s2, s2),
the maximum prediction capacity (red line) is significantly reduced
compared with the maximum prediction capacity line (max. PC) of all
descriptor sets (black line).



patterns might not be exposed directly through the feature-

relevance analysis method due to the multivariate correlation

between the target and description variables. The strong

relevant descriptor (s2, s2) can appear as an extracted pattern

to indicate the correlation between the structure–stability

relationship. As the term s2 appears at all descriptors for Fe,

Nd and B sites, (s2, s2) indicates only the average atomic

coordination numbers, which do not precisely represent the

coordination number of any particular site. On the contrary,

other OFM descriptors are designed to explicitly represent the

coordination number of all pairwise elements. As the two

terms d6 and f4 appear at only descriptors for Fe or Nd,

respectively, in order to investigate the average coordination

number of the Fe, Nd and B sites, in addition to (s2, s2), we

focus on the values of the descriptors (d6, s2) and (f 4, s2). These

descriptors represent the average atomic coordination

numbers of Fe sites and Nd sites. Furthermore, we also focus

on the values of the OFM descriptors (d6, d6), (d6, f 4), (f 4, d6)

and (f 4, f4). These descriptors represent the average number

of Fe sites surrounding the Fe sites, Nd sites surrounding the

Fe sites, Fe sites surrounding the Nd sites and Nd sites

surrounding the Nd sites. These OFM descriptors are useful in

discussing not only the structure–stability relationship but also

the strength of magnetic-exchange couplings between the 3d

orbitals of Fe and the 4f orbitals of Nd.

Fig. 7 shows the density distribution of the newly created

crystal structures, Dsubst
Nd�Fe�B, in two-dimensional space using

the selected descriptors. For all pairs of descriptors, the density

distribution is similar to the distribution of (s2, s2) and EKRR
f

shown in Fig. 6 with two clear peaks, one large and one small,

with slight overlap. This result again confirms that (s2, s2) is

highly relevant for expressing the nature of the distribution of

the newly created crystal structures. In addition, (d6, s2) and

(d6, d6) are important for identifying the characteristics of the

distribution. It should be noted that these features could not

be exposed using feature-relevance analysis since the predic-

tion model can utilize the information from other highly

correlated features instead, e.g. (s2, s2). In contrast, the

average coordination number of the Nd sites (f4, s2) and the

average coordination number of the Nd sites around the Nd

sites (f4, f 4) have a weak relationship with the characteristics

related to the distribution of these crystal structures. These

results indicate that the average coordination number of the

Fe sites (d6, s2) and the average coordination number of

the Fe sites around the Fe sites (d6, d6) are extremely impor-

tant for characterizing the newly created Nd–Fe–B crystal

structures.

We employed a GMM (Murphy, 2012) for learning the

patterns of crystal structures by clustering Dsubst
Nd�Fe�B into

groups. The GMM model is based on the assumptions that the

data consist of different groups and the data in each group

follow their own Gaussian distribution. In other words, in the

GMM, the distribution of data are fitted to a combination of a

certain number, M, of Gaussian functions (Murphy, 2012)

where M represents the number of data groups. The prob-

ability distribution of a crystal structure with index p, repre-

sented using selected descriptors, xp and f(xp), can be

approximated as follows:
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Figure 7
Density distribution of the newly generated Nd–Fe–B crystal structures in two-dimensional space obtained using selected OFM descriptors. The blue and
red solid circles represent the unstable and potentially formable crystal structures verified by DFT calculations, respectively. Contour lines show the
isodense surface of the distribution.



f ðxpÞ ¼
XM

m¼1

�m�ðxp; �m;�mÞ; ð8Þ

where

�ðxp; �m;�mÞ ¼
exp �ðxp � �mÞ

T��1
m ðxp � �mÞ

� �
ð2�Þd=2

j�mj
1=2

ð9Þ

is a multivariate Gaussian distribution with mean �m and

covariance matrix �m and d is the dimension of the repre-

sentation vector xp. The �m coefficients are the weights that

satisfy the following constraint:

XM

m¼1

�m ¼ 1: ð10Þ

The probability that xp belongs to group m can be represented

as follows:

pðxpjmÞ ¼
�m�ðxp; �m;�mÞPM

m¼1 �m�ðxp; �m;�mÞ
: ð11Þ

The model parameters �m, �m and �m are determined using an

expectation-maximization algorithm (Pedregosa et al., 2011).

The number of data groups, M, is fixed at two in this study. It is

interesting to note that the GMM provides a ‘probabilistic

image’ of the pattern of crystal structures, wherein it provides

the probability of a crystal structure remaining in a group

instead of assigning the crystal structures to a specific group.

The sum of the probabilities of crystal structures remaining in

either of the groups is one. Therefore, the GMM is expected to

discover distinctive patterns of crystal structures from the data

and calculate the probability that a crystal structure belongs to

a group.

We can label the newly generated crystal structures by

fitting the data Dsubst
Nd�Fe�B to the GMM with two Gaussian

distributions and calculating the probabilities of the crystal

structures belonging to each group. Given that it is not easy to

find a new potential formable crystal structure, we suppose

that most newly generated structures are unstable and only a

few are potentially formable. Therefore, we infer that the large

Gauss component corresponds to the distribution of unstable

crystal structures and the small Gauss component corresponds

to the distribution of potential formable crystal structures.

This hypothesis can be verified through comparison with the

results of the DFT calculations, and it can be seen that most of

the potential formable crystal structures confirmed by DFT

calculation actually belong to the small Gauss component.

This implies that the phase stabilities of the Nd–Fe–B crystals

are not significantly related to the coordination number of the

Nd sites but are largely determined by the coordination

number of the Fe sites, suggesting that, if the Nd sites can be

replaced in part by Fe, the crystal structure characteristics of

Nd–Fe–B which are directly related to its phase stability can

be controlled. Further application of this discovery in the

design of Nd–Fe–B crystal materials is promising.

3.5. Learning prediction models for the phase stability of
crystal structures

A large number of ML applications reported to date (in

materials science research) state the effectiveness and

applicability of ML methods using statistical tests (such as

cross validation). However, statistical tests are methods for

assessing the risk in predicting the physical properties of the

most optimized-structure materials, and are not appropriate

for predicting and discovering novel materials. Therefore, in

this study, to verify whether ML techniques are effective in

searching for new potentially formable Nd–Fe–B crystal

structures, we trained three supervised ML models from

D
host
LA�T�X and one unsupervised model from Dsubst

Nd�Fe�B. In

addition, we tested whether the models can predict the

stability of the newly created crystal structures in Dsubst
Nd�Fe�B.

The three supervised ML models are trained by considering

5967 materials in Dhost
LA�T�X with the OFM descriptor and the

stability target values described in Sections 3.1 and 2.2. Then,

all models are applied to predict the 149 newly hypothetical

structures in Dsubst
Nd�Fe�B while considering the stability calcu-

lated by the DFT as references in prediction accuracy

evaluation.

In the first model (KRR model), the C—H distance is

calculated using the formation energy predicted by the KRR

model described in Section 3.2. Then, we applied a threshold

of 0.1 eV per atom to the obtained C—H distance to deter-

mine whether the crystal structure is potentially formable. It is

worth noting again that the bottleneck of this method is that

the formation energy prediction model is learned from data

containing only the optimal crystal structures. Therefore, the

formation energy is not predicted correctly when the method

is applied to a newly created non-optimal crystal structure.

The second model is a logistic regression model (LG

model). From the two subsets of Dhost
LA�T�X, including the

potentially formable (Dhost stb
LA�T�X ) and unstable (Dhost unstb

LA�T�X )

crystal structures, we modelled the probability of observing

potentially formable (y = 1) and unstable (y = 0) class labels

directly using classification models. We hypothesized that the

probability of observing potentially formable materials,

pðy ¼ 1jX ¼ xpÞ, follows:

pðy ¼ 1jX ¼ xpÞ ¼
exp

P
i cixpi

1þ exp
P

i cixpi

; ð12Þ

where xp is the description vector of structure p (obtained by

flattening the OFM), i is the index of vector elements in xp and

ci is the coefficient of the corresponding element x�. In our

experiments, all ci coefficients are obtained via maximum a
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Table 3
Evaluation results of KRR, LG and DT models, and unsupervised GMM
in estimating the stability of materials in Dsubst

Nd�Fe�B.

Model Precision Recall f1

KRR model 0.533 0.534 0.376
LG model 0.629 0.687 0.599
DT model 0.704 0.676 0.687
GMM 0.729 0.821 0.735



posteriori estimation using L1 as the regularization term (Ng,

2004; Lee et al., 2006). The third model is the decision tree

model (DT model) (Murphy, 2012), which uses information

gain (Breiman et al., 1984; Hastie et al., 2009) as the criterion to

measure the quality of tree-splitting.

The unsupervised model is based on the observations of the

mixture distribution of the newly created crystal structures,

D
subst
Nd�Fe�B. We build the fourth model (GMM) by assuming

that the major and minor Gauss components obtained corre-

spond to the ‘unstable’ and ‘potentially formable’ class labels

of the crystal structures, respectively.

The evaluation results of the four models are summarized in

Table 3. We use three evaluation scores: Precision, Recall and

f1. The Precision score (also referred to as positive predictive

value) with respect to the unstable structure class is the frac-

tion of the unstable crystal structures predicted correctly

among the number of crystal structures predicted to be

unstable (Perry et al., 1955). The Recall score (also known as

sensitivity) with respect to the unstable structure class is the

fraction of the unstable crystal structures predicted correctly

among all crystal structures that are actually unstable (Perry et

al., 1955). The Precision and Recall scores are combined in the

f1 score (or f-measure) to provide a single measurement

(Derczynski, 2016). To compare the classification ability of

ML models, we summarize the evaluation scores of all classes

(i.e. ‘unstable’ and ‘potentially formable’) by utilizing a macro

averaging method (Su et al., 2015) which is implemented in

sklearn.metrics.average_precision_score (version 0.21.3;

Pedregosa et al., 2011).

The KRR model shows the lowest values of all evaluation

scores among the three supervised learning models where

Precision, Recall and f1 are 0.533, 0.534 and 0.376, respectively.

In contrast, the DT model provides the most accurate

prediction. This model accurately predicts the potentially

‘formable unstable’ label of all substituted Nd–Fe–B crystal

structures with 0.704 macro Precision score and obtains macro

Recall and f1 scores of 0.676 and 0.687, respectively. The LG

model shows the highest macro Recall score, 0.687, compared

with the other two supervised learning models.

The final but most surprising result is that the unsupervised

GMM is superior to the other three supervised learning

models in all three evaluation scores. The average Precision

and Recall scores of the GMM are 0.729 and 0.821, respec-

tively, which are significantly higher than those of the three

supervised learning models. This result shows that the inte-

gration of descriptor-relevance analysis and unsupervised

learning with the GMM is superior to conventional ML

models, such as KRR, LG and DT, for obtaining information

about the phase stability of substituted Nd–Fe–B crystal

structures. We also investigated the usefulness of ensembling

models. As the prediction problem under consideration is a

binary classification, we implement two well known operators,

‘AND’ and ‘OR,’ for combining classification results. The

details of the results are shown in Tables 4 and 5. These results

again suggest that the structure–stability relationship obtained

using data mining is highly promising for the design of Nd–Fe–

B materials.

4. Conclusions

We focus on discovering new Nd–Fe–B materials using the

elemental substitution method with LA–T–X compounds,

with a lanthanide, transition metal and light element (X = B, C,

N, O) as host materials. For each host crystal structure, a

substituted crystal structure is created by substituting all

lanthanide sites with Nd, all transition metal sites with Fe and

all light-element sites with B. High-throughput first-principles

calculations are applied to evaluate the phase stability of the

newly created crystal structures, and twenty of them are found

to be potentially formable. We implemented an approach by

incorporating supervised and unsupervised learning techni-

ques to estimate the stability and analyze the relationship

between the structure and stability of the newly created Nd–

Fe–B crystal structures. Three supervised learning models

(KRR, LG and DT) learned from LA–T–X host crystal

structures achieved the maximum accuracy and Recall scores

of 70.4 and 68.7%, respectively, in predicting the stability state

of new substituted Nd–Fe–B crystals. The proposed unsu-
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Table 4
Classification results in predicting the ‘potentially formable’ class label of substituted materials with KRR, LG and DT models, GMM, and ensemble
models.

The AND and OR operators in these ensemble models are denoted by & and |, respectively.

KRR LG DT GMM KRR | GMM LG | GMM DT | GMM KRR & GMM LG & GMM DT & GMM

Precision 0.24 0.35 0.56 0.49 0.24 0.36 0.48 0.58 0.53 0.58
Recall 0.82 0.79 0.45 0.91 0.97 1.0 0.91 0.76 0.7 0.45
f1 0.37 0.49 0.5 0.64 0.39 0.53 0.63 0.66 0.61 0.51

Table 5
Classification results in predicting the ‘unstable’ class label of substituted materials with KRR, LG and DT models, GMM, and ensemble models.

The AND and OR operators in these ensemble models are denoted by & and |, respectively.

KRR LG DT GMM KRR | GMM LG | GMM DT | GMM KRR & GMM LG & GMM DT & GMM

Precision 0.83 0.91 0.85 0.97 0.94 1.0 0.97 0.92 0.91 0.85
Recall 0.25 0.59 0.90 0.73 0.14 0.49 0.72 0.84 0.83 0.91
f1 0.38 0.71 0.87 0.83 0.24 0.66 0.83 0.88 0.86 0.88



pervised learning model resulting from the integration of

descriptor-relevance analysis and the GMM provides accuracy

and Recall scores of 72.9 and 82.1%, respectively, which are

significantly better than those of the supervised models.

Moreover, the unsupervised learning model can capture and

interpret the structure–stability relationship of the Nd–Fe–B

crystal structures. The average atomic coordination number

and the coordination number of the Fe sites are quantitatively

shown to be the most important factors in determining the

phase stability of the new substituted Nd–Fe–B crystal struc-

tures.
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Kvålseth, T. O. (1985). Am. Stat. 39, 279–285.
Lam Pham, T., Kino, H., Terakura, K., Miyake, T., Tsuda, K.,

Takigawa, I. & Chi Dam, H. (2017). Sci. Technol. Adv. Mater. 18,
756–765.

Lee, S.-I., Lee, H., Abbeel, P. & Ng, A. Y. (2006). Proceedings, 21st
National Conference on Artificial Intelligence (AAAI-06). Palo
Alto: AAAI Press.

Li, X., Zhang, Z., Yao, Y. & Zhang, H. (2018). 2D Materials, 5, 045023.
Liang, J., Rao, G., Chu, W., Yang, H. & Liu, G. (2001). J. Appl. Phys.

90, 1931–1933.
Lonie, D. C. & Zurek, E. (2011). Comput. Phys. Commun. 182, 372–

387.
Lyakhov, A. O., Oganov, A. R., Stokes, H. T. & Zhu, Q. (2013).

Comput. Phys. Commun. 184, 1172–1182.
Ma, J., Hegde, V. I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.

T., Wolverton, C., Ghosh, A. W. & Butler, W. H. (2017). Phys. Rev.
B, 95, 024411.

Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. &
Ramprasad, R. (2016). Sci. Rep. 6, 20952.

Michalsky, R. & Steinfeld, A. (2017). Catal. Today, 286, 124–130.
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