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Three-dimensional reconstruction of the electron-scattering potential of

biological macromolecules from electron cryo-microscopy (cryo-EM) projection

images is an ill-posed problem. The most popular cryo-EM software solutions to

date rely on a regularization approach that is based on the prior assumption that

the scattering potential varies smoothly over three-dimensional space. Although

this approach has been hugely successful in recent years, the amount of prior

knowledge that it exploits compares unfavorably with the knowledge about

biological structures that has been accumulated over decades of research in

structural biology. Here, a regularization framework for cryo-EM structure

determination is presented that exploits prior knowledge about biological

structures through a convolutional neural network that is trained on known

macromolecular structures. This neural network is inserted into the iterative

cryo-EM structure-determination process through an approach that is inspired

by regularization by denoising. It is shown that the new regularization approach

yields better reconstructions than the current state of the art for simulated data,

and options to extend this work for application to experimental cryo-EM data

are discussed.

1. Introduction

In cryo-EM single-particle analysis, the three-dimensional

structure of biological macromolecules is reconstructed from

two-dimensional projection images of multiple copies of these

molecules in different relative orientations. The requirement

to image under low-dose conditions, in order to limit damage

to the radiation-sensitive samples, leads to high levels of noise

in cryo-EM images and the need to average over many images.

Moreover, individual macromolecules, or particles, adopt

unknown orientations in the sample and may adopt multiple

conformations. The resulting large numbers of unknown

variables render the optimimization problem ill-posed, which

when combined with the high noise level in the data leads to a

challenging reconstruction problem.

The most widely used approach to cryo-EM structure

determination to date is based on the maximum-a-posteriori

(MAP) estimator. This approach was introduced to the cryo-

EM field through its implementation in the RELION program

(Scheres, 2012a,b). Other software packages, such as Cryo-

SPARC (Punjani et al., 2017) and THUNDER (Hu et al.,

2018), have since built on the same approach. The MAP

approach differs from common alternative approaches in two

aspects. Firstly, it marginalizes over the unknown orientation
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(and conformational class) assignments of the particles, and

secondly, it uses an explicit penalization term as a regularizer.

Whereas previously popular software packages typically

aimed to find the best orientation and class for each particle,

the marginalization approach rather uses a weighted average

of all possible orientations. Marginalization was introduced to

the cryo-EM field by Sigworth (1998). Using simulated data,

he showed that marginalization over the orientations for 2D

alignment against a single reference leads to reduced sensi-

tivity to the choice of the starting reference and to the ability

to align images with very low signal-to-noise ratios. Margin-

alization over class assignments was later found to be parti-

cularly useful for 2D (Scheres et al., 2005) and 3D (Scheres et

al., 2007) classification of experimental cryo-EM images. Since

its original conception in Xmipp (Scheres et al., 2005),

marginalization over class assignments has been adopted in

many software packages, including RELION (Scheres, 2012b),

THUNDER (Hu et al., 2018), Frealign/CisTEM (Grant et al.,

2018), Sphire (Moriya et al., 2017) and cryoSPARC (Punjani et

al., 2017).

In general, regularization can be used to prevent overfitting

when solving an ill-posed problem. Before the introduction of

the MAP approach, cryo-EM software tools would prevent

overfitting mostly through heuristic low-pass approaches and

Wiener filter approaches (Penczek, 2010; Frank, 2008). The

MAP approach pioneered the optimization of an explicitly

regularized target function by expressing the reconstruction

problem in an empirical Bayesian framework. The prior

information that underlies the regularization in this approach

is the assumption that rapidly changing density values in real-

space cryo-EM reconstructions, or high powers at higher

spatial frequencies in Fourier space, are unlikely. In other

words, one assumes that cryo-EM reconstructions are smooth.

By expressing both the (marginal) likelihood function and the

prior in Fourier space, a standard L2 Tikhonov regularization

approach is formulated (Engl et al., 1996). Its MAP solution

can be obtained through expectation–maximization (Demp-

ster et al., 1977), where an analytical solution to the maximi-

zation step exists. The resulting algorithm yields a 3D Wiener

filter that removes high-resolution noise from the recon-

struction, while estimating all necessary parameters from the

data (Scheres, 2012b). The ability to obtain efficiently filtered

reconstructions without the need for user-tunable parameters

probably played an important role in the rapid uptake of MAP

optimization in the field (Fernandez-Leiro & Scheres, 2016).

Nevertheless, the smoothness prior seems an information-

poor choice when compared with the knowledge about

biological macromolecules that has been acquired through

decades of structural biology research. For example, we know

that the density for the macromolecules in cryo-EM recon-

structions is surrounded by flat solvent density and that

proteins are made up of amino-acid chains that fold into well

defined secondary-structure elements such as �-helices and

�-strands. Although a wealth of structural information exists,

it has in practice been difficult to handcraft a formulation of a

prior function that can be incorporated into the optimization

algorithm that underlies cryo-EM structure determination.

Despite this, recent work has shown that real-space filtering of

maps performed iteratively throughout the reconstruction can

help to mitigate the effect of noise on alignment and hence

improve convergence and final map quality (Ramlaul et al.,

2019, 2020).

Machine learning based on deep neural networks, or deep

learning in brief, can capture prior information and has

recently seen tremendous success in a wide range of computer

vision tasks (Krizhevsky et al., 2012; Ren et al., 2015; Ronne-

berger et al., 2015). Convolutional neural networks have been

shown to perform equally well or better than conventional

state-of-the-art methods in inverse problems for several

imaging modalities (Arridge et al., 2019), including denoising

(Zhang et al., 2017; Jifara et al., 2019; Gondara, 2016),

computed tomography (Adler & Öktem, 2017, 2018b) and

magnetic resonance imaging (Hammernik et al., 2018; Mardani

et al., 2018). Generally, this performance is attributed to the

ability of deep neural networks to efficiently learn statistical

correlations about both the noise and the signal through the

examples in the training data set.

Regularization by denoising (RED) is an image-recovery

framework that enables the plugin of various denoisers into

a MAP optimization protocol (Romano et al., 2017). This

includes many denoiser classes, including general noise-

reduction algorithms such as block-matching and 3D filtering

(BM3D), more specialized denoising algorithms (Jonić et al.,

2016), and also deep learning-based denoisers such as

denoising auto-encoders and U-nets.

The RED framework was originally centered around an

explicit expression for a prior that incorporates the output of

the denoiser. This framework requires that the denoiser

function fulfills two conditions: local homogeneity and Jaco-

bian symmetry. However, most state-of-the-art denoisers,

including denoising convolutional neural networks, fail to

exhibit these properties, in particular Jacobian symmetry.

Despite this, RED has been shown to also perform well with

these denoiser functions. Hence, the explicit prior approach

cannot explain the behavior of this framework. In response to

these issues, Reehorst and Schniter proposed a new frame-

work, score-matching by denoising (SMD), which showed that

RED achieves its performance by approximating the ‘score’ or

the gradient of the prior distribution. This approach circum-

vents the requirement for an explicit prior expression and

further does away with the abovementioned conditions on the

denoiser function (Reehorst & Schniter, 2018).

Here, we propose a cryo-EM structure-determination

procedure that is inspired by the RED protocol to integrate a

convolutional neural network to express prior information.

Cryo-EM reconstruction typically uses a vector-valued regu-

larization parameter to model variations in signal-to-noise

ratios across different spatial frequencies. The so-called ‘gold-

standard’ recommendations in the field are to estimate these

through the Fourier shell correlation (FSC) between inde-

pendently obtained reconstructions from halves of the data set

(Henderson et al., 2012). This estimate typically varies greatly

between data sets and throughout different refinement steps.

Therefore, we expand RED to account for a vector-valued
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regularization parameter that varies throughout the recon-

struction and present a theoretical framework, inspired by

SMD, to show that this approach is valid in the case of more

realistic Gaussian noise. We further present a simple heuristic

to prevent any resolution overestimations that may arise

owing to the new prior in the most difficult cases. We explore

the measured performance of the denoiser in different reso-

lution domains to determine the confidence in the new prior,

which is subsequently used to weight between the new prior

and the classical exponential prior. We call this approach

confidence-weighted regularization by denoising (CW-RED).

Because we train our convolutional neural network on tens

of thousands of cryo-EM reconstructions from simulated data

and test it using data that are simulated in the same manner,

this work does not yet represent a finalized solution to

improve cryo-EM reconstruction from experimental data.

Rather, it serves as a general proof of principle that learned

priors can improve cryo-EM reconstruction. Future research

directions, such as the exploration of alternative optimization

algorithms and different strategies to design and train the

neural networks, are discussed.

2. Theory

2.1. Mathematical formalization of structure recovery

We consider structure recovery in single-particle cryo-EM

based on a Bayesian formalization of the problem. The

starting point is after the particle-picking step where one

extracts 2D projection images from the electron micrographs.

Each of these shows a single macromolecular structure, or

particle. Typically, following a classification step, images of

the same macromolecular structure are selected for further

refinement. We may here assume that these 2D projection

images are approximately centered (with in-plane 2D trans-

lation) with respect to the corresponding 3D particle and that

minor adjustments remain for an optimal translational align-

ment.

To formalize the above, let y1; . . . ; ym 2 C
N denote the

discrete 2D Fourier transforms of the aforementioned 2D

projection images. Likewise, let s1; . . . ; sm 2 C
M denote the

discrete 3D Fourier transforms of the corresponding particles.

This Fourier transform acts on the electrostatic potential

generated by the particle and its surrounding aqueous buffer.

Since all particles represent the same macromolecule up to an

orientation and a translation, we have that si = ti * ri(x), where

x 2 CM is the 3D Fourier transform of the molecule structure,

ri 2 SO(3) is its 3D rotation and ti 2 T(3) is its 3D isomorphic

real-space translation. We define the composite transforma-

tion si := ti * ri and thus g 2 G := SE(3) belongs to the special

Euclidean group.

Structure recovery aims to reconstruct x 2 CM (the 3D

Fourier transform of the structure of the molecule) from 2D

data y1; . . . ; ym 2 C
N when the corresponding transformations

g1, . . . gm 2 G are unknown. It is natural to consider data as

being generated by a random variable, i.e. there areCN-valued

random variables y1; . . . ; ym that generate the corresponding

data. In the Bayesian setting one also adopts the viewpoint

that the molecule structure and transformations are generated

by random variables. Hence, we introduce a C
M-valued

random variable x that generates molecular structures

(models) and the G-valued random variable g that generates

particle transformations g1, . . . gm. Data yi 2 C
N generated by

the single particle si :¼ giðxÞ is then a single sample of the CN-

valued random variable ðyijx ¼ x; gi ¼ giÞ, where

yi ¼ H½giðxÞ� þ ei for i ¼ 1; . . . ;m: ð1Þ

Here, ei � Pi
noise is a CN-valued random variable representing

noise in data and H:CM
! C

N is the digitized (linear) model

for TEM image formation in frequency space. In particular,

x 7!H½gðxÞ� ¼ Hgx for some C-matrix Hg 2 C
N�M for fixed g

2 G. The systematic effects of optical aberrations, such as the

contrast transfer function (CTF), can be pre-calculated and

given during refinement for each image. These effects can be

incorporated into H, in which case H would be assigned a

subscript i and considered unique for each particle image.

However, to simplify the notation, this will be ignored in the

following sections.

Assume next that the random variables ðyijx ¼ x; gi ¼ giÞ

are independent and marginalize over the transformation

g � PGðgÞ using a known (prior) probability density of

orientations and translations in G. The joint probability

density (joint data likelihood) for the entire data set

Y ¼ ðy1; . . . ; ymÞ 2 C
N
� . . .� CN conditioned on the model

x 2 CM is then expressible as

PðYjxÞ ¼
Qm
i¼1

R
G

Pðyijx; gÞPGðgÞ dg ¼
Qm
i¼1

Eg�PG
Pðyijx; gÞ
� �

: ð2Þ

Note here that x 7!Pðyijx; gÞ for fixed g 2 G and yi 2 C
N is

given by (1), i.e. it is specified by the matrix Hg and the noise

distribution y 7!Pi
noise.

The Bayesian approach to structure recovery aims to

compute a suitable estimator that summarizes the (posterior)

probability distribution of x given Y. The density of this

posterior distribution is expressible by Bayes’ theorem as

PðxjYÞ ¼
PðYjxÞPðxÞ

PdataðYÞ
; ð3Þ

where Pdata denotes the density for the joint distribution of

ðy1; . . . ; ymÞ.

2.2. MAP with a Gaussian prior

The MAP estimator aims to find the model that maximizes

the posterior probability (or equivalently its log-posterior

probability), i.e. we seek a maximizer to x 7! log PðxjYÞ. From

(3) we obtain that a MAP estimator maximizes x 7!LðxjYÞ,

where

LðxjYÞ :¼ log PðYjxÞ þ log PðxÞ: ð4Þ

To proceed, we need to specify x 7! log PðxÞ (the log-prior

for 3D models) and x 7! log PðYjxÞ (the joint log–data like-

lihood).

Assume that data in frequency space is corrupted with

additive uncorrelated Gaussian noise. More precisely, assume
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ei � Pi
noise in (1) is a complex circularly symmetric Gaussian

with mean zero and a diagonal covariance matrix with diag-

onal vector �i 2 R
N
þ that encodes the frequency-dependent

power of noise for each component of the ith image. Then,

Pðyijx; giÞ :¼ Ci exp½�k��1
i ðyi �Hgi

xÞk2
�

for some suitable normalization Ci � 0: ð5Þ

Next, most implementations of MAP-based cryo-EM struc-

ture recovery use an uncorrelated Gaussian prior for 3D

models with zero mean. Stated more precisely, one assumes

PðxÞ :¼ C expð�k��1xk2
Þ

for some suitable normalization C � 0: ð6Þ

Here, � 2 RM contains the frequency-dependent estimate of

the power of the signal in the model. Such a distribution arises

from applying the central limit theorem to 3D models with a

random distribution of atoms, and can thus be intuitively

regarded as a minimal assumption criteria about the 3D model

(Wilson, 1949). More intuitively, this prior biases the recovery

to a smoother real-space representation by suppressing large

Fourier components.

A MAP estimator bxx 2 CM maximizes x 7!LðxjYÞ, so in

particular it solves rLðxjYÞ ¼ 0. There is no closed-form

solution for this equation, so one has to resort to iterative

schemes. One example is the expectation–maximization (EM)

algorithm (Dempster et al., 1977).

For a data likelihood as in (5), the EM method generates

iterates fxðnÞgn � C
M by computing xðnþ1Þ 2 C

M from data Y

and the previous iterate xðnÞ 2 CM. Given (4), (2) and (43) in

Appendix B it can be shown (Bendory et al., 2020) that this is

performed by solving the equation

Pm
i¼1

Eg�Pðgjx¼xðnÞ;y¼yiÞ
½H	g�

�2
i ðyi �Hgxðnþ1ÞÞjx ¼ xðnÞ; yi ¼ yi�

þ r log Pðxðnþ1ÞÞ ¼ 0; ð7Þ

where H* is the adjoint of H with respect to the usual inner

product on C
M (see Appendix B) and the expectation is

weighted by

Pðgjx; yiÞ ¼
Pðyijx; gÞPGðgÞ

Eg�PG
½Pðyijx; gÞ�

: ð8Þ

To simplify the notation in the following sections, we define

Bðx;YÞ :¼
Pm
i¼1

Eg�Pðgjx¼x;y¼yiÞ
ðH	g�

�2
i yijyi ¼ yiÞ 2 C

M;

Kðx;YÞ :¼
Pm
i¼1

Eg�Pðgjx¼x;y¼yiÞ
½diagðH	g�

�
i HgÞ� 2 C

M: ð9Þ

In the above, H	g�
�2
i Hg is diagonal owing to the Fourier slice

theorem and the off-diagonal components are discarded.

Henceforth, when multiplying or dividing two vectors of

equal length by each other, it is to be interpreted as applying

these operations component-wise. This allows us to rewrite (7)

as

KðxðnÞ;YÞxðnþ1Þ
� r log Pðxðnþ1Þ

Þ ¼ BðxðnÞ;YÞ: ð10Þ

For a prior x 7!PðxÞ that is Gaussian as in (6), we obtain

rlogP(x) = �r�2x, so one can solve (7) (perform the M-step)

analytically. This has a closed-form solution, generating the

scheme

xðnþ1Þ
 

BðxðnÞ;YÞ

KðxðnÞ;YÞ þ ��2
: ð11Þ

Additionally, we set �i 2 R
N in (9) and the regularization

parameter � 2 RM. One common approach in line with the

Bayesian viewpoint is to assume these are generated by

random variables and then either marginalize over them or

use estimates that are updated at every iteration n. As an

example, the estimate of the regularization parameter � is

commonly based on the radially averaged Fourier shell

correlation (FSC) calculated by comparing 3D models

reconstructed from two independent halves of the data set

(Scheres, 2012b). More precisely, let x1; x2 2 C
M be two 3D

models with associated data sets Y1 and Y2, which are arrays

(of equal length m/2) with elements in CN . Next, define

�kðx1; x2Þ :¼
1

Kðxk;YkÞ

FSCðx1; x2Þ

1� FSCðx1; x2Þ

� �� �1=2

for k ¼ 1; 2;

ð12Þ

with FSC: CM
� C

M
! Rþ denoting the Fourier shell corre-

lation (FSC). To use the above in (11), split the data into two

sets Y1 and Y2. Let fx
ðnÞ
1 gn; fx

ðnÞ
2 gn � C

M denote the two

iterative sequences of 3D models obtained by applying the

MAP EM scheme in (11) to Y1 and Y2, respectively. Instead of

using a constant value for the regularization parameter �, we

instead use (12) to adaptively adjust its value based on these

sequences, i.e. we replace the fixed � 2 RM in (11) with

�ðnÞk :¼ �kðx
ðnÞ
1 ; x

ðnÞ
2 Þ 2 R

M for k = 1, 2. Intuitively, this amounts

to reducing the regularization applied in (11) when the FSC

increases, which means that more signal is permitted to

accumulate into each of the two reconstructions.

2.3. MAP with non-Gaussian prior

Much of the usefulness of the EM method resides in the

ability to perform the M-step in (7) in a computationally

feasible manner. This is possible for a Gaussian prior and

results in the EM scheme given in (11). Here, we consider

priors x 7!PðxÞ that are ‘close’ to a Gaussian in the sense that

the second term below varies slowly with x:

r log PðxÞ ¼ ���2xþ ½r log PðxÞ þ ��2x�: ð13Þ

For this class of priors, (10) reads as

½KðxðnÞ;YÞ þ ��2�xðnþ1Þ � ½r log Pðxðnþ1ÞÞ þ ��2xðnþ1Þ�

¼ BðxðnÞ;YÞ;

which has the following approximate solution:

½KðxðnÞ;YÞ þ ��2
�xðnþ1Þ

’ BðxðnÞ;YÞ þ ½r log PðxðnÞÞ þ ��2xðnÞ�:

Using this approximation, we can compute an approximate

MAP estimator using the scheme
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xðnþ1Þ
 

BðxðnÞ;YÞ þ ½r log PðxðnÞÞ þ ��2xðnÞ�

KðxðnÞ;YÞ þ ��2
: ð14Þ

The above requires one to specify the ‘non-Gaussian’ part

x 7!r log PðxÞ þ ��2x. One can adaptively set � as in the

Gaussian case by splitting the data into two parts and using

(12). Next, one may consider a data-driven approach to learn

the ‘non-Gaussian’ part instead of handcrafting it.

The regularization by denoising (RED) method allows us to

approximate the gradient of the log-prior using a neural

network trained to denoise volumes. The RED prior formula

has been shown to accurately estimate the gradient of the

prior through score matching by denoising (SMD; Reehorst &

Schniter, 2018). When dealing with independent additive

Gaussian noise, RED can be used to integrate an external

denoiser into an iterative image-restoration protocol

(Romano et al., 2017). We show in Appendix A that the

MMSE estimator f : CM
! C

M under Gaussian noise with

covariance ��2 approximates the gradient of the log-prior

according to rlogP(x) ’ f(x) � ��2(x). However, based on

empirical observations, a more conservative approach is to

also modulate f(x) with ��2, which would suppress the influ-

ence of the denoiser when certainty in the data is high. Hence,

we propose the gradient log-prior expression

r log PðxÞ ’ ��2½f ðxÞ � x�: ð15Þ

Inserting (15) into (14) gives an approximate M-step for priors

using a learned denoiser:

xðnþ1Þ  
BðxðnÞ;YÞ þ f ðxðnÞÞ��2

KðxðnÞ;YÞ þ ��2
: ð16Þ

The input to the denoiser in this update formula is x(n), which

lacks the information extracted in the latest E-step. However,

both K and B can be evaluated at this stage, hence through

them it is computationally feasible to provide the denoiser

with the most ‘up-to-date’ information. Additionally, based on

empirical observations we introduce a heuristic parameter, �,

to tune the influence of the denoiser in the M-step. Conclu-

sively, we propose the following update scheme:

xðnþ1Þ
 

BðxðnÞ;YÞ þ �f ð~xxðnÞÞ��2

KðxðnÞ;YÞ þ ��2
with ~xxðnÞ :¼

BðxðnÞ;YÞ

KðxðnÞ;YÞ
:

ð17Þ

Note that (17) is equivalent to (11) when � = 0 , so 0 
 �
 1 is

an empirical parameter that balances the influence of denoiser

versus conventional Gaussian prior. Furthermore, ~xxðnÞ in (17)

is equivalent to x(n+1) in (11) if ��2 = 0. Hence, the denoiser

acts on the unregularized map that contains information from

the most recent alignment of the experimental data, which

alleviates the assumptions made for (14).

Further adaptation can be obtained by making use of the

fact that RELION is used for the refinement. To do this, we

consider a mimimum mean-square estimator (MMSE)

f̂f :CM
! C

M that is trained to ‘denoise’ RELION refinement

volumes. More precisely, we consider the following supervised

statistical learning problem:

f̂f 2 argmin
f :CM

!C
M

Eðx̂x;~xxÞfkx̂x � f ð~xxÞk2
g ) f̂f ð~xxÞ ¼ Eðx̂xj~xx ¼ ~xxÞ:

ð18Þ

In the above, x̂x is the random variable that generates appro-

priately coarsened (low-pass filtered) 3D structures of

macromolecular assemblies from the PDB and ~xx is the random

variable that generates RELION refinement structures.

Since we lack knowledge about the joint probability

distribution of ðx̂x; ~xxÞ, the conditional expectation in the left-

hand side of (18) is replaced by its empirical counterpart given

by supervised training data ðx̂xi; ~xxiÞ 2 C
M
� C

M for i = 1, . . . , n

that are random draws from ðx̂x; ~xxÞ, i.e. x̂xi is the true 3D

structure derived from the PDB (after appropriate coar-

sening) and ~xxi is a corresponding RELION refinement struc-

ture. Furthermore, a deep neural network is used to

parameterize CM-valued mappings on CM, thereby replacing

the infinite-dimensional minimization over such functions with

a finite-dimensional minimization over the deep neural

network parameters. The resulting counterpart of (18) can

then be written as the following empirical risk-minimization

problem:

�̂� 2 argmin
�

Pn
i¼1

kx̂xi � f�ð~xxiÞk
2: ð19Þ

If the network has sufficient model capacity and there is

sufficient supervised training data, then the above yields an

approximation to the conditional mean estimator, i.e.

f�̂� ’ Eðx̂xj~xx ¼ ~xxÞ.

3. Experimental design

3.1. Convolutional neural network

Synthetic training data were generated from 543 atomic

structures that were downloaded from the Protein Data Bank

(PDB; Berman et al., 2000). All downloaded structures were

solved using X-ray crystallography to at least 4 Å resolution,

had molecular weights between 40 and 100 kDa, and consisted

of a single protein chain; 110 structures also contained nucleic

acids. Atomic models were converted to volumetric density

maps in the MRC format (Crowther et al., 1996) using the

pdb2map tool in EMAN2 (Tang et al., 2007). In order to obtain

simulated projection data sets at different signal-to-noise

ratios (SNRs), the intensity values of these maps were multi-

plied by three different constants: 0.014, 0.012 and 0.010.

Next, the density maps were projected onto images of 96 �

96 pixels, with a pixel size of 1.5 Å, and independent Gaussian

noise of unity variance was added. The choice for a relatively

large pixel size reduces computational costs, but was primarily

motivated by the observation that SNRs in typical cryo-EM

images at spatial frequencies higher than 3 Å are so low that

they no longer effectively contribute to particle alignment.

The resulting projection data sets had SNRs in the range

0.0003–0.0100 and on average 0.0020, which was calculated as

the average per-pixel variance of the projection images

divided by the variance of the added noise. Because RELION

reconstructions are corrected for the effects of the CTF, no
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attempts were made to model the typical CTF of an electron

microscope at this stage. Individual projection data sets of

10 000 projections each were generated for the different

structures and SNRs using random projection directions that

uniformly sampled the orientation space. Each of these

projection data sets was then used for standard, unmasked ‘3D

auto-refinement’ in RELION (Scheres, 2012b), which was

started from a 30 Å low-pass filtered version of the ground-

truth map. The new external reconstruct functionality in

RELION-3.1 (see below) was used to obtain unregularized

half-maps at each of the intermediate iterations of all refine-

ments. In total, this process yielded over 25 000 unmasked 3D

density maps at different stages of refinement. Of these maps,

23% had a resolution better than 4 Å and less than 2% had a

resolution of 10 Å or worse. This data set was subsequently

augmented through size-preserving rotations.

To verify the validity of the underlying assumptions about

Gaussian distribution of noise for the derivations in the theory

section, we also trained a network using pairs of noise-free

ground-truth and pure Gaussian noise-distorted maps. For this

purpose, we used the estimated frequency-space distribution

of noise calculated from the RELION intermediate recon-

structions. During training, random Gaussian noise was

generated in frequency space matching this profile. The noise

was then convoluted with a real-space mask that dampened

the noise levels in the solvent region. However, unless speci-

fied, the presented results regard a denoiser trained on

RELION intermediate reconstructions. All networks were

trained and evaluated on real-space maps. In practice, each

map update involves an inverse Fourier transform of ~xx and a

subsequent Fourier transform of the denoiser, f, before (17) is

evaluated. To improve training convergence and robustness

during inference, the input to the network was standardized

through subtraction of the volume average and division by the

volume standard deviation. The effect of the standardization

was subsequently reversed via addition of the average and

multiplication by the standard deviation of the original

volume.

The presented approach extends the reconstruction

protocol with a denoiser, which is a common image-to-image

task with well established efficient network architectures.

Hence, we limited the optimal architecture to hyperparameter

optimization such as the depth and channel width of the

network. For this work we chose a U-Net (Ronneberger et al.,

2015) for the denoiser, primarily motivated by the extensive

research that has been performed on their application to

denoising. Training and inference was performed using Python

and Tensorflow 1.15 (Abadi et al., 2015). At the start of this

project, Tensorflow had the largest community and support

compared with other available deep-learning frameworks,

which we determined to be important for the accessibility of

the implemented code and method to the scientific commu-

nity. The network was trained with residual learning (Zhang et

al., 2017) and L2 regularization of network weights via Adam

(Kingma & Ba, 2014), with a mini-batch size of ten maps, for

27 epochs and with a constant learning rate of 10�4. The

network was trained on an NVIDIA 2080 Ti graphics card

until convergence for 21 h. The U-net consisted of five down-

sampling and up-sampling stages that were implemented

through average pooling and transposed convolutional layers

(Dumoulin & Visin, 2016), respectively. Each stage was made

up of two consecutive blocks repeating BN+ReLU+Conv. The

kernel sizes of all convolutional layers were set to 3, while the

number of channels for the first hidden layer was set to four.

The number of channels was increased by a factor of two for

each lower stage in the U-net. Experiments suggested that

wider networks perform better when assessed with the mean

squared error (MSE) to the ground truth. However, owing to

memory limitations the above number of channels was chosen

for the first input layer as the best balance between perfor-

mance and memory requirements.

The input–output pairs for training consisted of the un-

regularized and unmasked reconstructions from intermediate

RELION iterations and their respective noise-free ground-

truth maps. Here, the coarsening applied to the ground truth

(see 19) was achieved by low-pass filtering it to match the

resolution of the corresponding noisy input map. This was

performed by multiplying the Fourier transform of the ground

truth by the FSC of each noisy input map. The FSC was

estimated for each map by RELION during the reconstruction

of the training data set from the half-maps.

3.2. Assessment of the RED approach

Four PDB structures were selected to test the performance

of the RED approach (Table 1). The test structures were

excluded from the training data set and had a minimum

r.m.s.d. of 8 Å for at least 1000 aligned atom pairs with any

other structure in the training data set. The four test structures

represent different levels of difficulty for the reconstruction,

mostly arising from differences in their molecular weight

(MW) and their overall shapes (as projection images of near-

spherical structures are harder to align than those with more

anisotropic shapes). The test structures are listed in Table 1 in

order of increasing difficulty, from the elongated, larger

structure with PDB code 4ail to the smaller, near-spherically

shaped structure with PDB code 4m82. Projection data sets for

testing were made in the same way as the projection data sets

that were used to generate the training set for the convolu-

tional neural network. However, in contrast to the training

data set, the test data set consists of images with a simulated
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Table 1
Characteristics of structures in the test data set.

Compactness is expressed as the ratio between the smallest and the largest
diameter of the molecule. Relative image SNR is expressed as the per-pixel
average variance of signal over noise relative to that of the structure with the
maximum SNR (PDB entry 4ail).

PDB code 4ail 4bb9 4btf 4m82

Molecular weight (kDa) 96 70 54 46
Relative image SNR 1.00 0.52 0.27 0.26
Compactness 0.42 0.64 0.62 0.74
�-Helical content (%) 38 49 46 39
�-Strand content (%) 21 10 10 12
Loop content (%) 36 41 44 49
Nucleotide content (%) 5 0 0 0



CTF corresponding to a defocus range of 0.2� to 2.0�. We

confirmed that using data with or without a CTF does not have

any noticeable impact on the performance of the denoiser if

changes in SNR are accounted for. This is expected, since the

denoiser is only exposed to data where the effects of the CTF

is mitigated through averaging over images with varying

defocus. Test data sets were generated at four different SNRs

by multiplying the original maps from the pdb2map tool by

0.022, 0.019, 0.016 and 0.013, which yields average SNRs of (i)

0.0038, (ii) 0.0028, (iii) 0.0019 and (iv) 0.0012, respectively.

The single-pass performance of the denoiser can be exam-

ined by applying it once to unregularized maps and evaluating

the ratio between the Lp difference to ground truth from the

denoised map and the unregularized map. We evaluated the

average of this ratio (using both L1 and L2) for the entire

training data set as a function of the estimated nominal

resolution of each map.

Standard, unmasked RELION 3D auto-refinements, with

updates based on (11), were compared with refinements with

updates based on (17). Again, all refinements were started

from initial models that were obtained by 30 Å low-pass

filtering of the ground-truth map and used the same refine-

ment parameters. The results of both types of refinements

were compared based on the reported half-map FSC and the

FSC against the ground truth, and the angular error relative to

the true projection angles. All maps were first multiplied with

a solvent mask with a smooth edge before the FSC calculation.

3.3. Implementation details

Instead of implementing the update formula in (17) directly

in the C++ code of RELION, we created an external recon-

struction functionality in its refinement program. When using

the --external_reconstruct command-line option, the

relion_refine program will write out MRC files containing

B(x, y) and K(x, y) for both half-maps at each iteration step,

together with the current estimate for FSC and �2. The

program then waits until reconstructions with a specified

filename for both half-maps exist on the file system, reads

those maps back in and proceeds with the next iteration of

refinement. This functionality was coupled to a script in

Python to perform the update formula in (17) using the pre-

trained denoiser model. The Python script for external

reconstruction using the proposed RED protocol, together

with the architecture and the weights of the convolutional

neural network that was used for the presented results, may be

downloaded from github (https://github.com/3dem/externprior).

4. Results

4.1. Performance of the denoiser

We first tested the effects of applying the denoiser to indi-

vidual, intermediate, unregularized reconstructions from a

standard RELION refinement [Figs. 1(a) and 1(b)]. After the

first iteration of refinement of the PDB entry 4ail projection

data at SNR (i), the unregularized half-reconstruction

contains only lower resolution components and exhibits

notable rotational smearing. The latter is often observed in

low-resolution refinement intermediates and is caused by

uncertainty in the angular assignments. Application of the

denoiser reduces the rotational smearing and brings the map

closer to the true signal, as confirmed by visual comparison

and the FSC with the ground-truth map.
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Figure 1
Single-pass denoising performance results at low (a) and high (b) resolution, showing central slices of the unregularized input map, the output from the
denoiser and the ground truth for reconstructions of a structure from the test data set (PDB entry 4ail). The color scale spans between minimum and
maximum density values in each slice. FSC curves show the correlation with the ground truth before (black) and after (red) denoising. The resolution at
FSC = 0.5 is shown for each curve. (c) shows the average ratio between the Lp difference from the ground truth to the denoised map and the
unregularized map for the entire training data set as a function of the nominal resolution.



At iteration 16 of the same refinement, the unregularized

map contains higher resolution components, but noise

components are clearly visible in the volume surrounding the

protein, which should be devoid of features. The denoiser

efficiently removes the latter while retaining the same level of

sharpness in the protein region and, again, both visual

comparison as well as FSC calculation with the ground-truth

map confirm that the denoised map is closer to the ground-

truth signal than the unregularized map.

The average ratio between the difference to ground truth of

the denoised map and the unregularized map was calculated

for L1 and L2 at each nominal resolution [Fig. 1(c)]. When the

resolution of the input map is worse than 10 Å the denoiser

fails to produce a significant improvement on average. As the

resolution improves beyond 10 Å the performance gradually

improves and eventually plateaus beyond 4.5 Å.

4.2. Performance of the RED approach

Next, we tested the performance of the RED approach on

projection data sets of the four test structures at four different

SNRs. We first ran the RED approach with a denoiser trained

on Gaussian noise and compared the results with those for a

denoiser trained on RELION intermediate reconstructions

(Fig. 2). The RED-based approach outperforms the standard

approach in all refinements performed, as measured by the

FSCs between the resulting reconstructions and the ground-

truth maps (solid green and purple lines in Fig. 2). This

suggests that Gaussian noise can partially explain the distor-

tions. However, the denoiser trained on RELION inter-

mediate reconstructions performs better in most cases,

confirming that Gaussian noise is an incomplete model of the

distortions observed in RELION intermediate reconstruc-

tions.

Both the RED approach and standard RELION auto-

refinement produced a reconstruction with a resolution close

to the Nyquist frequency for the easiest test structure, PDB

entry 4ail, at the highest SNR. Conversely, both approaches

yielded a low-resolution solution that was devoid of recog-

nizable protein features for the most difficult test structure,

PDB entry 4m82, at the lowest SNR. Therefore, the range of

structures and SNRs of our test data set represents a wide

range of scenarios from easy to hard refinements. The gains in

performance tend to be higher at higher SNRs; they are small

for the most difficult refinements. It is noteworthy that in the

most simple cases the RED approach achieves an FSC that is

equal or slightly higher than that of the reconstruction with

the true angles.
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Figure 2
FSCs of reconstructions at four different SNRs (rows) of four structures (columns). Regular RELION (black) is compared with RED using a denoiser
trained on Gaussian noise (green) and on RELION intermediate reconstructions (purple). Dotted lines show the half-map FSC and solid lines show the
FSC between the regularized map and the ground truth. All maps were first multiplied with a solvent mask with a smooth edge before comparison with
the ground truth. The upper shaded area shows the FSC when the model is reconstructed with zero angular error.



Measures of reconstruction quality that are reported by

RELION without having access to the ground truth, i.e. the

half-map FSCs, also improve when using the RED approach

(dotted green and purple lines in Fig. 2). However, for the

refinement of PDB entry 4m82 at the three lowest SNRs, we

noticed a severe overestimation of resolution based on the

half-map FSCs using the RED approach. A visual examination

of the maps [Fig. 3(b)] reveals high-contrast features that are

similar in appearance to those of biological macromolecules

but do not correspond to the ground truth. This points to the

denoiser introducing false high-resolution features into the

reconstructions that are shared among the two half-maps. This

then leads to an overestimation of the resolution, which is

based on the correlation between the half-maps. Since the

half-map FSC is the only reliable estimate of resolution when

the ground truth is missing, this issue poses a major problem

for the validation of the reconstruction results.

4.3. Confidence weighting

The � parameter in (17) can be used to fall back on the

Gaussian prior in a scenario where confidence in the perfor-

mance of the denoiser is lacking. Inspired by the results of the

single-pass performance test of the denoiser [Fig. 1(c)], we

tested a simple tuning scheme for � to address the issue of

resolution overestimation. We will refer to this modification as

confidence-weighted RED (CW-RED).

At nominal resolutions worse than 10 Å, as estimated by

RELION’s half-map FSC, we assign a full fall-back onto the

Gaussian prior by setting � = 0. This is where the single-pass

performance indicates that the denoiser results in little

improvement in the reconstruction [see Fig. 1(c)]. To avoid

impairing the performance at high resolutions, however, we

set � = 1 at nominal resolutions better than 4.5 Å, which is

approximately where the single-pass performance of the

network begins to peak. For any nominal resolution between

4.5 and 10 Å we use a linear interpolation between 0 and 1.

Using this approach, we see that the overestimation of the

half-map FSC is significantly alleviated (dotted red lines in

Fig. 4) without affecting the overall quality of the recon-

structions as measured by the FSC with the ground truth (solid

red lines in Fig. 4), the errors in the angular assignments

(Fig. 5) and the visual appearance of the resulting structures

(Figs. 6 and 7). A visual inspection of the map for PDB entry

4m82 resulting from the refinement with the lowest SNR also

suggests that the reconstruction no longer accumulates false

structural features with poor correlation to the ground truth

(Fig. 3).

5. Discussion

Deep learning faces four well known general challenges:

domain shift, brittleness, explainability and fairness. Domain

shift can prevent the deep neural network (DNN) from

generalizing beyond the training domain owing to shifts in

distribution between the training data set and the data

encountered when the DNN is deployed; brittleness is the

sensitivity to small changes in the data; explainability refers to

transparency in the features learned and the degree that they

can be made subject to human interpretability; and fairness

reflects insensitivity to input variables that should be statisti-

cally independent from the output. The manner in which the

DNN is incorporated into the reconstruction process,

proposed here, intentionally retains most of the established

statistical model that has been handcrafted from physical

principles, based on the image-formation process. This

approach alleviates many of the concerns related to brittleness

and explainability by minimizing the role of the DNN.

Furthermore, the data used to train the DNN will in principle

introduce bias. However, this would in principle hold for any
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Figure 3
Central slices of the reconstruction results of PDB entry 4m82 at SNR
(iv) and their respective ground truth. (a) Regular RELION, (b) RED,
(c) confidence-weighted RED. Each ground-truth map has been low-pass
filtered to match the estimated resolution of the reconstructed maps by
multiplying their Fourier transform with the half-map FSC. The result for
RED shows high-contrast features that do not correlate well with the
ground truth. This issue is significantly alleviated by confidence
weighting.



choice of priors. Generally, a handcrafted prior is more biased

than a trained one (Adler & Öktem, 2018a). Therefore, fair-

ness is of minor concern. However, domain shift is a consid-

erable issue that will be further discussed in this section.
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Figure 5
The distribution of angular error of reconstructions at four different SNRs (rows) of four structures (columns). Regular RELION (black) is compared
with confidence-weighted RED (red). The error is defined as the axis-angle representation difference between the known rotation and the refined angle.

Figure 4
FSCs of reconstructions at four different SNRs (rows) of four structures (columns). Regular RELION (black) is compared with RED (purple) and
confidence-weighted RED (red), in both cases using a denoiser trained on RELION intermediate reconstructions. Dotted lines show the half-map FSC
and solid lines show the FSC between the regularized map and the ground truth. All maps were multiplied with a solvent mask with a smooth edge before
comparison with the ground truth. The upper shaded area shows the FSC when the model is reconstructed with zero angular error. Note that the purple
lines show the same results as the purple lines in Fig. 2.



Convolutional neural networks for denoising are typically

trained on pairs of noiseless and noisy representations of the

signal. It is thus crucial to have access to an accurate noiseless

ground-truth signal, which makes it challenging to apply these
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Figure 7
Isosurface visualizations of the reconstruction results with regular RELION and confidence-weighted RED together with the ground truth for PDB
entries 4bb9 at SNR (ii) (left) and 4m82 at SNR (i) (right).

Figure 6
Central slices of the reconstructed maps in the test data set for the four different SNRs. Each pair compares regular RELION (left) with confidence-
weighted RED (right). The top row shows the ground truth for the maps in each column.



networks in areas where such a ground truth is impossible or

expensive to acquire, such as medical imaging (Huo et al.,

2018). To circumvent this problem, we used synthetic ground-

truth cryo-EM reconstructions and used a simplistic physical

forward model to generate simulated projection images. In

doing so, we explicitly did not aim to obtain a network to

denoise reconstructions from experimental cryo-EM data, and

thereby avoided some of the challenges of domain shift.

Rather, we used test data sets that were generated using the

same forward model to provide a proof of principle that

learned priors can improve the reconstruction process. Our

results convincingly make this case: the RED approach

outperformed standard auto-refinement in RELION in all of

the tests performed.

The results shown in Fig. 1 suggest that the denoiser has

learned to differentiate protein from solvent regions and apply

adequate amounts of filtering suited for each region, which

is difficult to achieve using classical denoising algorithms.

Additionally, in the easiest test cases the RED approach

achieves an equal or higher FSC than the reconstruction using

the true angles, which supports the idea that structural infor-

mation can be injected into the reconstruction process through

the proposed method.

The standard approach in RELION uses an L2 Tikhonov

regularization on the Fourier components of the reconstruc-

tion (Scheres, 2012b). In practice, this purely Fourier-based

regularization term is often complemented with an ad hoc

regularization in real space by setting all densities to a

constant value in the volume outside a user-specified 3D mask

around the reconstruction. Often, such masks are generated

after an initial refinement has yielded a preliminary recon-

struction. In the tests performed here, no solvent mask was

provided. Thereby, the improvements observed using the

RED approach reflect the difference between a purely

Fourier-based L2 Thikonov regularization and a learned prior

in real space. The observed differences with masked refine-

ments would be smaller.

Although, aware of problems with domain shift, we used

different macromolecular structures (i.e. with >8 Å r.m.s.d. on

the atomic coordinates) in the test and training data sets, we

still identified a risk of injecting similar, protein-like features

into both half-maps, which then lead an overestimation of

resolution based on the half-map FSC. Without access to the

ground truth, the half-map FSC is the single most important

measure of quality for the reconstruction, resulting in a major

concern for the usefulness of the method. We observed that

for our network this problem was most noticeable for recon-

structions at resolutions lower than 10 Å, for which there were

few examples in the training data set. More data in this domain

will probably alleviate the problem. Still, we were able to

address this issue with an empirical approach that we call

confidence-weighted RED. By falling back onto the less

informative Gaussian prior at nominal resolutions where the

denoiser is known to produce little improvement in the

reconstruction, we managed to sufficiently alleviate the

problem while retaining equal overall performance. This

approach is based on performance statistics gathered by

applying the denoiser to the training data set, and required no

significant additional effort compared with regular RED. To

avoid the risk of overestimating the confidence in the

denoiser, ideally another data set should be used instead of the

training data set. It is also noteworthy that the performance of

the denoiser is likely to vary over different resolution shells

and that a local patch-based approach might also be required

to better handle variations in local resolution. Therefore, a

more detailed investigation into the confidence-weighting

scheme could lead to further improvements.

We envision multiple other avenues for improving the

approach set out in this paper. Firstly, different network

architectures may be devised and networks may be trained

through alternative loss functions to improve their perfor-

mance. The macromolecular structures used for our training

and test data sets were limited to contain only a single protein

chain. Wider neural networks with more model capacity may

be required to achieve comparable performance on experi-

mental cryo-EM data. A large variety of successful network

architectures have been developed in other areas of image

processing, for example FFDNet (Zhang, Zuo et al., 2018) and

RCAN (Zhang, Li et al., 2018). Furthermore, to handle larger

reconstructions the denoiser may be trained on patches, rather

than on the entire map as performed here, and the patches

may be combined using a sliding window, similar to previous

work in tomography (Tegunov et al., 2020). This approach is

appealing owing to the inherent flexibility in terms of particle/

box size and memory requirements. Moreover, the use of

patches may be intrinsically better suited to deal with the

inherent variability in map quality and local resolution that is

caused by the different extents of order that exist in many

biological macromolecules. For instance, confidence weighting

can easily be made to rely on the average local resolution in

each patch rather than the entire volume. However, as

networks trained on patches might no longer see the entire

box, where a particle at the center is surrounded by solvent

this approach may be less powerful in flattening the solvent.

One solution could be the combination of multiple denoisers

that are trained in different resolution domains. For instance, a

patch-based denoiser dedicated to the high-resolution domain

could be combined with a denosier with a global view of the

map at low resolution. The confidence-weighting scheme

introduced in this paper is well suited to combine each of these

denoisers according to the performance in each of the reso-

lution domains.

Secondly, to limit problems with domain shift, the networks

should be optimized for the denoising of reconstructions from

experimental cryo-EM data. Experimental cryo-EM data have

different characteristics in both the signal and the noise to the

synthetic data used here. Experimental noise is not indepen-

dent in the pixels, but falls off with higher spatial frequencies.

Both the signal and part of the noise are affected by the CTF

of the microscope, and in particular the lowest spatial

frequencies in experimental cryo-EM reconstructions are

poorly modeled by the simplistic forward model of protein

atoms in vacuum used in this paper. Several options exist to

generate more realistic pairs of maps for training the denoiser.
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Refinements with experimental cryo-EM data downloaded

from the EMPIAR database (Iudin et al., 2016) may be used to

generate training data. In such a scenario, generating image

pairs with ground truth will be difficult, but one could generate

intermediate reconstructions from relatively small subsets of

the data and provide the high-resolution maps from the

complete data sets as substitutes for the ground truth. This is

particularly feasible when the networks will only be trained on

intermediate-resolution reconstructions (also see below).

Alternatively, one could train generative adversarial networks

(GANs) to learn a data-driven forward model from pairs of

atomic models and their corresponding noise-free cryo-EM

reconstructions in order to generate more realistic ground-

truth maps of disordered regions, for example membrane

patches. For this purpose, conditional GANs (cGANs) are a

particularly suitable candidate, since pairs of atomic model

(ground truth) and reconstruction density are available (Isola

et al., 2017). Similarly, cycle-consistent adversarial networks

(CycleGANs; Zhu et al., 2017) or style-transfer GANs (Gatys

et al., 2016) may be used to relate the two data domains in

cases where pairs are lacking, for example for low-resolution

reconstructions without a matching ground truth or for

generalizing the data set to new experimental conditions with

few existing examples (Januszewski & Jain, 2019).

Thirdly, the approach described here may be adapted to use

optimization algorithms other than expectation–maximization.

A gradient-driven approach with mini-batches would be based

on rLðxjYÞ and (15) to inject prior knowledge into the

reconstruction more often, which has the potential to improve

the convergence speed. For this class of algorithms, adversarial

regularisers might be a more natural candidate compared with

RED, since this method models the prior more directly and

thus enables better control of the properties of the generated

gradient (Lunz et al., 2018). Alternatively, algorithms based on

ADMM and plug-and-play denoisers are of potential interest

for investigation (Venkatakrishnan et al., 2013; Bigdeli et al.,

2019).

Finally, an important consideration when employing prior

information in solving any inverse problem is that the prior

information used in solving the problem can no longer be used

for external validation of the results. This touches on the

challenge of explainability and is relevant when injecting prior

information about biological macromolecules into the cryo-

EM reconstruction process. In current cryo-EM approaches

such information is not used at all, and the appearance of

protein and nucleic acid-like features in cryo-EM recon-

structions is often implicitly used to confer confidence in the

correctness of the maps. However, one could imagine a more

informative prior generating reconstructions in which such

features are incorrectly ‘invented’ from noise in the maps.

Commonly used procedures to prevent overfitting, most

notably splitting the data set into two independent halves, do

not necessarily protect against the interpretation of such false

features. Therefore, new validation tools may need to be

devised to guard against the interpretation of false features.

One option could be to only use information up to a given

intermediate resolution when training the denoiser. In this

way, the presence of protein- or nucleic acid-like features

beyond this resolution could still be used to provide confi-

dence in the result. This approach is particularly appealing

because the high-resolution signal typically does not contri-

bute much to the alignment of the individual noisy projection

images anyway (Henderson et al., 2011).

We expect that with further improvements along the lines

discussed above, the approach presented in this paper will

result in a tool for structure determination that will also

outperform the current state of the art for experimental cryo-

EM data. This has the exciting potential to improve any

reconstruction from existing data sets and to expand the

applicability of the technique to samples that are currently

beyond its scope.

APPENDIX A
Dependent Gaussian noise

SMD describes the results of RED using a white Gaussian

noise model with a fixed variance as the underlying assump-

tion for the image distortion. This appendix describes details

of how the RED approach was expanded to handle the type of

distortions observed in cryo-EM data. In particular, we derive

a dynamically adjusted regularization parameter, as described

in (15), and a modified training scheme by managing the

significantly varying levels of distortion in the data. We show

how this leads to a training protocol that minimizes the model

mapping to a coarsened ground truth. The aim of this

appendix is not to provide a full mathematical proof of (15),

but rather to present an approach that highlights the

assumptions and approximations that are required to derive it.

We define the random vector x 2 C
M, x � P, where P here

is the distribution of undistorted ground-truth data. Here, we

assume a Gaussian noise model formalized as ~xx ¼ x þ "ðxÞ,
where "ðxÞ � N ½0; 	ðxÞ� and 	ð�Þ:CM

! C
M�M is a covariance

matrix that depends on x to describe the shape of the Gaus-

sian. For the application in this paper, this dependency does

not have to be explicitly defined; rather, an empirical approach

is sufficient where the training data set is extended to also

include observations of 	. In Section 3.1 we specify how this

was performed in practice. One can device an empirical prior

distribution that approximates P through kernel density esti-

mation (KDE; Parzen, 1962), given a large representative

corpus of training data, {x}T
t=1, drawn from P, and the corre-

sponding {	}T
t=1, as

P̂PKDEð~xxÞ ¼
1

T

PT
t¼1

N ½~xxjxt; 	ðxtÞ�

with Nðxj�; 	Þ :¼ Ce�ðx��Þ
H	�1ðx��Þ: ð20Þ

For the continuum limit of KDE, we instead obtain

PKDEð~xxÞ ¼
R
C

M

N ½~xxjx; 	ðxÞ�PðxÞ dx: ð21Þ

The gradient of the log-KDE-prior then becomes (see

Appendix B for the precise definition of r)
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r log PKDEð~xxÞ ¼
rPKDEð~xxÞ

PKDEð~xxÞ
ð22Þ

¼

R
C

M 	�1ðxÞðx� ~xxÞN ½~xxjx; 	ðxÞ�PðxÞ dx

PKDEð~xxÞ
ð23Þ

¼

R
C

M 	�1ðxÞxN ½~xxjx; 	ðxÞ�PðxÞ dx

PKDEð~xxÞ

�

R
C

M 	�1ðxÞ~xxN ½~xxjx; 	ðxÞ�PðxÞ dx

PKDEð~xxÞ
ð24Þ

¼
R
C

M

	�1ðxÞxPðxj~xxÞ dx�
R
C

M

	�1ðxÞ~xxPðxj~xxÞ dx:

ð25Þ

We define an MMSE function as

x̂xMMSE ¼ argmin
f :CM

!C
M

E kx̂x � f ð~xxÞk2
� 	

with x̂x :¼ ½	ðxÞ��1
x 2 C

M:

ð26Þ

In practice, owing to the higher relative error of high-

frequency components, x̂x corresponds to a coarsened (low-

pass filtered) version of x. We also define the MMSE of ½	ðxÞ��1

as

 ¼ argmin
’:CM

!C
M�M

E k½	ðxÞ��1
� ’ð~xxÞk2

� 	
: ð27Þ

It then holds that

r log PKDEðxÞ ¼ x̂xMMSEðxÞ �  ðxÞx: ð28Þ

Now, it follows that

f̂f ¼ argmin
f :CM

!C
M

E kx̂x � f ð~xxÞk2
� 	

ð29Þ

¼ argmin
f :CM

!C
M

E

�
kx̂x � x̂xMMSEð~xxÞk

2

� 2Re hx̂x � x̂xMMSEð~xxÞ; x̂xMMSEð~xxÞ � f ð~xxÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Inner product of two orthogonal vectors

þ kx̂xMMSEð~xxÞ � f ð~xxÞk2

�
ð30Þ

¼ argmin
f :CM

!C
M

E kx̂x � x̂xMMSEð~xxÞk
2
þ kx̂xMMSEð~xxÞ � f ð~xxÞk2

� 	
ð31Þ

¼ argmin
f :CM

!C
M

E kx̂xMMSEð~xxÞ � f ð~xxÞk2
� 	

ð32Þ

¼ argmin
f :CM

!C
M

E kr log PKDEð~xxÞ þ  ð~xxÞ~xx � f ð~xxÞk2
� 	

ð33Þ

¼ argmin
f :CM

!C
M

E kr log PKDEð~xxÞ �  ð~xxÞf½ ð~xxÞ�
�1f ð~xxÞ � ~xxgk2

� �
:

ð34Þ

In the above, (31) uses the orthogonality principle and (33)

follows from (28). In the particular case of f, in the above,

belonging to a class of universal approximator functions, e.g.

CNN denoisers, the minimization (i.e. training) is carried out

over the network parameters � with pairs of ðx̂x; ~xxÞ. It thus

follows that optimizing the weights � of such a function,

f�:C
M
! C

M , through

f�̂� 2 argmin
f :CM

!C
M

Eðx̂x;~xxÞ kx̂x � f ð~xxÞk2
� 	

ð35Þ

equates matching the gradient of the log-KDE-prior through

r log PKDEðxÞ ’  ðxÞf½ ðxÞ�
�1f�ðxÞ � xg: ð36Þ

In this paper, we assume that pKDE is a good enough

approximation of P given the training-data size and data

dimensionality. Conclusively, f� is trained to map a noisy data

point, ~xx, to a weighted combination of low-pass filtered ground

truths. We are, however, still required to estimate  . Ignoring

the off-diagonal components of  and estimating only the

diagonal components through (12), i.e.  ’ ��2, implies that

(36) is equivalent to (15).

APPENDIX B
Wirtinger derivatives

To derive (7) one has to differentiate the expression for the

posterior probability in (3). In this paper, it is expressed in the

Fourier domain as a real function with complex input. Here,

we define the gradient operator acting on such a function

using the formalism of Wirtinger derivatives (see, for example,

Appendix A of Fischer, 2005). More specifically, the Wirtinger

derivatives of f with respect to the complex variables zi = xi +

iyi and z	i := xi � iyi are defined via

@f

@zi

:¼
1

2

@f

@xi

� i
@f

@yi


 �
; ð37Þ

@f

@z	i
:¼

1

2

@f

@xi

þ i
@f

@yi


 �
: ð38Þ

The corresponding gradients can then be defined as

rzf :¼

@f
@z1

..

.

@f
@zM

0
BB@

1
CCA; rz	 f :¼

@f
@z	

1

..

.

@f
@z	

M

0
BB@

1
CCA: ð39Þ

We also use the shorthand notation rf ðzÞ :¼ rz	 f ðzÞ. Note

that z0 2 C
M is stationary if and only if rzðz0Þ ¼ 0 or

rz	 ðz0Þ ¼ 0. It follows from Appendix A in Fischer (2005) that

for b; z 2 CM and A 2 CM�M

rz	 fkAz� bk2
¼ A	ðAz� bÞ; ð40Þ

where A* is the adjoint of A with respect to the usual inner

product on CM . Hence, if we take A ¼ ��1
i Hgi

and b = �i
�1yi

we find

rx	 log Pðyijx; giÞ ¼ rx	 �k�
�1
i ðHgi

x� yiÞk
2

� �
ð41Þ

¼ �ð��1
i Hgi

Þ
	
ð��1

i Hgi
� ��1

i yiÞ ð42Þ

¼ �H	gi
��2

i ðHgi
x� yiÞ: ð43Þ

Similar calculations give the gradient of the Gaussian log-

prior:

rx	 ð�k�
�1xk2
Þ ¼ ���2x: ð44Þ
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In this paper, to simplify notation outside this appendix, the

subscript on r is dropped when the differentiation is with

respect to x or any variations thereof.
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