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Toroidally and spherically bent single crystals are widely employed as optical

elements in hard X-ray spectrometry at synchrotron and free-electron laser light

sources, and in laboratory-scale instruments. To achieve optimal spectrometer

performance, a solid theoretical understanding of the diffraction properties of

such crystals is essential. In this work, a general method to calculate the internal

stress and strain fields of toroidally bent crystals and how to apply it to predict

their diffraction properties is presented. Solutions are derived and discussed for

circular and rectangular spherically bent wafers due to their prevalence in

contemporary instrumentation.

1. Introduction

Crystal analysers are the heart of most contemporary mid-to-

high energy resolution X-ray spectrometers in the hard X-ray

regime (Suortti & Schulze, 1995; Yamaoka et al., 1998). The

same basic principle, the diffraction of X-rays from the peri-

odical crystal structure, has been used in a plethora of spec-

trometric designs in which curved crystal analysers are

employed to increase the collected photon flux and to ensure

their proper focusing on a detector (DuMond & Kirkpatrick,

1930; Johann, 1931; Johansson, 1932; Cauchois, 1932; von

Hámos, 1932). Especially with spherically bent crystal analy-

sers (SBCA) one can efficiently cover and analyse photons

collected over a large solid angle. SBCAs also exhibit

(approximate) point-to-point focusing allowing integration of

imaging and tomography capabilities in spectroscopic instru-

ments (Huotari et al., 2011). It is no wonder that many inelastic

X-ray scattering (IXS) and X-ray emission spectroscopy

(XES) endstations at synchrotron and free-electron laser light

sources worldwide, such as SOLEIL (Ablett et al., 2019),

ESRF (Kvashnina & Scheinost, 2016; Huotari et al., 2017;

Moretti Sala et al., 2018), APS (Fister et al., 2006), Spring-8

(Cai, 2004; Ishii et al., 2013), SSRF (Duan et al., 2016), SLS

(Kleymenov et al., 2011), SSRL (Sokaras et al., 2012) and

DESY (Welter et al., 2005), utilize SBCAs in their instrument

designs. In addition to studying the structure and internal

dynamics of matter via externally produced radition, SBCAs

are also used to analyse X-rays in plasma research (Faenov

et al., 1994; Aglitskiy et al., 1998; Sinars et al., 2003; Knapp et al.,

2011).

Due to high demand and limitations of synchrotron/free-

electron access, a renewed interest towards laboratory-scale

X-ray instrumentation based on conventional X-ray tubes has

grown in recent years (Seidler et al., 2014; Anklamm et al.,

2014; Németh et al., 2016; Holden et al., 2017; Honkanen et al.,

2019; Jahrman et al., 2019b). Especially relevant to this work
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are the instrument designs based on SBCAs which, in

conjunction with recent advances in the crystal technology

(Verbeni et al., 2005; Rovezzi et al., 2017), have largely over-

come the problem of low photon output per generating power

limiting the previous generation of laboratory instruments

(that were often based on cylindrically bent crystals, i.e.

CBCAs). For example, Seidler et al. (2014) reported

4 photons W�1 s�1 for two high-resolution CBCA instruments

with 2–3 eV energy resolution and 600–2000 photons W�1 s�1

for their 1 eV SBCA instrument depending on the crystal

reflection used.1

Indeed, the portfolio of scientific cases, in which the

laboratory instruments using SBCAs have proven to be a

viable alternative to large-scale facilities, is expanding rapidly

and spans already a vast cavalcade of interests in natural

sciences such as fundamental materials research (Mortensen

et al., 2017), electrochemistry (Wang et al., 2017; Kuai et al.,

2018; Sun et al., 2019; Lutz & Fittschen, 2020), nanoparticle

characterization (Davodi et al., 2019), in operando battery

studies (Jahrman et al., 2018, 2019c), actinide research (Bès

et al., 2018; Jahrman et al., 2019b; Mottram et al., 2020b), in situ

catalysis studies (Moya-Cancino et al., 2019a,b), geochemistry

(Mottram et al., 2020a), and microbiology and enviromental

research (Lusa et al., 2019).

However, as a significant disadvantage SBCAs suffer from

spatial separation of meridional and sagittal foci (focal astig-

matism) when taken out of the backscattering condition

(angle of incident X-rays <90�) which can cause aberrations in

imaging and issues with detectors with small active areas. The

problem may be partly averted with toroidally bent crystal

analysers (TBCA) which have different sagittal and meri-

dional bending radii. Notwithstanding, TBCAs are encoun-

tered rarely as they are more difficult to manufacture than

SBCAs and need to be tuned for a specific Bragg angle which

incurs increased expenses, especially if the spectrometer setup

is meant to be used for a wide range of photon energies.

However, at least some of these problems can be avoided by

using vacuum-forming optics (Jahrman et al., 2019a) to apply

the toroidal bending to a flat wafer temporarily and, perhaps

with further development, dynamically in the course of an

experiment.

In general, the bending process degrades the energy reso-

lution of a TBCA/SBCA by introducing internal stress to the

crystal wafer. The effect can be mitigated, for example, by

dicing or cutting the wafer (Verbeni et al., 2005, 2009;

Shvyd’ko et al., 2013). However, without a guiding theoretical

understanding, such mechanical alterations might lead to

unexpected adverse effects, such as loss of integrated reflec-

tivity, optical aberrations and increased manufacturing costs.

From the standpoint of instrument optimization it is thus of

utmost importance to understand how the diffractive proper-

ties and the mechanical deformation of toroidally/spherically

bent crystal wafer are intertwined.

The equations describing the propagation of radiation in

deformed periodic medium were laid out independently by

Takagi and Taupin in the 1960s (Takagi, 1962, 1969; Taupin,

1964) which alongside lamellar models (White, 1950; Erola

et al., 1990; Sánchez del Rio et al., 2004) are routinely used to

calculate the diffraction properties of bent crystals (Gron-

kowski, 1991; Sánchez del Rı́o & Dejus, 2011). However, the

diffraction properties of spherically bent wafers were poorly

understood until the inclusion of in-plane stresses and strains

to diffraction calculations in the mid-2010s. As shown in our

previous work (Honkanen et al., 2014a,b, 2016), the in-plane

deformation of a thin, elastically anisotropic plate solved via

geometrical considerations can accurately explain the

experimentally measured reflectivity curves of SBCAs with

circularly shaped wafers cut along arbitrary crystal directions.

Nevertheless, the original derivation relies on many geome-

trical features and symmetries which can not be easily

generalized to toroidal bending or other types of crystal

shapes, such as rectangular ones used, for example, in recently

introduced strip-bent analysers designed to minimized the

influence of the in-plane stress (Rovezzi et al., 2017).

In this work, we present a general framework to calculate

internal stress and strain fields and diffracted X-ray intensities

of an arbitrarily shaped, toroidally bent crystal wafer. The

procedure is utilized to derive stress and strain expressions for

isotropic and anisotropic circular and rectangular toroidally

bent crystals due to their prevalence in the contemporary

instrumentation scene. The models and their properties are

discussed in detail and the accuracy of the predicted diffracted

X-ray intensities is validated by comparison with experimental

data. The Python implementation of the models is briefly

introduced.

2. General theory

The propagation of electromagnetic radiation in a crystalline

medium strained by external forces is mathematically

described by a group of partial differential equations known as

the Takagi–Taupin equations (Takagi, 1962, 1969; Taupin,

1964). To accurately compute the intensity of X-rays diffracted

by the crystal as a function of incident wavelength or incidence

angle (i.e. the diffraction curve of a bent crystal due to a

particular set of crystalline planes), the partial derivatives of

the displacement vector field need to be known over the

diffraction domain.

Consider an arbitrarily shaped, toroidally bent crystal wafer

with the thickness d. We choose a Cartesian coordinate system

(x, y, z) so that z = 0 is located at the midplane of the wafer

and the radii of curvature R1 and R2 are aligned with the x and

y axes as presented in Fig. 1. Since the transverse (x, y)

dimensions of the crystal are typically small compared with R1

and R2, we may approximate the vertical (z) deflection � of the

wafer with a paraboloidal surface:
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1 However, it should be noted the lack of photon flux in these CBCA
instruments is related to the used Rowland circle geometry and does not
necessarely affect CBCA instruments of different geometry (e.g. von Hámos
geometry) with modern position-sensitive detectors like those presented in the
work by Németh et al. (2016).



� ¼
x2

2R1

þ
y2

2R2

: ð1Þ

When � is small enough compared with the transverse

dimensions of the wafer, the strain field inside the wafer can be

accurately described by the pure bending model (Chukhovskii

et al., 1994). Let Sij be the Cartesian components of the

compliance matrix of an elastically anisotropic crystal in the

Voigt notation.2 We assume that Sij are rotated to match the

orientation of the crystal directions of the wafer. As detailed

in Section S1 of the supporting information, the partial deri-

vatives of the displacement vector �0 in the scope of the pure

bending model for � given by equation (1) for an arbitrary

elastically anisotropic crystal are

@�0x
@x
¼ �

z

R1

@�0z
@x
¼

x

R1

@�0z
@z
¼ ðS031�x þ S032�yÞz

@�0x
@z
¼ �

x

R1

þ ðS051�x þ S052�yÞ cos�� ðS041�x þ S042�yÞ sin �
� �

z;

ð2Þ

where

� ¼

0; if S61 ¼ S62 ¼ 0, S11 ¼ S22, and S11+S22�2S12�S66 ¼ 0

1
2 atan D�ðR1þR2Þ�B�ðR1�R2Þ

A�ðR1�R2Þ�C�ðR1þR2Þ

h i
; otherwise; (3)

(

with

A� ¼ S66ðS11 þ S22 þ 2S12Þ � ðS61 þ S62Þ
2; ð4Þ

B� ¼ 2 S62ðS12 þ S11Þ � S61ðS12 þ S22Þ
� �

; ð5Þ

C� ¼ S66ðS22 � S11Þ þ S2
61 � S2

62; ð6Þ

D� ¼ 2 S62ðS12 � S11Þ þ S61ðS12 � S22Þ
� �

: ð7Þ

The scaled torques are given by

�x ¼
ðS012 � S022ÞðR1 þ R2Þ þ ðS

0
12 þ S022ÞðR1 � R2Þ cos 2�

2ðS011S022 � S012S012ÞR1R2

;

ð8Þ

�y ¼
ðS012 � S011ÞðR1 þ R2Þ � ðS

0
12 þ S011ÞðR1 � R2Þ cos 2�

2ðS011S022 � S012S012ÞR1R2

;

ð9Þ

and the primed S0ij are constructed according to the Voigt

notation from the rotated compliance tensor

s0ijkl ¼
X

p;q;r;s

QipQjqQkrQlsspqrs; ð10Þ

where

Q ¼

cos � � sin � 0

sin � cos � 0

0 0 1

2
4

3
5: ð11Þ

However, the pure bending solution [equation (2)] alone is

inadequate to explain the diffraction curves of TBCAs as

shown experimentally for SBCAs with large surface areas

(Verbeni et al., 2009; Honkanen et al., 2014b; Rovezzi et al.,

2017). This is because, in addition to pure bending strain, a flat

crystal wafer is also stretched and compressed in the trans-

verse (in-plane) directions in order to fit on a toroidal surface.

These deformations affect the d spacing of the Bragg planes

due to the non-zero Poisson ratio and thus the diffraction

curve of the TBCA. In the scope of linear elasticity, the total

strain tensor is ~��ij ¼ �
0
ij þ uij where, in addition to the pure

bending strain �0ij, we include the ‘stretching component’ uij.

The deformation of the wafer can be found by minimizing

the mechanical strain energy under the toroidal bending

constraint. If we assume that the wafer is thin (i.e. the trans-

verse dimensions of the wafer are considerably larger than its

thickness d), the total energy can be written as the sum of the

pure bending energy and the stretching energy. Since the pure

bending solution is already known, it is sufficient to concen-

trate on the minimization of the stretching energy given by

F ¼
d

2

Z
�

d�
X

k;l

ukl�kl; ð12Þ

where the integration goes over the wafer surface � and the

sum includes only the transverse indices x and y. Using the

Hooke’s law uij ¼
P

k;j sijkl�kl and the Voigt notation, we can

rewrite equation (12) as

F ¼
d

2

Z
�

d�

�

�
S11�

2
xxþS22�

2
yyþS66�

2
xyþ2S12�xx�yyþ2S16�xx�xyþ2S26�yy�xy

�
:

ð13Þ

The strain tensor must fulfil the equilibrium conditionP
k @�ik=@xk ¼ 0 which is ascertained if we express �ij as a

function of � = �(x, y), also known as the Airy stress function,

so that

�xx ¼
@2�

@y2
; �xy ¼ �

@2�

@x@y
; �yy ¼

@2�

@x2
: ð14Þ

For a thin deflected wafer, uij can be assumed to be constant

with respect to the z coordinate given by equation 14.1 (p. 51)

in the work by Landau et al. (1986):
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Figure 1
Nomenclature for a toroidally bent wafer. The thickness of the wafer is d.
The origin O of the Cartesian coordinate system (x, y, z) and the polar
coordinates (r, �) are located at the midplane of the crystal in the z
direction.

2 In the Voigt notation, a pair of indices ij is replaced with a single index m as
follows: 11! 1, 22! 2, 33! 3, 23; 32! 4, 13; 31! 5 and 12; 21! 6.
The compliance matrix S in the Voigt notation is given in terms of the
compliance tensor s so that Smn ¼ ð2� 	ijÞð2� 	klÞsijkl , where ij and kl are any
pairs of indices corresponding to m and n, respectively, and 	 is the Kronecker
delta.



uij ¼
1

2

@ui

@xj

þ
@uj

@xi

� �
þ

1

2

@�

@xi

@�

@xj

: ð15Þ

Combining equation (15) with equation (14) and Hooke’s law

allows us to write the constraint for the toroidal bending:

fc ¼ D
4�þ

1

R1R2

¼ 0; ð16Þ

where

D
4
¼ S11

@4

@y4
þ ð2S12 þ S66Þ

@4

@x2@y2

þ S22

@4

@x4
� 2S16

@4

@x@y3
� 2S26

@4

@x3@y
: ð17Þ

In addition, since contact force P (per unit area) between the

wafer and substrate is the only external force acting on the

wafer, we require that its integral over the surface has to

vanish in order the wafer to stay stationary, i.e.

Fc ¼

Z
�

d� P ¼ �d

Z
�

d�
�xx

R1

þ
�yy

R2

� �
¼ 0: ð18Þ

The detailed derivation is presented in Section S1 of the

supporting information.

To find �(x, y) which minimizes equation (13) under the

constraints given by equations (16) and (18), we utilize the fact

that the dimensions of the wafer are small compared with the

bending radii R1,2. Therefore we may write the ansatz in

powers of x/R1 and y/R2 and truncate the series after a few

lowest-order terms reducing the problem to finding a finite set

of expansion coefficients Ck. The solution is found by defining

a new functional L ¼ F þ 
1fc þ 
2Fc and finding a set

fCk; 
1; 
2g which solves the linear system

@L

@Ck

¼ 0

@L

@
1;2

¼ 0;

8>><
>>: ð19Þ

when the expansion of � is limited up to the fourth order.3 The

�ij from equation (14) are then substituted into Hooke’s law to

calculate uxx, uxz and uzz needed for the diffraction calcula-

tions.

The total strain field of the pure bending and stretching

components could be directly used as a deformation term in

the Takagi–Taupin equations but it is computationally unfea-

sible for a three-dimensional macroscopic crystal. However, as

shown in our previous work (Honkanen et al., 2016), the

problem can be substantially reduced by solving the diffrac-

tion curve from the Takagi–Taupin equations using the depth-

dependent bending strain �0ij and convolving the resulting

curve with the contribution due to the stretching strain uij

which is assumed to be constant in the diffraction domain of

any single ray. Assuming that the incidence angle of the X-rays

are fixed and the wavelength is varied, the mean wavelength 

of the pure bending diffraction curve is changed due to uij by

an amount �
 according to equation (11) in our previous

work (Honkanen et al., 2016):

�




¼
@ðu � ĥhÞ

@sk
þ
@ðu � ĥhÞ

@s?
cot �B; ð20Þ

where u is the displacement vector corresponding to uij, sk and

s? are directions parallel and perpendicular to the reciprocal

lattice vector h (ĥh ¼ h=jhj), and �B is the Bragg angle, as

presented in Fig. 2. Assuming that the diffraction takes place

in the xz plane, equation (20) can be written in terms of

photon energy E ¼ hc=
 and strain tensor components:

�E

E
¼ � uzz cos2 ’� 2uxz sin ’ cos ’� uxx sin2 ’

þ uzz � uxx

� 	
sin ’ cos’þ 2uxz sin2 ’

� �
cot �B;

ð21Þ

where ’ is the asymmetry angle. The details are presented in

Section S1 of the supporting information. In the symmetric

Bragg case, equation (21) simplifies to

�E

E
¼ �uzz: ð22Þ

The diffraction (or resolution) curve of the whole crystal wafer

is then obtained by calculating the distribution ��E of energy

shifts �E over the surface and convolving the resulting

distribution with the 1D Takagi–Taupin curve solved for the

pure bending solution in equation (2). Formally ��Eð"Þ for a

particular energy shift � is obtained by summing all the surface

elements d� whose energy shift �E ¼ ", i.e.

��Eð"Þ /

Z
�

d� 	ð�E � "Þ; ð23Þ

where 	 is the Dirac delta function and �E ¼ �Eðx; yÞ is

understood to be a function of position. Similarly, for rocking

curve measurements with a monochromatic beam, the shifts in

the diffraction angle are

�� ¼� uzz cos2 ’þ 2uxz sin ’ cos ’þ uxx sin2 ’
� 	

tan �B

þ uzz � uxx

� 	
sin ’ cos’þ 2uxz sin2 ’; ð24Þ

which in the symmetric Bragg case simplifies to
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Figure 2
Illustration of diffraction related quantities. h is the reciprocal vector of
the diffraction, �B is the Bragg angle, ’ is the asymmetry angle, and sparallel

and sperp are coordinate axes parallel and perpendicular to h. x and z
belong to the Cartesian coordinate system presented in Fig. 1.

3 For higher order expansions, additional linear relations between Ck are
added to the system to ensure that fc = 0 for all x and y.



�� ¼ �uzz tan �B: ð25Þ

Note that equation (25) ceases to be valid near �B = /2 since it

is based on the first-order Taylor expansion.

Usually changes in both E and tan�B are minute during

scans which means that they can be considered constants. Thus

�E, �� and their corresponding distributions differ only by a

multiplicative factor. Therefore only the �E distributions are

presented in the following section.

3. Important special cases

In this section we apply the general framework to derive the

transverse stretching strain and stress fields caused by toroidal

bending for circular and rectangular wafers which are of

particular relevance considering the current trends in the

contemporary instrument design. For the sake of brevity, only

the initial assumptions and the results are discussed. The

detailed derivations are presented in Section S2 of the

supporting information.

3.1. Isotropic circular wafer

Consider a toroidally bent, isotropic circular crystal wafer

with the thickness d, diameter L and bending radii R1 and R2.

It turns out that the problem is mathematically equivalent to

spherical bending with a bending radius of R = (R1R2)1/2 which

implies radial symmetry of �. This allows us utilize the general

solution to r4� = 0 known as the Mitchell solution (Michell,

1899) to find the exact solution instead of a mere polynomial

approximation. By solving the linear system in equation (19),

the components of stretching stress tensor are found to be

�xx ¼
E

16R1R2

L2

4
� x2 � 3y2

� �
;

�xy ¼
E

8R1R2

xy;

�yy ¼
E

16R1R2

L2

4
� 3x2 � y2

� �
; ð26Þ

where E is Young’s modulus. The contact force per unit area

between the wafer and the substrate is thus

P ¼
Ed

16R2
1R2

2

3R1 þ R2ð Þx2
þ R1 þ 3R2ð Þy2

� R1 þ R2ð Þ
L2

4


 �
;

ð27Þ

and the components of uij are

uxx ¼
1

16R1R2

ð1� �Þ
L2

4
� ð1� 3�Þx2

� ð3� �Þy2


 �
; ð28Þ

uyy ¼
1

16R1R2

ð1� �Þ
L2

4
� ð1� 3�Þy2 � ð3� �Þx2


 �
; ð29Þ

uxy ¼
1þ �

8R1R2

xy; uxz ¼ uyz ¼ 0; uzz ¼
�

4R1R2

x2þ y2�
L2

8

� �
:

ð30Þ

Using equation (22), we find that the energy shift �E as a

function of surface position in the polar coordinates (see.

Fig. 1) is

�E

E
¼ �

�

4R1R2

r2
�

L2

8

� �
: ð31Þ

The isocurves of the energy shift are circular as one would

expect on the basis of radial symmetry. Substituting �E
obtained into equation (15) and carrying out the integration,

we find the energy shift distribution

��Eð"Þ ¼
constant; � �L2E

32R1R2
� " � �L2E

32R1R2

0 otherwise.

8<
: ð32Þ

The found uniform distribution can be used to convolve the

1D Takagi–Taupin solution to predict the diffraction curve of a

TBCA.

To quickly estimate the effect of stretching strain on the

energy resolution, we note that the variance of a uniform

distribution with a width of w is w2/12 and thus the standard

deviation of the energy shift distribution [equation (32)] is

� ¼
�L2E

32 3ð Þ1=2
R1R2

: ð33Þ

The standard deviation due to stretching strain can then be

combined with the standard deviations of other contributions

(1D Takagi–Taupin, incident bandwidth, etc.) by quadratic

summing in accordance with the central limit theorem. Usually

the full width at half-maximum (FWHM) is used instead of the

standard deviation, in the case whereby � is to be multiplied

by 2(2ln2)1/2. This underestimates the true FWHM of

equation (32) approximately by a factor of 0.68 but, regarding

the central limit theorem, gives a more accurate contribution

to the total FWHM.

3.2. Anisotropic circular wafer

For the anisotropic case, we ought to not assume a priori

that � is radially symmetric as it is in the isotropic case.

However, it turns out that applying the minimization proce-

dure to a general fourth-order polynomial ansatz yields a

solution for the stretching stress tensor that is effectively

equivalent to that of the isotropic case:

�xx ¼
E0

16R1R2

L2

4
� x2
� 3y2

� �
;

�yy ¼
E0

16R1R2

L2

4
� 3x2 � y2

� �
;

�xy ¼
E0

8R1R2

xy; ð34Þ

where

E0 ¼
8

3ðS11 þ S22Þ þ 2S12 þ S66

ð35Þ

can be interpreted as the effective Young’s modulus. Note

that, for an isotropic crystal, E0 = E, but in general E0 6� 1/S11.

The contact force is thus equivalent to equation (27) when E is
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replaced with E0. The components of uij relevant to the

diffraction calculations are obtained by substituting the

stresses from equation (34) into Hooke’s law:

uxx ¼
E0

16R1R2



ðS11 þ S12Þ

L2

4
� ðS11 þ 3S12Þx

2

� ð3S11 þ S12Þy
2
þ 2S16xy

�
; ð36Þ

uxz ¼
E0

32R1R2



ðS41 þ S42Þ

L2

4
� ðS41 þ 3S42Þx

2

� ð3S41 þ S42Þy
2 þ 2S46xy

�
; ð37Þ

uzz ¼
E0

16R1R2



ðS31 þ S32Þ

L2

4
� ðS31 þ 3S32Þx

2

� ð3S31 þ S32Þy
2
þ 2S36xy

�
: ð38Þ

The stress tensor in equation (34) expressed in the polar

coordinates is

�rr ¼
E0

16R2

L2

4
�r2

� �
�r� ¼ 0 ��� ¼

E0

16R2

L2

4
�3r2

� �
;

ð39Þ

which clearly exhibits radial symmetry. This is expected since

anisotropy along � would even itself out, as argued in our

previous work (Honkanen et al., 2014b). However, this

symmetry is broken in the strain tensor due to the anisotropic

elastic properties of the crystal. In the symmetric Bragg case,

the energy shifts in terms of the polar coordinates are

�E

E
¼ �

E0

16R1R2

�
ðS31 þ S32Þ

L2

4
�

n
2ðS31 þ S32Þ

þ

h
ðS32 � S31Þ

2
þ S2

36

i1=2

cosð2�þ �Þ
o

r2

�
; ð40Þ

where � ¼ atan½S36=ðS32 � S31Þ	. Generally the isocurves of

�E are elliptical whereas for the isotropic case they are

circular. The derived expression for �E is otherwise similar to

our previous result (Honkanen et al., 2014b) except for the

constant term proportional to L2. The discrepancy arises from

the fact that our previous approach was based solely on the

geometrical considerations of the spherical bending neglecting

the elastic energy of the wafer. The difference between the

diffraction curves of the old and new methods is not large but

the new approach does remove some non-physical features of

the old one (e.g. the non-zero integrated contact force at the

wafer/substrate-interface). The derivation presented in this

work is theoretically more sound and thus expected to be

physically more accurate. However, it should be noted that the

original approach leads to the same solution if the integrated

contact force is required to vanish.

Substituting equation (40) into equation (23) gives the

following energy shift distribution,

��Eð"Þ ¼ k
atan ðB�2AÞð"þAþBÞ

ðBþ2AÞð"þA�BÞ

h i1=2

�A� B<"<� Aþ B

2 �Aþ B � "<A

0 otherwise,

8><
>:

ð41Þ

where k > 0 is a proportionality constant and

A ¼ �
ðS31þS32ÞE

0L2E

64R1R2

B ¼
E0L2E

64R1R2

ðS32�S31Þ
2
þ S2

36

� �1=2
:

ð42Þ

Plots of equation (41) with selected values of B/A are

presented in Fig. 3. When B = 0, the isocurves of �E are

circular as in the isotropic circular case. For non-zero values of

B, the isocurves become elliptical and are intercepted by the

circular edge as illustrated in Fig. 4. The discontinuous

isocurves introduce a tail on the low-energy side of the �E

distribution, the prominence of which is proportional to the B/

A ratio. The standard deviation of equation (41) for energy

resolution estimation is

� ¼
�0L2E

32 3ð Þ1=2R1R2

1þ
K2

2

� �1=2

; ð43Þ
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Figure 3
Distribution of energy shifts ��E as a function of scaled photon energy
"=A for an anisotropic circular wafer for various values of B. A and B are
parameters related to the width of the distribution and the in-plane
anisotropy of Poisson’s ratio, respectively, as defined by equation (42).

Figure 4
Distribution and isocurves of the energy shifts over the anisotropic
circular wafer for three different B/A ratios which is a quantity directly
related to the in-plane anisotropy of Poisson’s ratio and thus to the
ellipticity of the isocurves. The gradient of the energy shifts is steepest
along the x axis.



where we have introduced the effective Poisson’s ratio

�0 � �
4ðS31 þ S32Þ

3ðS11 þ S22Þ þ 2S12 þ S66

; ð44Þ

and the eccentricity factor

K �
B

A
¼ �

ðS32 � S31Þ
2
þ S2

36

� �1=2

S31 þ S32

: ð45Þ

Values of �0 and K for selected crystal directions of Si and Ge

are tabulated in Table S1 of the supporting information. In the

isotropic case, �0 = � and K = 0, thus reducing equation (43) to

equation (33) as expected.

An important practical implication of elliptical isocurves is

that there is a specific direction along the surface in which the

energy shift varies fastest. Since S31 and S32 are negative, the

gradient of �E as per to equation (40) is steepest in the radial

direction when cosð2�þ �Þ ¼ �1 (i.e. � ¼ ð��
 Þ=2). This

has relevance in regards to the resolution function in cases

where the surface area of a TBCA needs to be limited

transversally in one direction, for example, to minimize the

Johann error by masking the surface, or to reduce the space

occupied by the analyser by cutting its edges off. To optimize

the intrinsic resolution of the analyser, the surface area should

be reduced where the gradient is steepest.4 For example,

masking the edges of a spherical Si(660) analyser with 100 mm

diameter and 1 m bending radius using a 80 mm-wide slit can

improve the energy resolution (measured from the standard

deviation) by 13% in near-backscattering conditions if the

mask is aligned over the direction of the steepest gradient,

which is [110]. However, in the worst-case scenario when the

mask is oriented perpendicular to the optimal case, the reso-

lution ‘degrades’ by 3% in comparison with the unmasked

crystal. In the worst case, the resolution of the SBCA in

question can thus be 18% worse than with optimal masking/

cutting which is not a negligible detriment. The directions of

steepest gradient for selected crystal planes in cubic systems

are listed in Table S1.

The predictions of the anisotropic circular model were

calculated for four different types of SBCA and compared

with two separate experimental datasets acquired at ESRF

and first published by us (Honkanen et al., 2014b) and Rovezzi

et al. (2017). Fig. 5 presents the reflectivity curves measured in

near-backscattering conditions from three Si(660) and two

Si(553) analysers all with the bending radius of 1 m, 100 mm

diameter and 300 mm wafer thickness. The curves were

acquired using two circular masks with aperture diameters of

30 mm and 60 mm, and without a mask (aperture 100 mm).

Fig. 6 presents the comparison of the current model with and

without the contribution of the Johann error (Johann, 1931) to

the reflectivity curves measured at two different Bragg angles

of two Si(555) circular analysers with bending radii of 1 m and

0.5 m. The diameter and thickness of the wafers were 100 mm

and 150 mm, respectively. Further experimental details are

presented in the original sources.

Compared with previous work which was based on the

geometrical considerations and did not account for the mini-

mization of the elastic energy, slight differences between two

models are observed but they are found to be less than the

variation between different SBCA units, as seen in Fig. 5. This

excludes one explanation put forward in previous work for the

discrepancy between the data and the model at the low-energy

tail of the diffraction curve for the full analyser, according to

which the observed difference could be attributed to to non-

vanishing �rr at the wafer edge in the previous model. One

possible explanation to the discrepancy is the imperfections in

the manufacturing process, as it is found that the figure error

in anodically bonded analysers is largest at the edge (Verbeni

et al., 2005). Another explanation could be a slight deviation

from the Rowland circle geometry that is not included in the

calculations. The latter hypothesis is supported by the data in

Fig. 6 where the deviations are more prominent. According to

the theory, the stresses and strains caused by stretching are a
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Figure 5
Measured reflectivity curves of 3 Si(660) and 2 Si(553) SBCAs compared
with the predictions of the current and previous work (Honkanen et al.,
2014b). The bending radii were 1 m and the wafer thicknesses were
300 mm. The theoretical curves are convolved with contributions from the
incident bandwidth and Johann error. The centroid energy and the
vertical scale of the curves were adjusted as a group to optimize the fit
between the theoretical and experimental curves with a 30 mm aperture.

Figure 6
Calculated reflectivity curves of two circular Si(555) SBCAs with bending
radii of 0.5 m and 1 m at two different Bragg angles in comparison with
experimental curves (Rovezzi et al., 2017). The wafer diameters were
100 mm and the thicknesses 150 mm. The centroid energy of the
theoretical curves were adjusted separately for 1 m and 0.5 m analysers.
The ratio of theoretical integrated intensities of the two SBCAs were
scaled according to their solid angle multiplied with their integrated 1D
Takagi–Taupin reflectivities.

4 The cut SBCAs in the X-ray Raman scattering spectrometer at beamline
ID20 at ESRF are optimized in this manner (Huotari et al., 2017).



factor of four larger in a wafer that has half the bending radius

than in a wafer otherwise identical. Even for considerably

higher in-plane stress, the theory predicts correctly the

observed boxcar shape and its width for the measured 0.5 m

Si(555) analyser. The general shape and the width of the

predicted 1 m Si(555) curve are in line with the measurements

but are not as precise as for the set of Si(660) and Si(553)

analysers in Fig. 5. The most probable reason for this is the

contribution of the aforementioned deviation from the

Rowland circle geometry, the effect of which is amplified at

lower Bragg angles. In the experimental description, it is

mentioned that the radius of the Rowland circle was adjusted

by optimizing the product of total counts and peak intensity

divided by the FWHM for each analyser (Rovezzi et al., 2017).

Since the different contributions to the energy resolution of an

SBCA are not truly independent of each other, such an

optimization can lead to partial cancellation of some contri-

bution by another and thus lead to a better resolution than

expected in the exact Rowland circle configuration. Therefore,

to accurately characterize the elastic contribution to resolu-

tion functions of SBCAs, the near-backscattering condition is

recommended to minimize the geometrical effects.

3.3. Isotropic rectangular wafer

We assume that a toroidally bent, rectangular crystal wafer

is centred at x = y = 0 with sides of length a and b aligned

parallel with the x and y axes, respectively. To simplify the

problem, we note that the system is symmetric under trans-

formations x!�x and y!�y and thus immediately

conclude that the polynomial expansion of � can contain only

terms in which the powers of x and y are both even. As a result

of minimization, we find the following stress tensor compo-

nents

�xx ¼
E

gR1R2

a2

12
�x2
þ

1þ�

2
þ5

a2

b2
þ

1��

2

a4

b4

� �
b2

12
�y2

� �
 �
;

ð46Þ

�yy ¼
E

gR1R2

b2

12
�y2
þ

1þ�

2
þ5

b2

a2
þ

1��

2

b4

a4

� �
a2

12
�x2

� �
 �
;

ð47Þ

�xy ¼
2E

gR1R2

xy; ð48Þ

where

g ¼ 8þ 10
a2

b2
þ

b2

a2

� �
þ ð1� �Þ

a2

b2
�

b2

a2

� �2

: ð49Þ

The contact force per unit area is

P ¼ �
Ed

gR2
1R2

2

(
R1

1þ�

2
þ5

b2

a2
þ

1��

2

b4

a4

� �
þR2


 �
a2

12
� x2

� �

þ R2

1þ�

2
þ5

a2

b2
þ

1��

2

a4

b4

� �
þR1


 �
b2

12
�y2

� �)
: ð50Þ

Substituting equations (46)–(48) into Hooke’s law, the rele-

vant strain tensor component for the diffraction calculations is

thus found to be

uzz ¼
�

gR1R2

"
3þ �

2
þ 5

b2

a2
þ

1� �

2

b4

a4

� �
x2
�

a2

12

� �

þ
3þ �

2
þ 5

a2

b2
þ

1� �

2

a4

b4

� �
y2 �

b2

12

� �#
: ð51Þ

Equation (51) for three different a/b ratios is visualized in

Fig. 7. In general, the crystal planes normal to the surface are

compressed in the centre of the wafer and expanded at the

edges, which is reactionary to in-plane extension at the centre

and contraction at the edges of the wafer via non-zero Pois-

son’s ratio. The isocurves of uzz are found to be elliptical in

shape, albeit being cut near the edges of the wafer. The major

axis of the isocurves are along the longer dimension of the

wafer and the strain grows fastest along the minor axes. For

the special case of a = b, the isocurves become circles

following the symmetry of the crystal similar to the isotropic

circular wafer. It is interesting to note that, although in the

case of circular wafer, non-circular isocurves are a result of the

breaking of radial symmetry by anisotropy of elastic proper-

ties of the crystal, for the rectangular wafer it is broken by

lifting the 90� rotation symmetry.

When a < b, the distribution of �E ¼ �uzzE is found to be

��Eð"Þ ¼ k


2 � atan

�
4ðC�"Þ

Bb2 � 1
�1=2
� atan

�
4ðC�"Þ

Aa2 � 1
�1=2

when � Aa2þBb2

6 <"<� 2Aa2�Bb2

12


2 � atan

�
4ðC�"Þ

Bb2 � 1
�1=2

when � 2Aa2�Bb2

12 � " � Aa2�2Bb2

12


2 when Aa2�2Bb2

12 <"< Aa2þBb2

12

0 otherwise; (52)

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

where k > 0 is the proportionality constant and
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Figure 7
uzz component of the stretching strain tensor for three different wafer
side-length ratios a/b. Poisson’s ratio � = 0.25 was used. Positive (red)
values indicate expansion and negative (blue) values indicate contraction
of the crystal normal to the surface. Black lines indicate the isocurves of
uzz.



A ¼
�E

gR1R2

3þ �

2
þ 5

b2

a2
þ

1� �

2

b4

a4

� �
;

B ¼
�E

gR1R2

3þ �

2
þ 5

a2

b2
þ

1� �

2

a4

b4

� �
;

C ¼
Aa2 þ Bb2

12
: ð53Þ

The case of a > b is identical to equation (52) provided that all

Aa2 are replaced with Bb2 and vice versa. The standard

deviation of the distribution in equation (52) is approximately

given by

� �
�abE

12 2ð Þ1=2
R1R2

1þ 0:4M1ð Þ
1=2

1þM1

; ð54Þ

where

M1 ¼
a2

b2
þ

b2

a2
: ð55Þ

Equation (54) is accurate within a few precent over the range 0

< � < 1 being near exact for � = 0.5.

Examples of energy shift distribution given by equation (52)

are presented in Fig. 8 for rectangular wafers with constant

area but various side-length ratios. As in the anisotropic

circular case, distribution has a flat portion consisting of

complete elliptical isocurves and a left-hand-side tail caused

by the isocurves cropped by the wafer edges (see Fig. 7). When

a 6¼ b, the tails exhibit a non-differentiable kink due to the

isocurves being cropped at different energy shifts along the

minor and major axes. Keeping a/b constant, the width of the

curve scales proportional to the surface area of the wafer or,

equivalently put, to the second power of its linear dimensions

and to good accuracy it is directly proportional to the Poisson

ratio.

3.4. Anisotropic rectangular wafer

The solution for the anisotropic rectangular wafer can be

found using the forth-order polynomial ansatz for �. The

analytical solution to the minimization exists but is too

complicated to be practical. Therefore the expansion coeffi-

cients of � are best found numerically. However, the analytical

solution can be used to reduce the number of unknowns in the

linear system presented in the Appendix.

The anisotropic model was used to calculate the diffraction

curves of symmetric Si(008), Si(555) and Si(731) reflections

with selected in-plane crystal directions as presented in Fig. 9.

The anisotropic curves are compared with the isotropic model

where Poisson’s ratios � were taken to be the means of

�S013=S011 over 2 in-plane rotation for each reflection. The

isotropic curves are found to follow their anisotropic coun-

terparts rather well. Unlike for the anisotropic circular wafer,

the shape of the resolution curve does not seem to change
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Figure 8
Effect of wafer side-length ratio a/b on the energy shift distribution due to
transverse strain in an isotropic rectangular crystal. The area of the wafers
was kept constant but for visual clarity the curves are normalized to the
maximum instead of the integrated area. Poisson’s ratio � = 0.25 was used.

Figure 9
(Left column) Resolution curves of rectangular wafers for three different
reflections of Si with selected in-plane crystal orientations aligned with
the x axis in comparison with the isotropic model. Note that for Si(555)
the curves overlap and the integer indices for Si(731) in-plane directions
are approximate. The dimensions of the wafers were set to
100 mm � 50 mm � 150 mm with the long edges aligned with the x
axis. The bending radius was set to 0.5 m and the Bragg angle was 88.5�.
The Johann error has been omitted. (Right column) uzz-component of the
strain tensor over the crystal surface. Red indicates expansion and blue
indicates contraction. Isocurves are marked with solid and dashed black
lines.



considerably between different reflections even though their

width varies. This indicates that the shape of the resolution

curve is largely determined by the aspect ratio of the wafer

and its width is scaled by the (effective) Poisson’s ratio in both

isotropic and anisotropic cases.

However, the isotropic model fails to capture some details

in the reflectivity curves, most notably the effect of the in-

plane orientation of the crystal which for some reflections [e.g.

Si(008)] can cause a significant effect to the resolution curve of

the crystal. Nevertherless, as it is evident from equations (57)–

(59), the isocurves of the transverse stresses, and thus the

strains as well, are elliptical in shape as they are in the

isotropic case, although for some crystals and orientations the

main axes of the ellipses may be inclined with respect to the

sides of the wafer, as seen for Si(731) in Fig. 9.

For the investigated reflections, the isotropic model with

in-plane averaged Poisson’s ratio � appears to be a reasonable

approximation to the anisotropic one at least for cubic

systems. Further work is needed to extrapolate the conclusion

to other crystal systems.

3.5. Strip-bent crystal analyser

As seen in Fig. 6, the transverse stretching can cause a

contribution of several electronvolts to the FWHM of the

resolution function which is unacceptably large for many

spectroscopic purposes. To mitigate the effect of the trans-

verse strain, the surface of the circular wafer can be cut into

thin strips before bonding the wafer onto the toroidal

substrate. The diffraction properties of such strip-bent

analyser can be estimated by approximating the strips by

rectangular wafers as presented in Fig. 10. Such an approx-

imation is expected to be most accurate at the centre of the

analyser where the strips are nearly rectangular in shape. The

strips at the edge deviate more from the rectangular approx-

imation but also contribute less to the total diffraction curve

due to smaller surface area.

Some freedom exists in choosing how to approximate the

strips with rectangular wafers. We chose to cover the strips

fully and mask out the parts extending over the circular wafer.

This ensures that the approximating strips have the surface

area equal to the real strips and allows geometrical errors,

such as the Johann error, to be modelled accurately.

The left panel of Fig. 11 presents the calculated resolution

curves of strip-bent Si(555) analysers with a bending radius of

0.5 m, diameter of 100 mm and wafer thickness of 150 mm at

near-backscattering conditions for various strip widths. The

strip widths are chosen so that the surface can be divided into

an integer number of strips of equal width. As expected, the

width of the resolution curve decreases as the strips become

narrower and eventually approach the pure bending TT-

solution. The standard deviations of the resolution curves are

presented in the right panel of Fig. 11. Plotted with the stan-

dard deviations is the predicted behaviour according to

�2
0 þ �

2ð Þ
1=2

, where �0 is the standard deviation of the pure

bending solution and � is given by the analytical expression

[equation (54)] for the isotropic rectangular wafer with the

side lengths taken to be strip width and the diameter of the

analyser, respectively. Poisson’s ratio is taken to be �S013=S011

averaged over 2 in-plane rotation. A good correspondence

between the fully anisotropic widths and the semianalytical

model is found.

The resolution curves of the state-of-art strip-bent Si(555)

analysers manufactured using the anodic bonding techinique

were reported in the work by Rovezzi et al. (2017). The strip

width of the analysers was 15 mm, other physical parameters

matched those used in the calculations of Fig. 11. Based on the

simulations, the transverse stretching begins to contribute

notably to the resolution only after the strip width is larger

than 20 mm, which means that the stress of the reported

analysers is optimally mitigated. The experimental data

indeed show no significant contribution from the transverse

strain. From the viewpoint the rectangular wafer and strip-

bent model validation, this unfortunately makes a more

detailed comparison between the theoretical predictions and

the data uninformative.

4. Reference implementation

Two open source Python packages, pyTTE and tbcalc, are

provided for the low-threshold adoption of the methods to

predict the resolution functions of the bent isotropic and

anisotropic crystal wafers presented in Section 3. pyTTE
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Figure 11
(Left panel) Resolution curves of the Si(555) strip-bent analyser with
various strip widths compared with the pure bending Takagi–Taupin (TT)
solution. The diameter of the analyser was set to 100 mm, the bending
radius to 0.5 m and the wafer thickness to 150 mm. The Bragg angle was
chosen to be 88.5� and the Johann error was neglected. (Right panel)
Standard deviations/central limit theorem FWHMs of the resolution
curves compared with the prediction based on the expression
�2

0 þ �
2ð Þ

1=2
, where �0 is the standard deviation of the pure bending

TT-solution and � is calculated from the isotropic rectangular wafer
model [equation (54)] with the in-plane averaged Poisson’s ratio
� ¼ 0:1621.

Figure 10
Approximation of the strip-bent analyser using rectangular strips. The
wafer is divided into narrow rectangular slices which cover the whole
surface area of the circular analyser. The excess parts of the strips are
neglected in the approximation.



calculates 1D X-ray diffraction curves of elastically aniso-

tropic crystals with a depth-dependent deformation field in

Bragg and Laue geometries by solving the 1D Takagi–Taupin

equation using the variable-coeffient ordinary differential

equation solver (VODE) with the backward differential

formula (BDF) method (Brown et al., 1989) as implemented in

the SciPy library (Jones et al., 2001). The xraylib library

(Schoonjans et al., 2011) is utilized for X-ray diffraction and

crystallographic data; tbcalc implements the toroidal bending

models to calculate the stretching stress and strain fields and

their effect on the diffraction curves of isotropic and aniso-

tropic circular and rectangular wafers and strip-bent analysers.

The source codes are freely available online at https://

github.com/aripekka/pyTTE and https://github.com/aripekka/

tbcalc.

5. Discussion

Compared with previous work (Honkanen et al., 2014a,b), the

constrained elastic energy minimization approach presented

in Section 2 offers a straight-forward and general approach to

predict the diffraction curves of arbitrarily shaped toroidally

bent crystal wafers. Since toroidal bending encompasses

spherical, paraboloidal and cylindrical bendings, and it can be

used as an approximant to many other types as well, the new

theory is applicable to the vast majority of crystal optics based

on thin, single-crystal wafers. In this work we have focused

solely on X-ray diffraction properties, but since the Takagi–

Taupin theory applies also to neutron diffraction, the method

can be extended to neutron optics with minor modifications.

Analytical solutions derived in Section 3 provide insight

into the properties of most commonly encountered circular

and rectangular TBCAs enabling both detailed simulations

and quick ball-park estimations of the energy resolution.

However, the integration domains in the free-energy mini-

mization can be easily extended to arbitrarily shaped wafers

with numerical methods, thus making it possible to simulate

even the most unorthodox crystal shapes in search for the

optimal instrument performance.

Nevertheless, even though the method rests on a solid

theoretical foundation and is internally consistent, more

experimental verification is still needed. Ideally, in order to

minimize other effects to the resolution curve, the experiment

would be performed in near-backscattering conditions with a

�-polarized beam and the diffraction curve would be mapped

out as a function of position on the crystal surface either using

a tightly focused beam or a mask with small aperture in front

of the crystal.

One of the main assumptions in calculating the transverse

stretching is that the wafer is (infinitely) thin and of even

thickness throughout. However, in practice the wafer is of

finite thickness which may vary along the wafer. This variation

may be purposeful such as in the case of Johansson-type

analysers (Johansson, 1932; Hosoda et al., 2010), or inad-

vertent such as possible imperfections left behind in the

manufacturing process. Such variations could be included by

replacing the constant thickness d with a function of surface

coordinates d = d(x,y) and including it in the integrals of free

energy and contact force. Such an approach should work well

without further modification if d(x,y) can be written as a low-

order polynomial, like in the case of Johansson-type analysers

which are ground after bending so their surfaces follow the

Rowland circle exactly, but may require additional higher-

order terms in the expansion of �. Alternatively, if the varia-

tion in d(x,y) is small, a perturbative approach could be easier

to apply. The latter approach could also be used to include also

the figure and slope errors from the perfect toroidal surface

due to, for example, imperfections in bonding or shape of the

substrate (Blasdell & Macrander, 1995; Yumoto et al., 2008;

Barrett et al., 2010; Thiess et al., 2010). Used in conjunction

with advanced wafer machining methods with optical inter-

ferometry feedback, similar to what is presented in the work

by Onuki et al. (2011), the method could be extended to

purposefully design d(x,y) to tune the optical parameters of

the analyser. More theoretical and computational work is

needed to quantify the magnitude of imperfections to the

diffraction properties.

In addition to its energy or angular resolution, another

important figure of merit of an crystal analyser is its focusing

properties. As presented in the top panel of Fig. 12, when the

resolution function of a high-quality circular SBCA is

measured in the energy domain using a position sensitive

detector, one can see the focal spot first appear as a faint

hourglass-shaped figure at the low-energy tail of the resolution

curve which then converges into a single spot as the energy is

increased. In the bottom panel of Fig. 12 where the detector is

moved out of focus, one can effectively map the diffractivity of

the analyser as a function of surface position, revealing the

elliptical shape of the energy shift isocurves similar to the

centre and right panels of Fig. 4. The orientation of the

hourglass pattern and the isocurves corresponds to the
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Figure 12
Typical focal spot of a circular Si(660) SBCA with a bending radius of 1 m
and diameter of 100 mm measured in near-backscattering conditions with
a position sensitive detector as a function of photon energy. The pixel size
is 55 mm and the colour represents the recorded photon counts on the
logarithmic scale. In the top figure the detector was positioned at the focal
spot of the SBCA and in the bottom figure it was moved out of focus,
effectively mapping the diffracted intensity as a function of surface. The
figure is a previously unpublished image from the experimental dataset
used in our previous work (Honkanen et al., 2014b) and in Fig. 5 of the
current work.



predicted crystal direction of steepest gradient of uzz which is

a clear indication that transverse stretching can have an effect

on the focusing properties of the analyser as well. However,

combining the presented method with optical simulations has

not been explored in depth for the time being.

From a general perspective, the energy resolution of

TBCAs worsens with increasing photon energy. On the other

hand, higher photon energies would be important to utilize in

IXS experiments at synchrotrons because the inelastic scat-

tering cross section increases with increasing photon energy

while photoelectric absorption decreases. Higher-energy

photons would also have higher penetration capability for

condensed samples when combining imaging and IXS spec-

troscopy. These requirements with standard TBCAs are in

conflict with each other. Development for higher-resolution

TBCAs that operate with higher photon energies would thus

be an important goal. Our results are expected to work

towards that goal, giving a framework with which the opti-

mization of the crystal analyzers can be accomplished.

6. Conclusions

In this work, we have presented a general approach to model

the internal strain and stress fields of arbitrarily shaped,

toroidally bent crystal wafers and how they can be utilized to

predict the diffraction properties of the wafer. Isotropic and

anisotropic analytical solutions were derived for circular and

rectangular wafers and their properties were discussed in

detail, focusing on the special case of spherical bending.

Comparisons to the available experimental data show that the

models can make quantitatively accurate predictions. An open

source implementation of the method was discussed and

provided.

7. Related literature

The following references are cited in the supporting infor-

mation: Amenzade (1979); Lide (2001).

APPENDIX A
Stretching energy minimization for an anisotropic
rectangular wafer

The stretching energy F under the toroidal bending constraint

is minimized in the anisotropic rectangular case by solving the

expansion coefficients Ck of the stress function � from the

linear system given by equation (19). The system is best solved

numerically since, even though an analytical solution exists, it

is too complicated to be practical. However, the analytical

solution simplifies the problem as it turns out that the coeffi-

cients C30 = C03 = C21 = C12 = 0. In addition, the Lagrange

multiplier for the integrated contact force 
2 = 0 which allows

us to omit that constraint from the energy minimization. Thus

we can reduce the number of unknowns to be solved from 14

down to 9. We now write the ansatz for � in the following

form:

� ¼ C11xyþ 1
2 C20x2 þ C02y2
� 	

þ 6C22x2y2

þ 4 C31x3yþ C13xy3
� 	

þ C40x4
þ C04y4; ð56Þ

where the numerical prefactors are chosen to simplify the

form of the linear system. Substituting the ansatz into

equation (14), we find the transverse stress tensor components

to be

�xx ¼ C02 þ 12C22x2
þ 24C13xyþ 12C04y2; ð57Þ

�yy ¼ C20 þ 12C22y2
þ 24C31xyþ 12C40x2; ð58Þ

�xy ¼ �C11 � 12C31x2 � 24C22xy� 12C13y2: ð59Þ

The toroidal minimization constraint [equation (16)] becomes

fc ¼ 24ð2S12 þ S66ÞC22 � 48S26C31 � 48S16C13

þ 24S22C40 þ 24S11C04 þ
1

R1R2

¼ 0: ð60Þ

If we rewrite the Lagrange multiplier 
1 ! 
1abd=120, we

may reformulate the linear system as a matrix equation 
C = b

in terms of C where

C ¼ C11 C20 C02 C22 C31 C13 C40 C04 
1

� �T
; ð61Þ

b ¼ 0 0 0 0 0 0 0 0 � ð24R1R2Þ
�1

� �T
; ð62Þ

and

� ¼

S66 �S26 �S16 �14

�S26 S22 S12 �24

�S16 S12 S11 �34

�41 �42 �43 �44

5S66a2 �5S26a2 �5S16a2 �54

5S66b2 �5S26b2 �5S16b2 �64

�5S26a2 5S22a2 5S12a2 �74

�5S16b2 5S12b2 5S11b2 �84

0 0 0 �94

2
66666666666666664
S66a2 S66b2 �S26a2 �S16b2 0

�S26a2 �S26b2 S22a2 S12b2 0

�S16a2 �S16b2 S12a2 S11b2 0

�45 �46 �47 �48 �49

�55 �56 �9S26a4 �5S16a2b2 �2S26

�65 �66 �5S26a2b2 �9S16b4 �2S16

�9S26a4 �5S26a2b2 9S22a4 5S12a2b2 S22

�5S16a2b2 �9S16b4 5S12a2b2 9S11b4 S11

�2S26 �2S16 S22 S11 0

3
77777777777777775

;

ð63Þ

with

�14 ¼ �S16a2 � S26b2

�24 ¼ S12a2
þ S22b2
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�34 ¼ S11a2
þ S12b2

�41 ¼ �5S16a2
� 5S26b2

�42 ¼ 5S12a2 þ 5S22b2

�43 ¼ 5S11a2
þ 5S12b2

�44 ¼ 9S11a4 þ 9S22b4 þ 10ðS12 þ 2S66Þa
2b2

�45 ¼ �9S16a4
� 25S26a2b2

�46 ¼ �25S16a2b2
� 9S26b4

�47 ¼ 9S12a4 þ 5S22a2b2

�48 ¼ 5S11a2b2
þ 9S12b4

�49 ¼ 2S12 þ S66

�54 ¼ �9S16a4
� 25S26a2b2

�55 ¼ 9S66a4 þ 20S22a2b2

�56 ¼ 5ð4S12 þ S66Þa
2b2

�64 ¼ �25S16a2b2 � 9S26b4

�65 ¼ 5ð4S12 þ S66Þa
2b2

�66 ¼ 20S11a2b2
þ 9S66b4

�74 ¼ 9S12a4 þ 5S22a2b2

�84 ¼ 5S11a2b2
þ 9S12b4

�94 ¼ 2S12 þ S66

Acknowledgements

The authors want to thank Dr Mauro Rovezzi for providing

the Si(555) circular and strip-bent analyser data, and Ari
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Ablett, J. M., Prieur, D., Céolin, D., Lassalle-Kaiser, B., Lebert, B.,
Sauvage, M., Moreno, T., Bac, S., BaléDent, V., Ovono, A., Morand,
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(2005). J. Synchrotron Rad. 12, 448–454.

White, J. E. (1950). J. Appl. Phys. 21, 855–859.
Yamaoka, H., Mochizuki, T., Sakurai, Y. & Kawata, H. (1998). J.

Synchrotron Rad. 5, 699–701.
Yumoto, H., Mimura, H., Kimura, T., Handa, S., Matsuyama, S., Sano,

Y. & Yamauchi, K. (2008). Surf. Interface Anal. 40, 1023–1027.

research papers

IUCrJ (2021). 8, 102–115 Honkanen and Huotari � Elastic deformation and diffraction of bent crystal wafers 115

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB65
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hf5943&bbid=BB71

