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X-ray imaging methods have progressed rapidly at modern synchrotron light sources

owing to the highly collimated, bright, tunable X-ray beams available at them. Included

in these advances are high-speed micro-tomography and nanoscale three-dimensional

imaging with computed tomography (Maire & Withers, 2014).

In parallel, coherent imaging methods have become a powerful tool for nanoscale

imaging of material and biological structure. When combined with tomography and

scanning techniques they can achieve quantitative determination of density (Diaz et al.,

2015). When used in conjunction with Bragg diffraction one gains sensitivity to crystalline

structure, including strain and deformations due to external stimuli (Pfeifer et al., 2006).

In the Bragg diffraction case, the technique can struggle to be effective in some cases.

As pointed out by Wu and coworkers in this issue of IUCrJ (Wu et al., 2021), highly

strained crystals and samples composed of many interfering domains can produce

coherent diffraction patterns that are difficult to invert. In addition to this occasional

struggle when implementing the method, fourth generation X-ray facilities such as X-ray

free electron lasers (XFELs) and diffraction-limited storage rings can generate a flood of

coherent imaging data (Sobolev et al., 2020).

Coherent imaging methods use measurements in reciprocal space, where coherently

interfering beams produce an interference pattern on the detector. In the case of Bragg

coherent imaging the data are acquired in the vicinity of a Bragg peak of the lattice,

where typically a volume of reciprocal space is recorded to enable 3D imaging in real

space, though 2D imaging from just a single slice through reciprocal space is also possible.

Central to the success of coherent imaging has been the development of iterative phase

retrieval algorithms (Fienup, 1982). These computational tools invert the reciprocal space

interference patterns, or diffraction patterns, to an image of the sample in real space.

Generally based on both forward and inverse discrete Fourier transforms and iterated in

both directions, these algorithms see varied success at converging to a reliable solution to

the phase problem, sometimes depending on many algorithmic parameters and expert

methods (Clark et al., 2015). They also rely heavily on a fine sampling of the interference

pattern in reciprocal space. As a result, the computational arrays can be large, both due to

high sampling requirements in the data and the resulting over-determination of real space

extents (finite support) of the object where it will be surrounded by zeros in the

computational array. Since the computational cost of discrete Fourier transforms scales as

the logarithm of the size of the array, one quickly reaches relatively long computational

times and extensive memory requirements to retrieve an image. These computational

requirements are daunting, particularly in the face of the current and future fourth

generation X-ray sources like free electron lasers and diffraction-limited storage rings. At

these facilities one can produce 2D coherent diffraction data at kilohertz rates or sample

large 3D volumes of reciprocal space in tens of seconds.

The current computational requirements of coherent imaging, and other imaging

methods, have led scientists to explore the use of modern data analytical techniques to

solve problems in image analysis and reconstruction. Machine Learning (ML) methods

and in particular the Convolutional Neural Network (CNN), are being used to tackle

diverse challenges in X-ray data analysis, including limited angle and streaming tomo-

graphy (Huang et al., 2020; Liu, Z. et al., 2019), and determination of space groups

directly from pair distribution function data (Liu, C.-H. et al., 2019). For coherent

diffraction imaging, the idea (see Fig. 1) is quite simple, can a machine be trained to

simply look at a coherent diffraction pattern and create, in its synthetic mind, an image of
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the sample? While using only modest ML tools, Wu et al. have

shown that the answer to this question may be ‘Yes’. The key

to the success of using CNNs to invert coherent diffraction

patterns lies in the extent of the training data used to form the

neural network. Effectively, the use of a CNN moves the bulk

of the computational cost far ahead of the experiment. Using

an extensive set of images and corresponding simulated

diffraction patterns, the neural network is trained to build the

connection between reciprocal and real space into the neural

encoding.

Working in 2D with the goal to provide real-time inversion

in XFEL ultrafast time resolved imaging experiments, Wu et

al. have trained a so-called encoder–decoder CNN. Here a set

of diffraction patterns have been used to develop a single

encoding which is then decoded to produce both the shape

and inherent deformation (encoded as phase of input complex

density input into the training) of the crystal lattice (Fig. 2).

Using additional simulated data to test the trained CNN they

report 0.5 ms inversion time! For experimental data they

found that a small number of iterations of traditional phase

retrieval algorithms were required to converge to a reliable

image. This was done, however, with expert-free requirements

and found to be highly robust. The result of this work, and

other ongoing research in the field, is that the throughput of

CDI phase retrieval could keep pace with flood of data at

modern instruments (Cherukara et al., 2018, 2020; Scheinker

& Pokharel, 2020). These advances also enable the expansion

coherent imaging applications into scientific realms where

current inversion methods either fail or require extensive

expertise.

With single-particle coherent scattering experiments at

XFELs starting to reach significant hit rates for MHz X-ray

pulse frequencies, the potential for CNNs to provide real-time

imaging capabilities is just being touched. As researchers

continue to expand and improve on the ML implementations,

we can expect the impact of work like that of Wu and

coworkers to bear significant fruit for high-resolution X-ray

imaging.
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Figure 2
A schematic visualization of the deep neural network for single-particle-imaging inversion used by Wu et al. (2021). The neural network is implemented
using an architecture composed entirely of convolutional, maximum pooling and upsampling layers. In the network, Conv. refers to convolution, LRLU
refers to the leaky rectified linear unit and BN refers to batch normalization.

Figure 1
A machine inspects a coherent diffraction pattern and directly forms an
image of the sample in its mind. Adapted from Shutterstock image
732725557 by Phonlamai. https://www.shutterstock.com/image-illustra-
tion/3d-rendering-artificial-intelligence-brain-ai-732725557
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