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A set of X-ray data collected on a fragment of decagonite, Al71Ni24Fe5, the only

known natural decagonal quasicrystal found in a meteorite formed at the

beginning of the Solar System, allowed us to determine the first structural model

for a natural quasicrystal. It is a two-layer structure with decagonal columnar

clusters arranged according to the pentagonal Penrose tiling. The structural

model showed peculiarities and slight differences with respect to those obtained

for other synthetic decagonal quasicrystals. Interestingly, decagonite is found to

exhibit low linear phason strain and a high degree of perfection despite the fact

it was formed under conditions very far from those used in the laboratory.

1. Introduction

Quasicrystals (QCs) (Shechtman et al., 1984; Levine &

Steinhardt, 1984) short for quasiperiodic crystals, are solids

violating the dogma of classical crystallography because their

structure is ‘quasiperiodic’ rather than periodic; that is, their

atomic distribution can be described by a sum of periodic

functions with periods whose ratio is irrational. Their

diffraction pattern consists of true diffraction peaks, the

positions of which can be expressed as integer linear combi-

nations of n integer linearly independent wavevectors where n

is greater than the number of space dimensions. To date, QCs

have been widely studied because of their potential industrial

applications, such as hydrogen storage, hydride battery

materials and coating of soft metals (e.g. Dubois, 2000).

Among the several synthetic quasicrystalline solids, the

decagonal (d) Al71Ni24Fe5 phase (Tsai et al., 1989) is particu-

larly fascinating as it is the composition of decagonite, a

natural-occurring quasicrystal (Bindi et al., 2015a, 2015b). An

extraterrestrial origin has been established for decagonite (Lin

et al., 2017), and its association with several high-pressure

phases in the same meteorite suggests formation at high

pressures and temperatures during an impact-induced shock

(Meier et al., 2018). Formation in asteroidal collisions in outer

space for decagonite has also been recently corroborated by

laboratory shock-experiments (Oppenheim et al. 2018). Here

we report the structure determination of decagonite.

2. Decagonal quasicrystals and progress in the
knowledge of their structure

Decagonal quasicrystals (DQCs), apart from icosahedral

quasicrystals (IQCs), are the most frequently observed inter-

metallic phases with a broken translational symmetry

(Steurer, 2018). The decagonal point symmetry is either 10/m
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or 10/mmm (Rabson et al., 1991). The tenfold direction is

simultaneously perpendicular to the atomic planes. Therefore,

the DQCs can be seen as a periodic stacking of the atomic

layers with two-, four-, six- and eight-layer stacks within which

atoms are quasiperiodically distributed (Steurer & Deloudi,

2014). The chemical bonding between atoms does not differ

in-between or within the atomic layer (Steurer, 2006; Henley

et al., 2006). The typical unitary building units that atoms tend

to locally form in the DQC like pentagonal bipyramids or

icosahedral clusters, especially typical for six-layer periodic

DQCs (Steurer et al., 1994), are spanned across several atomic

layers.

DQCs are categorized into two groups based on the

elements constituting the structure: the Al–TM (TM: transi-

tion metal) and Zn–Mg–RE (RE: rare-earth element). The

first DQC is metastable and belongs to the former group

(Bendersky, 1985; Chattopadhyay et al., 1985). It was found in

1985 in the rapidly cooled Al–Mn alloy. The first stable DQC

was discovered in 1988 (He et al., 1988).

The first structure analysis of a DQC by X-ray diffraction

was performed on d-Al65Co15Cu20 by means of the 5D

Patterson function. A total of 259 Bragg reflections were used

to refine 11 parameters up to R = 9.8% (Steurer & Kuo, 1990),

where the 5D space group was concluded to be P105/mmc

(reflection conditions: h1h2
�hh2

�hh1h5 with h5 = 2n and 0000h5 with

h5 = 2n, n 2 Z). In general, two space groups satisfy the above

mentioned extinction rules: centrosymmetric P105mc and non-

centrosymmetric P105mc. Usually the centrosymmetric space

group is assumed for the structure solution to impose the

highest possible symmetry. The general assumption that all the

known DQCs are centrosymmetric is not correct as the Co-

rich d-Al64Co22Cu14 phase was determined to be non-centro-

symmetric (Taniguchi & Abe, 2008).

2.1. Decagonal coordinate system

The diffraction pattern of DQCs can be indexed with a set

of four co-planar vectors directed towards diffraction peaks in

the aperiodic plane and one additional vector directed along

the periodic axis (e.g. Yamamoto, 1996a). The components of

four base vectors d*
i of the reciprocal space are the following:

d�i ¼
4�

5ar

ci

si

c2i

s2i

0
BB@

1
CCA; i ¼ 1; . . . 4; ð1Þ

where d�i ¼ d�ki ; d�?i
� �

. The term d�ki represents the coordi-

nates of the reciprocal space base vector that form a Z-module

of rank 4 in physical space where the diffraction pattern is

observed. The d�?i components simply extend the vector space

and are defined within perpendicular space. The abbreviated

notation in equation (1) is ci ¼ cosð2�i=5Þ and si ¼ sinð2�i=5Þ.

The term ar defines the edge-length of the rhombus in the

rhombic Pentose tiling (RPT) (Penrose, 1974). The vectors di

of the direct space can be found by the known relation

did
�
j ¼ 2��ij.

The definition of the projection matrix W in direct space

that allows us to project the higher-dimensional (nD) model of

the structure into 2D representation is:

W ¼ ar

c1 � 1 c2 � 1 c3 � 1 c4 � 1

s1 s2 s3 s4

c2 � 1 c4 � 1 c6 � 1 c8 � 1

s2 s4 s6 s8

0
BB@

1
CCA: ð2Þ

The relation between symmetry-adapted vectors dD of 4D

space and the Cartesian coordinates dV that decompose the

real-space and perpendicular-space coordinates is

dV ¼ W � dD, where dV ¼ ½d
k

V; d?V �. Vectors dD are such that

when pointing towards the vertices of the 4D unit cell, their

components are either 1 or 0.

We do not go into detail on the nD representation and how

to use the projection method. Details about the projection and

section methods for QCs can be found elsewhere (Katz &

Duneau, 1986; Kalugin et al., 1985; Elser, 1986; Bak, 1985).

2.2. Structure modeling techniques

Nowadays, there are three dominant methods of

constructing the atomic model of the quasiperiodic structure

for the refinement. Two are closely related: the atomic surface-

modeling technique used, for example, for d-Al70.6Co6.7Ni22.7

by Cervellino et al. (2002) and the cluster-embedding method

applied, for example, by Takakura et al. (2001) for d-

Al72Co8Ni20. Both methods utilizes the n D apparatus. The

third method is based on physical space where no atomic

surface is considered during the refinement (Wolny, 1998;

Wolny et al., 2014). However, it is possible to lift the structure

to higher-dimensional space and express the structure as a

concept of nD space.

For the purpose of this research, the physical space struc-

ture refinement was exploited. This approach was utilized

recently for several DQCs and also IQCs, resulting in the first

detailed model of the Bergman-type IQC (Buganski et al.,

2020b). Even so, the approach is questioned as to why the

local ordering of atoms is prioritized more than long-range

order, the presumption is further confirmed by the high-

resolution electron microscopy at least for DQCs (Li et al.,

2016; Hiraga, 2002). The local clustering of atoms is also

widely accepted for IQCs (Takakura et al., 2007).

3. Experimental

3.1. Sample characterization techniques

The natural DQCs studied here come from Grain 126 of the

Khatyrka meteorite (Lin et al., 2017; MacPherson et al., 2013).

It was investigated by means of transmission electron micro-

scopy (TEM), single-crystal X-ray diffraction, scanning elec-

tron microscopy energy dispersive spectrometry (SEM-EDS)

and electron microprobe wavelength dispersive spectrometry

(EMP-WDS) techniques.
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3.2. Transmission electron microscopy

A small amount of decagonite powder from Grain 126 was

placed on a Cu mesh TEM grid (300 mesh, 3 mm in diameter)

that was previously covered by a thin carbon layer (support

film). EDS data were obtained using Evex NanoAnalysis

System IV attached to the Philips CM200-FEG TEM. A small

electron probe of 20–100 nm was used with a count rate of

100–300 cps using an average collection time of 180 s. Quan-

titative analyses were taken at 200 kVand are based on the use

of pure elements and the NIST 2063a standard sample as a

reference under identical TEM operating conditions. The

average of the three-point analysis gave, on the basis of 100

atoms, the formula Al74(3)Ni20(2)Fe6(2).

3.3. Single-crystal X-ray diffraction

A single fragment of decagonite (7 � 8 � 14 mm) was

selected to perform X-ray diffraction studies. Such studies

were carried out with both an Oxford Diffraction Xcalibur 3

CCD single-crystal diffractometer, operating with MoK�
radiation (� = 0.71073 Å) and with 100 s per frame exposure

time, and an Oxford Diffraction Excalibur PX Ultra diffract-

ometer equipped with a 165 mm diagonal Onyx CCD detector

at 2.5:1 demagnification operating with CuK� radiation (� =

1.5406 Å) and 60 s per frame. The data collected with MoK�
radiation are presented here. We have determined the lattice

parameters to be 2.450(8) Å (the edge-length of the rhombus)

and 4.105(7) Å (along the periodic direction). In total, 737

independent diffraction peaks were collected with a spherical

absorption correction and Rint = 0.096.

In Fig. 1 the summary of the sample characterization based

on single-crystal diffraction is presented. Three perpendicular

planar sections through 3D Fourier space are shown. No

substantial diffusive scattering is detected in either plane, a

frequent occurence for a synthetic d-Al–Cu–Co indicating the

existence of superstructure (Kuczera et al., 2012) or antiphase

domains in the aperiodic plane of the structure (Bogdanowicz,

2003). In the plane [h1h2h2h10] � [00001] sharp spots in

between periodic series of peaks can be sporadically found

(one of these peaks is marked with a yellow circle).

The analysis of the strains in the sample of decagonite was

carried out after the 3D Fourier space was transformed into a

powder diffraction diagram. The diagram was indexed with

vector setting (1). The peaks are broad with poor peak

separation as is evident from peak 10111. It is composed of

three large peaks: 10111, 00002 and 22100 which were fitted to

the peak profile with Gaussian curves. After indexing, the

physical and perpendicular space analysis of the strains in the

crystal was performed. We were interested to see if the sample

exhibited quenched linear phason strain.

For random and isotropic distribution of phason and

phonon strains the FWHM of the Bragg peak depends on both

the physical space (kk) and the perpendicular space (k?)

components of the wavevector (Lubensky et al., 1986; Boudard

et al., 1996; Yamamoto et al., 2004). Both effects can be

deconvoluted for peaks with large kk and small k?; the peak

width is mostly affected by the phonon strain. In the reverse

situation, the FWHM is mostly impacted by the phason strain.

The FWHM, which is a result of the convolution of the

phonon and phason strain distribution, both in the form of

Gaussian functions, is FWHM2 ¼ �2k2
k þ �

2k2
? þ �

2, where �,

� and � are parameters. The fit with a least-square method

yields � = 0.0031(32), �= 0.006(13) and � = 0.1233 (86). Only �
(experimental momentum resolution) was determined with an

uncertainty lower than the parameter value. Therefore, based

on the diffraction data, we cannot determine quantitatively

the parameters of the phason and phonon strain.

Based on the peak shift the shear deformation (linear

phason strain) of the hypercrystal can be estimated (Goldman

& Kelton, 1993; Gratias et al., 1995). However, in our case the

data quality is not sufficient to determine the phason strain

matrix. For most detected peaks the peak shift is not different

from zero shift by more than one standard deviation. In

conclusion, the diffraction data do not allow us to make claims

about the existence or absence of linear phason strain.

3.4. Scanning electron microscopy

The same fragment studied by single-crystal X-ray diffrac-

tion was then analyzed by means of an FEI QUANTA 200

FEG environmental-ecanning electron microscope equipped

with an Oxford INCA Synergy 450 energy-dispersive X-ray

microanalysis system, operated at 15 and 5 kV accelerating

voltage, 140 pA probe current, 2000 cps as average count rate

on the whole spectrum, and a counting time of 60 s; and with a

Zeiss EVO MA15 scanning electron microscope coupled with

an Oxford INCA250 energy-dispersive spectrometer, oper-

ating at 20 and 5 kV accelerating voltage, 500–150 pA probe

current, 2500 cps as average count rate on the whole spectrum,

and a counting time of 500 s.

3.5. Electron microprobe

After the semi-quantitative SEM analyses, the same frag-

ment used for the X-ray study was studied with a Jeol JXA-

8200 electron microprobe operating at an accelerating voltage

of 15 kV, beam current of 20 nA and a beam diameter of 1 mm.

Variable counting times were used: 30 s for Al, Ni and Fe, and

60 s for the minor elements Mg, Si, Cr, P, Co, Cu, Cl, Ca, Zn

and S. Replicate analyses of synthetic Al53Ni42Fe5 were used

to check accuracy and precision. The crystal fragment was

found to be homogeneous (five-point analyses on different

spots) within analytical error. The standards used were: metal-

Al (Al), synthetic Ni3P (Ni, P), synthetic FeS (Fe), metal-Mg

(Mg), metal-Si (Si), metal-Cr (Cr), metal-Co (Co), metal-Cu

(Cu), synthetic CaCl2 (Ca, Cl) and synthetic ZnS (Zn, S). Mg,

Si, Cr, P, Co, Cu, Cl, Ca, Zn and S were checked and found to

be equal to or below the limit of detection (0.05 wt%). On the

basis of 100 atoms, the formula can be written as

Al70.2(3)Ni24.5(4)Fe5.3(2).

4. Ab initio structure solution of decagonite

The first models of DQCs: d-Al–Co–Cu and d-Al–Ni–Co, were

obtained by the 5D Patterson method and direct HRTEM
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imaging (Steurer & Kuo, 1990; Burkov, 1991). Nowadays, the

initial structure can be successfully solved by the low-density

elimination method (LDEM) (Shiono & Woolfson, 1992) or

the charge flipping algorithm (CF) (Oszlányi & Süto��, 2004).

The former algorithm is implemented in both the QUASI07-

08 package (Yamamoto, 2008) and the SUPERFLIP software

(Palatinus & Chapuis, 2007), whereas only the latter is

implemented in SUPERFLIP.

The dataset of 737 symmetrically independent diffraction

peaks collected on decagonite was used for the phase retrieval

in SUPERFLIP. Constraints in the form of symmetry opera-

tions available in the space group P105mmc were used. The

group generators: the tenfold screw axis {C10jd5}, a glide plane

{�jd5} and the inversion {Ij0} make in total the order of the

group equal to 40. The ab initio structure solution with

SUPERFLIP resulted with a crystallographic R = 14.9%.

4.1. The nD analysis

In Fig. 2 a 2D section through the 4D electron density is

shown. The section was calculated to contain the long-body
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Figure 1
Analysis of the diffraction data. (Top) The planar sections through the 3D diffraction pattern and its representation in the kk domain are presented. The
superstructure peak is circled with a yellow-dotted line. The profile of the peak 10111 [indexed in setting (1)] indicates it is in fact assembled out of three
peaks that are not separated due to the high width of the diffraction peaks. (Mid and bottom) FWHM and the peak shift with respect to kkð?Þ. Large
experimental uncertainty of the measured peak characteristics makes quantitative analysis of the phason and phonon strain impossible.



diagonal direction [1111] and contains both atomic layers of

the structure. Two vectors of the 4D vector base are spanning

the section: the vector �d1 � d4 and the vector �d2 � d3 [the

definition of vectors according to equation (1)]. The outline of

the 4D unit cell was plotted with a red line. Four atomic

surfaces lie equidistant on the long-body diagonal direction.

At this time it is possible to exclude the model of d-Zn–Mg–

Dy as an isostructure. It requires the mid-edge atomic surface

that is not visible in the given section (Ors et al., 2014). The

structure model must be founded on the idea that only two

atomic surfaces are generated (the two remaining are

symmetrically dependent owing to the inversion symmetry).

Additionally, we can see that the higher electron density is

localized in the atomic surface placed in the position (1/5, 1/5,

1/5, 1/5) (excluding the coordinate along the periodic direction

– the mid-coordinate in Fig. 2). This means most of the TM

atoms are gathered in this atomic surface, occupying the

center and separated from Al atoms occupying the outer part.

The Al atoms, which possess a lower X-ray scattering power,

occupy the other, (2/5, 2/5, 2/5, 2/5) localized, atomic surface.

Such a dominant agglomeration of one kind of atomic species

is known for all DQCs. All these features are satisfied by

Yamamoto’s model of the d-Al–Cu–Co (Yamamoto, 1996b);

however, in that model 20 Å decagonal, fully symmetrical

clusters are prioritized. It will be further proven those

assumptions are invalid for the structure of decagonite. To

further confirm the distribution of the electron density on the

atomic surfaces, we have calculated the electron density in

plane of the atomic surfaces. The shapes created by the elec-

tron density agree well with the archetype atomic surface of

the RPT. In the calculated electron density, we made an

outline of the idealized pentagons as a guide for an eye. TM

atoms are located within the small pentagon, whereas the Al

atoms occupy the area contained within the shape of the 	 = (1

+ 51/2)/2 larger pentagon. Previous studies confirm the

correctness of such distribution (Yamamoto et al., 1990;

Steurer et al., 1993). The RPT can be a good quasilattice for a

construction of the structure model, especially as it has already

been successfully employed for the structure solution of d-Al–

Cu–Me (Me = Co, Ir, Rh) (Kuczera et al., 2012) and d-Al–Ni–

Co superstructure type I (Kuczera et al., 2011).

Based on the section through the 4D unit cell, it is possible

to derive conclusions on the phasonic disorder. It is known

that the physical-space atomic coordinates are created by the

intersection of the physical space with the atomic surface.

Along the physical space direction rk a short interatomic

distance is created, when intersecting the atomic surfaces in

the area marked with a black-dotted circle. These two posi-

tions cannot be occupied simultaneously, therefore an atom is

able to move freely in this area. It is a phason flip site.

4.2. The real-space analysis

Much more can be derived about the 3D structure of the

DQC on the basis of the physical-space sections through the

electron density. First of all, the structure shows the length of

the period along the tenfold axis equal to Aper = 4.105 Å,

therefore the structure is a two-layer periodic structure. The

layers at z = 1/4 and z = 3/4 and their combined projections

along the tenfold direction are presented in Fig. 3. The nota-

tion z = 1/4 means that the layer is located at the level 1.4Aper

’ 1.03 Å. The analogous is true for z = 3/4. The orange line

marks the PPT (pentagonal Penrose tiling) with an edge-

length of 19.73 Å and the gray line marks the RPT with an

edge-length of 27.17 Å.

One of the basic units distinguished for DQCs based on the

HRTEM images is the Hiraga cluster (Hiraga et al., 1991),

marked in Fig. 3 with a black line. The center of each decagon

is placed at the vertices of the PPT with an edge-length of

19.73 Å. It is a decagon with a diameter of 31.93 Å originally

discovered for d-Al–Cu–Co based on HRTEM images. There

are three ways the cluster overlaps: they share one common

edge, overlay making a hexagonal shape or overlay creating an

irregular octagon, when Hiraga clusters are placed at the

vertices of a rhombus in PPT along the short-body diagonal.

The distances between clusters are 31.93 (19.73 Å � 	), 19.73

and 12.19 Å (10.73 Å/	), respectively, where 	 is the golden

mean ratio.

The atomic decoration for rhombi depends on the atomic

layer. Corresponding rhombi that stack one over another have

two different atomic decorations. However, certain rhombi

with the same orientation from layer z = 1/4 have the same

decoration as the rhombi from layer z = 3/4 but are addi-

tionally inversed with respect to the geometrical center of the

rhombus. After two layers of atoms are projected along

tenfold axis, the single atomic decoration can be seen. It is the

aftermath of the symmetry of the structure that possesses the

screw axis along the tenfold direction.

Further confirmation that both PTs are correct quasilattices

for the description of the atomic structure of decagonite

comes from the investigation of the HRTEM images. Both

ideal PPT (green) and RPT (blue) are plotted over the image
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Figure 2
2D section through the 4D electron density map calculated on the basis of
the 737 phased diffraction peaks. Two atomic layers of the physical space
are superposed here. Four atomic surfaces centered along the [1111]
direction are identified. They divide the long-body diagonal of the 4D
unit cell into five equal sections. In the magnified picture of the section
through one 4D unit cell, the distribution of the electron density within
four atomic surfaces is emphasized. The smaller picture with four
pentagons of the RPT is given as a guide. The maximal electron density is
located in the first and fourth pentagons suggesting the distribution of TM
atoms. The parameter a4D is the edge-length of the 4D unit cell, which in
the case of decagonite is equal to 5.478 Å.



to prove that visible decagonal clusters are ideally located in

specific positions within both tilings. It is best visible for the

PPT as the centers of the decagons follow the vertices of the

PPT. Not all the clusters are centered in the vertices of the

plotted PPT. Remaining clusters are centered in the vertices of

the locally rearranged PPT. In the bottom part of Fig. 3, five

orientations of the decagonal motif from PPT are presented.

All the visible clusters are centered in the vertices of the PPT,

but to do so, the pattern must be consecutively rotated by 72�.

It is a phason flip. It must be stated that such a behavior is true

for all the quasicrystals, even those with no linear phason

strain. The ambiguity of plotting the PPT is also visible in the

isosurface plot. In this case the edge length of the PPT is

12.19 Å and the edge length of the RPT is 16.79 Å which

correspond to both tiling being 	 times deflated with respect to

tilings plotted over the electron density sections. The resolu-

tion of the HRTEM images better visualizes decagonal clus-

ters with a diameter of 12.19 Å that is the diameter of 	2 times

smaller cluster than Hiraga cluster. Additionally, the isosur-

face map was overlaid with the HRTEM image confirming the

match. These are two independent techniques that show

exactly the same result, confirming that long-range atomic

order follows the PT. The exemplary Hiraga cluster was cut

from the image and magnified to emphasize that isosurfaces

ideally localize in the spaces of the HRTEM image corre-

sponding to atomic species.
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Figure 3
(Top) 2D section through the physical space electron density map perpendicular to the tenfold direction. The RPT (gray) and PPT (orange) are plotted
over the contour plot. Hiraga clusters (black) are centered at the vertices of the PPT. (Bottom) HRTEM image of the decagonite structure with both
RPT and PPT plotted over the image for guidance. Plotted tiling are 	 times deflated in comparison with tilings in top contour plots. The isosurfaces of
the electron density are compared with the magnified patch of the HRTEM image further supporting the agreement between the obtained ab initio
structure solution and the real-space structure. The positions of clusters that are not centered in the PPT are located in the positions of the rearranged
tiling: these are phason-flip-equivalent positions.



Even so the agreement between those two techniques is

excellent, small deviations from ideal tiling can be detected in

the HRTEM image. The differences are caused by a conven-

tional phonon strain. The clusters in the HRTEM image are

displaced from perfect tiling positions (up to couple of

Ångstroms): a clear indication of phonon strain (Socolar,

1986). More detailed analysis based on direct imaging is shown

in Fig. 4. The effect of both phonon and phason strain is best

visible in QCs when analyzing the Ammann lines. The pattern

of Ammann lines was calculated following the analysis

provided in the work by Freedman et al. (2007) and Lifshitz

(2011). Four peaks of the diffraction pattern of the HRTEM

image were filtered within a radius of 5 px and inverse Fourier

transformed resulting in a pattern of lines. The lines are wavy,

indicating the existence of the spatially varying phonon strain.

Too an extent, the waviness can be ascribed to the image

contrast modulation but the phonon strain is also confirmed

by the displacement of cluster centers from the perfect tiling

positions. There are black areas that could be interpreted as

dislocations (exemplary areas are marked with red dotted

circles in Fig. 4) but after closer examination the broken lines

continue through the black spot. If linear phason strain or

dislocation were observed, the line would be jagged, without

continuation on the other side. For selected diffraction peaks

we could not point unambiguously the position of the

mismatch that could be ascribed to the linear phason strain.

The darker patches are probably the result of the varying

intensity of the HRTEM image. By selecting different pairs of

	-related diffraction peaks all seem to be perfectly in-line

within the image resolution, meaning there is no visible linear

phason strain.

4.3. The initial model

The atomic decoration of two rhombi of the RPT can be

found by considering the relations between the tilings derived

from mutual local derivable class (Baake et al., 1991) and the

Hiraga cluster. The relations are presented in Fig. 5. Hiraga

clusters are centered at the vertices of the PPT and their

overlap forms a co-shared irregular hexagon. The Hiraga

cluster is embedded (apart from the half hexagonal motif

which can be restored by a mirror applying a mirror

symmetry) within one thick rhombus with an edge-length of

17 Å. If the atomic model was based on a rhombus of this size,

the number of parameters would be almost the same as the

number of available diffraction peaks. It is possible to choose

the 	-deflated tiling as the atomic decoration of a larger

rhombus is constrained by the atomic decoration of down-

scaled rhombi and the basic asymmetric part of the Hiraga

cluster is still contained within a thick rhombus. The smaller

tiling yields a reasonable number of parameters for the

refinement. The same approach has also been used for Al–Cu–

M (M = Rh, Ir, Co) d-phases (Kuczera et al., 2012). In Fig. 5

the so-called Deloudi clusters (Deloudi et al., 2011), with a

diameter of 	20 Å proposed for d-Al–Cu–Co, are plotted in

green. It can be seen that the Hiraga cluster is a supercluster of

five overlapping Deloudi clusters.

The chosen space group for decagonite does not imply the

tenfold symmetry of the Hiraga cluster in the final model. The

highest possible symmetry expected for decagonal clusters

after the refinement is the m symmetry as the diagonal (long

for a thick rhombus and short for a thin rhombus) of the

rhombi of the RPT has a mirror symmetry. The broken tenfold

symmetry of the decagonal cluster was previously discussed by

many scientists and reported for real-life systems (Saitoh et al.,

1997, 1998) including d-Al–Co–Ni. Some scientists even prefer

to consider the symmetry to be locally different (Yan &

Pennycook, 2000).

The initial atomic decoration was found by assigning atomic

species to maxima of the electron density map in a region

corresponding to thick and thin rhombi of the RPT with an

edge-length of 16.79 Å. Such an electron density map enclosed

within two rhombi is presented in Fig. 6. The threshold for the

electron density maximum was tuned to reject short intera-
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Figure 4
600 � 600 px HRTEM image and its Fourier transform (inset in left
image) presented in log scale. The inverse Fourier transform for the co-
linear peaks of the reciprocal space, encircled with a red continuous line
in the inset (right) magnified Fourier transform, was calculated in order to
show the Ammann lines. (Right) Image shows wavy lines indicating the
phonon strain. A few instances of dark patches are marked with red
dotted circles. The line pattern is continuous on both sides of the black
area hence there is no jag that can be ascribed to linear phason strain.

Figure 5
Relations between different tilings and clusters found in decagonite. The
atomic decoration of the basic building blocks of the structure, the thick
and thin rhombi of the 16.79 Å RPT, are found based on the relation to
the Hiraga cluster.



tomic distances. Among two maxima that were too close to

each other, the stronger one was always accepted. We found

that the reasonable threshold was at the level of 1/30 of the

electron density maximum. In total, 57 atoms were listed of

the asymmetric part of the thick rhombus and 37 atoms of the

thin rhombus. The asymmetric part is always half the volume

of each rhombi cut along the diagonal.

The remaining issue is the distribution of chemical species.

Due to the fact that Ni and Fe are indistinguishable by X-ray

diffraction, the structure was solved as a pseudo-binary Al-TM

system. The initial atomic decoration could be achieved by

plotting the distribution of the electron density maxima. The

distributions obtained are plotted in Fig. 6 where the electron

density is normalized to the electron density maximum. It is

evident that there are two distributions for each rhombus

corresponding to two differentiable atomic species: Al and

TM. Three thresholds are considered. For the maxima above

0.5
max TM is assigned. Between 0.35
max and 0.5
max the mix

site with 50/50 fraction of elements is assigned. The exact

occupancy is further refined. Below 0.35
max all the positions

are assumed to be Al. Additionally, if the electron density in a

selected position is below 0.1
max, a partial occupancy is

assigned. The initial composition of the atomic structure is

close to that obtained by electron microprobe and is equal to

Al71TM29. The crystallographic R factor of the starting model

is equal to 39%. That value, though large for inorganic crys-

tals, does not imply that the model is flawed. Firstly, at this

stage of the investigation the model was not refined. Secondly,

the phason disorder (phason flips) is known to be a dominant

factor affecting the intensity of the diffraction peak (Buganski

et al., 2019).

It is worth pointing out that all the atoms lay perfectly on

two atomic layers z = 1/4 and z = 3/4 without any implication

of possible puckering. This is important because the z coor-

dinate is predetermined and it is redundant to refine it further.

Previously known d-phases all appear to manifest stronger or

weaker displacement of atoms from the atomic layers being at

the same time mirror planes in the P105/mmc symmetry.

5. The structure refinement

The structure refinement is based on real-space modeling. The

real-space structure refinement based on the average unit cell

approach has been used before for decagonal structures

(Kuczera et al., 2012, 2011). Its main principle is the

construction of the atomic distribution function (Wolny, 1998;

Wolny et al., 2018; Buczek & Wolny, 2006).

During the structure refinement, 256 free parameters were

refined, including atomic coordinates, the phononic atomic

displacement parameter (ADP), the phasonic ADP in a

general Debye–Waller formula (Bancel, 1989; Lubensky et al.,

1986) (one parameter for a whole structure), one extinction

parameter (Coppens & Hamilton, 1970) and a scale factor

between the experimental and calculated structure ampli-

tudes. Only isotropic ADPs are considered. Additionally, for

the mixed atoms the partial occupancy probability for each

element was refined, with the restriction that the sum of all

values has to equal 1. The positions of atoms occupying the

vertices of the rhombi are not optimized. Edge-bound atoms

are allowed to move along the edges only. Since we refine the

pseudo-binary Al-TM system, the weighted atomic form

factor for TM of Ni:Fe = 24:5 has been used.

The parameters are refined against 737 symmetrically

independent diffraction peaks satisfying the condition jFj >

�(jFj) that makes the reflection-to-parameter ratio	2.88. The

given ratio, although low for an inorganic structure, allows us

to perform the structure refinement. The problem of the low

reflection-to-parameter ratio is known in the crystallography

of QCs. The number of free parameters can be artificially

managed in the nD approach with the arbitrary coarse

subdivision of the atomic surface. This however imposes

unrealistic constraints on atoms that have no confirmation in

reality.

The refinement of the structure was conducted with the use

of in-house code written in the Matlab software environment.

The library fmincon was used to optimize the parameter of the

structure with the interior-point algorithm as a solver. In the

case of decagonite, the optimization function was the crys-

tallographic R factor. The other evaluation function that was

calculated, but not used for the refinement itself, was the

weighted wR facor with 1/�(F)2 weighting scheme.

The optimization strategy for the refinement is required.

Due to the complexity of the structure, several refinement

cycles with a subset of all free parameters must be completed

before running a full set of free parameters. In the first run,

only atomic coordinates are optimized. The locations of

maxima that served to define the atomic decoration of rhombi

are determined up to 0.05 Å – the grid resolution. The initial
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Figure 6
Initial atomic decoration of two rhombi of the RPT at each atomic layer.
Color coding is as follows: red – TM, blue – Al, blue/red – mixed atom,
blue half-sphere – partially occupied site by Al. Atom 23 (see the
supporting information for details) is indicated. The atom potentially
causes the point density of the model to be too high. The distributions of
electron density (
max) in the positions of local maxima are plotted for
thick (top) and thin (bottom) rhombi. The electron density is normalized
by the maximal electron density within each rhombus. Two emerging
sectors correspond to two atomic species likely to be present in the
structure.



atomic positions are therefore exposed to high initial fluc-

tuations that also affect the initial value of the R factor. After

the first cycle R ’ 23% was obtained, a value indicating that

the model was potentially correct. In the next cycle, the

phononic ADPs are refined. After crude estimation of para-

meters is achieved, the extinction parameter is released. Then

the refinement cycles are cyclically repeated until finally all the

parameters are released. The phasonic ADP parameter of the

general Debye–Waller factor is optimized at every step of the

refinement. It is a global parameter that strongly affects the

calculated values of diffraction amplitudes. The number of

diffraction peaks and their range of magnitudes do not allow

us to derive more detailed information of the intrinsic

phasonic disorder (Buganski et al., 2020a) except a crude

evaluation in the picture of the Gaussian function.

After the structure refinement, which resulted in R =

14.57%, no short atomic distances were observed, with the

exception of the partially occupied atomic sites that are

localized in the high-symmetry positions of the rhombi (Fig.

7). We have allowed for only a small shift of an atom from the

original position (<1 Å in each cycle of the refinement

program) that restrains the atoms from freely sliding within

the structure. We can observe a few instances of Al/TM mixed

occupancies with a dominant fraction of Al, in one case

reaching over 98%. The mixed sites are located mostly along

the mirror plane that is a collateral of the optimization

procedure. The final composition after the refinement was

concluded to be Al74.11TM25.89 with e/a = 1.74 and a point

density equal to 0.072 Å�3. The valance contribution from Al

is 3 but the assignment of the TM valence state is complicated.

In the present contribution we used the composition-depen-

dent formula by Haüssler (1992): e/aTM = 1 � (100 � x)/x,

where x is the content of TM. The obtained e/a value agrees

well with complementary values for d-Al–Ni (e/a = 1.71) and

d-Al–Fe (e/a = 1.78) (Chen et al., 2011).

The chemical composition of the refined structure model is

in very good agreement with the experimental one. Only the

point density seems large, almost reaching the upper bound of

the Burkov model which is 0.0736 Å�3. For instance, the point

density of the Kuczera et al. model of d-Al–Cu–Co is

0.0659 Å�3. The high point density calculated for the model,

especially since the calculated Al content exceeds the

experimental value, can imply there is no more than one

excessive atom, potentially atom 23 from a thin rhombus. Its

content grew to almost 80%, even though in the initial elec-

tron density map it was much weaker. Unfortunately, the
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Figure 7
Refined atomic decoration for each type of rhombi in the RPT and every atomic layer. The color coding is the same as in Fig. 6 with an addition of a red
half-sphere defining the partially occupied TM site. The basic 2.45 Å RPT is plotted within every rhombus confirming the positions of atoms follow the
specific sites of rhombi. The Gummelt cluster is plotted for guidance. The correlation plot Fcalc versus Fobs shows good agreement of the model with
experimental data. The distribution of diffraction peak errors shows a two-domain behavior. The value of the R factor (standard and weighted) decreases
with the decreasing number of weak reflections taken for calculations.



quality of the dataset does not allow us to examine this

speculation.

A more detailed analysis of the refinement result is

presented in Fig. 7. The correlation plot of the calculated

diffraction amplitudes Fcalc versus the measured amplitudes

Fobs is plotted. The characteristic deviation of the calculated

structure factors towards lower values occurring for weak

reflections is visible in the form of a ‘tail’. It was already

confirmed that this effect is mainly caused by the multiple-

scattering which is extremely strong for QCs (Fan et al., 2011;

Buganski et al., 2019). The error analysis carried out in Fig. 7

shows the distribution of uncertainties associated with

diffraction amplitudes is not uniform. Two sectors for high-

intensity peaks and low-intensity peaks can be seen. Unfor-

tunately, We do not know the cause for such behavior as, for

example, in the work by Cervellino et al. (2002) a similar plot

showed a continuous distribution. The limit of the log10(Fobs/

�) normalized to the intensity of the highest peak never

reaches below 0, which means that only the peaks with jFj >

�(jFj) were selected from the dataset. The R and Rw values are

plotted as a function of the lowest peak intensity in the

dataset. For all the peaks R = 14.57% and Rw = 5.44%. If the

number of weak peaks used for the calculations decreases, the

values of the reliability factors also decrease as is typical for

QCs.

The basic RPT with an edge length of 2.45 Å is plotted

within 	4 larger rhombi that were chosen as the basic units of

the decagonite. The atoms in both units occupy specific posi-

tions within the basic tiling: vertices, mid-edges and positions

on the body diagonal dividing the section with the ratio 1:	.

The same properties have already been observed for d-Al–Ni–

Rh (Logvinovich et al., 2014) and d-Al–Ni–Co (Takakura et

al., 2001). Contrary to IQCs, for which the simple-decoration

model (Elser & Henley, 1985) is still useful to discuss the

qualitative character of the structure, the atomic decoration of

RPT is too random. More useful is a 12.2 Å decagonal cluster

which was plotted for each type of rhombus (Fig. 7). It is

located in the position dividing the body diagonal in a 	:1

ratio. The inner pattern of the decagonal cluster was defined as

in the Gummelt cluster (Gummelt, 1996). On the basis of

electron microscopy, the inner symmetry of the basic deca-

gonal cluster in d-Al–Ni–Co was established by Saitoh et al.

(1998) which is the same as the symmetry of the Gummelt

cluster. We decided to test if the same is valid for d-Al–Ni–Fe.

The refined atomic decoration shows that the tenfold

symmetry of the cluster is broken leaving only the m

symmetry. By comparing the refined atomic decoration of

Gummelt cluster and the one proposed by Steinhardt et al.

(1998), we can see that the positions of TM atoms are

different. In our case, the TMs are located in the vertices of

the brim decagon and in the central kite region. The decora-

tion in the work by Steinhardt et al. (1998) places the TM in

the pentagon of the star region and in the centers of the

arrows. By this analysis we can conclude that d-Al–Ni–Co is

not isostructural to the decagonal structure of decagonite.

6. Discussion of the atomic structure

6.1. Projected structure

The 100 � 100 Å 2D sections, perpendicular to the periodic

tenfold direction, through 3D physical-space structure recov-

ered based on refined atomic coordinates, are presented in Fig.

8. Two PTs are highlighted: RPT (blue), which was originally

used to define the building blocks of the structure; and PPT

(red) with an edge length of 19.73 Å. Two Hiraga clusters are

highlighted. The covering of the structure by Hiraga clusters

has already been mentioned, therefore, we did not plot the

whole covering. It is worth mentioning that the tenfold

symmetry of the Hiraga cluster is broken. Additionally, the

orientation of the Hiraga cluster is not unique as both clusters

are rotated with respect to each other by 108�. In total, there

are ten possible orientations of the Hiraga clusters that

constitute the tenfold global symmetry. The decomposition

into five 20 Å Deloudi clusters of one Hiraga cluster is also

shown.

The characteristic feature of the Al-based DQCs is the

formation of pentagonal motives by heavy atoms at each layer
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Figure 8
100 � 100 Å sections through the refined structure of decagonite. The RPT and PPT are plotted over the structure for guidance. Two exemplary Hiraga
clusters with the subdivision into Deloudi clusters are additionally presented. The formation of pentagonal bipyramids is marked with green pentagons.



and different scales. TM atoms that are linked with a distance

of 4.67 Å are highlighted with green pentagons. Together with

TM atoms located at every other apex of the Hiraga cluster,

TM atoms form pentagonal bipyramids that are important

subunits known for periodic approximant crystals of binary

DQCs (Steurer, 2004b). It must be stated that the formation of

the pentagonal bipyramids is a consequence of the model and

not the initial assumption. For instance, Takakura and

coworkers subdivided the atomic surface in a manner that

implied the existence of pentagonal motives formed by TM

atoms.

6.2. Cluster scaling

In the literature, it is frequently found that a specific cluster

was observed in the electron microscopy images. For instance,

Saitoh et al. (1997) observed a 20 Å decagonal cluster for d-

Al–Ni–Co. Hiraga et al. (1991) proposed a 30 Å cluster for d-

Al–Cu–Co, whereas Deloudi et al. (2011) found a 20 Å cluster

to be one of the building blocks of the Hiraga cluster. Hiraga et

al. (1996) also found a 11 Å decagonal cluster for d-Al–Ni–Fe.

Even the cluster with a diameter of 7.6 Å was found for the d-

Al–Pd phase (Hiraga et al., 1994). By carefully studying the

diameters of all the mentioned clusters, one can find out that

all are related to each other by 	 scaling and that in a real

structure of a DQC every single one can be found.

In Fig. 9 we show the relations between clusters in the

decagonite at different length scales. We start with a large

83.59 Å decagonal cluster that shows a fivefold symmetry.

Even though the global symmetry is tenfold, Tsuda et al.

(1996) already pointed out that a fivefold symmetry cluster, if

properly arranged, can lead to full P105/mmc symmetry but

also different decagonal space groups (P10m2 and P105/m)

observed for d-Al–Ni–Co.

We started with an arbitrary length scale that is related to

the 31.93 Å diameter of the Hiraga cluster by 	2. It can be seen

that a large decagon in each symmetry-dependent sector

possesses one Hiraga cluster that outlines a fivefold star in the

center. The next in a series of clusters is a 51.66 Å decagonal

cluster. This cluster plays for the large decagonal cluster the

same role as the Deloudi cluster for the Hiraga cluster. By

assembling five such clusters after rotating by 72�, the large

83.59 Å cluster can be restored. After that is a Hiraga cluster,

Deloudi cluster and 	12 Å cluster mentioned by Hiraga et al.

for the d-Al–Ni–Fe phase.

Furthermore, we present the scaling of the pentagonal motif

that is built from five decagonal clusters at three different

length scales. We mention this particular motif because two

cluster models, with a decagonal cluster and a pentagonal star-

like cluster, are often used to establish the initial structure

model of the DQC. This was done for the d-Al–Ni–Rh

(Logvinovich et al., 2014) and d-Zn–Mg–Dy (Ors et al., 2014)

structures. In particular the	20 Å length scale is often used as

it produces a reasonable number of refinable parameters. We

show that even for a length scale of	12 Å such a motif can be

clearly seen. In the case of decagonite the smaller length scale

of clusters would be distorted as the decagonal symmetry of

the cluster is violated and is statistically driven.

6.3. The Gummelt cluster

It was speculated by Steinhardt et al. (1998) that the

Gummelt cluster [Fig. 10 (a)] can be used as a quasi-unit cell of

the DQCs.

In Fig. 10(b) each of the rhombi was decorated with a

Gummelt cluster according to the overlap rules. This does lead

to three possible ways the clusters can interact within rhombi

[Fig. 10(a) #1 to #3]. A thick rhombus intersects seven

Gummelt clusters within its volume and a thin rhombus

intersects five clusters at that given length scale.

The model of the decagonite structure obtained here cannot

be built out of Gummelt clusters explicitly. However, we

believe the model could be achieved as the discrepancies are

not substantial.

6.4. Phononic and phasonic ADPs

The refined structure model of decagonite shows a rather

small chemical and positional disorder, comparable to known

models of the d-phase. The maximal atomic mean square

displacement parameter u2
xyz, related with B factors according

to the formula B ¼ 8�2hu2
xyzi is equal to 0.062 Å2. Such a value

is not exceptional for QCs and even larger mean displace-

ments were reported, reaching 0.076 Å2 in d-Al–Ni–Co

(Kuczera et al., 2012). In Fig. 11 the atomic mean square

displacement is plotted for each atom from the asymmetric

parts of thick and thin rhombi. The atoms are numbered

according to Table S1 of the supporting information. Also, the

distribution of mean displacement is plotted with a bin size

optimized according to the Freedman–Diaconis rule

(Freedman & Diaconis, 1981). We attempted to investigate the

shape of the distribution for atomic ADPs but the statistics are

too small. It is known that for macromolecules the distribution

has the shape of the shifted inverse gamma distribution

(Masmaliyeva & Murshudov, 2019). The only conclusion we

can make is that the majority of mean atomic displacements
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Figure 9
Scaling property of the DQC for decagonite. Decagonal clusters at five
different length scales are presented. The characteristic motif of five
decagons with a star-like cluster in the center is also shown. This motif is
often used to define the atomic decoration of clusters for the cluster-
embedding approach.



are below 0.02 Å2. For both types of rhombi the increase in the

number of atoms manifesting u2
xyz above 0.05 Å2 is noted.

The correlation between the shift of the atom from the

initial position of the refinement and the mean displacement

parameter is now discussed. From Fig. 11 it can be seen that

the maximal displacement is estimated slightly above 1.5 Å in

the thick rhombus. The distribution of the atomic shifts clearly

shows that many atoms do not move beyond 0.2 Å. There is a

small positive correlation between atomic shift and mean

phononic displacement. The correlation is not strong, with a

Pearson correlation coefficient RP = 0.355 for a thick rhombus

and RP = 0.27 for a thin rhombus.

The direction of movement is plotted in Fig. 12: arrows

point from the initial position toward the refined one. The

magnitude of the displacement is indicated by the size of the

arrow. Because some arrows would have to be smaller than the

tip of an arrow we decided to indicate the magnitude by the

length of an arrow without the tip. If an atom did not move, we

placed in this location a ball with a color indicating the type of

atomic species (color coding following that in Fig. 6).

The phason atomic displacement was accounted for in the

form of the general Debye–Waller formula

exp½�ð1=16�2Þk2
?bph�, where bph is the phasonic B factor. For

the refined structure of decagonite it was estimated to be

3.88 Å2. However, is it best to present the bph coefficient in

unit-free form. In our case the value is 0:646a2
r. It is a rather

low value taking into account the fact that the structure grew

naturally. Synthetic d-Al–Cu–Co shows bph ¼ 1:566a2
r – more

than two times higher. The result is comparable to the best

known structure model of the DQC which is d-Al–Cu–Rh with

bph ¼ 0:495a2
r . On this basis we could conclude that the

magnitude of random phason disorder in the sample of

decagonite is not beyond observed values for synthetic QCs.

6.5. Higher-dimensional representation

In order to lift the structure to 4D a large portion (>500 000)

of atomic positions was generated. All positions were repre-

sented as 4D vectors. After multiplying the 4D vector of each
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Figure 10
Decoration of the refined units of the RPT with Gummelt clusters. The
overlap rules for Gummelt clusters are shown. The m symmetry of the
decorated Gummelt clusters by atomic species is broken which means
that our model cannot be explicitly explained on the basis of Gummelts
cluster.

Figure 11
Mean displacement parameter and atomic shift after the refinement for each atom in the asymmetric part of the model. The distribution of the
parameters is plotted below with red assigned to the thin rhombus and blue for the thick rhombus. The correlation between the magnitude of the atomic
shift jj�rjj and the phononic mean displacement parmeter u2

xyz is presented. For both units a weak positive correlation is found.



atom by the inverse projection matrix W�1, the coordinates in

4D space were found. The coordinates were then reduced to

one 4D unit cell by the modulo 1 operation. Every position of

the generated structure was then assigned to the corre-

sponding atomic surface. The assignment is, however, not

deterministic. In this work, the atom is allocated to the closest

atomic surface with the distance calculated in 4D space. The

recreated atomic surfaces are plotted in Fig. 13 to allow for

comparison with pentagons of the RPT. The fractional sites

are not marked differently. All TM atoms are located in the

first pentagon which fully agrees with the ab initio structure

solution by SUPERFLIP. No atoms are assigned to the atomic

surface in the origin of the 4D unit cell which can be attributed

to empty positions corresponding to centers of Hiraga clusters.

The atomic surfaces centered at (1, 1, 1, 1)/5 and (2, 2, 2, 2)/5

should ideally match on the brink of the distributions. In our

case there is a small discrepancy marked with a red circle in

Fig. 13. The regions overlap, therefore the closeness condition

(Frenkel et al., 1986) is violated. The overlap indicates that two

closely laying atoms have been created: this is a phason flip

site. Only the connection between thick and thin rhombi is

problematic as two adjacent rhombi of the same kind do not

create a split atom. These two atoms are counted in the

structure factor calculations with a fraction 0.5, meaning even

though the atomic surfaces overlap, they add up to one full

atom.
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Figure 12
Vector and magnitude of the atomic shift after the refinement from the
initial position. The colors of the arrows refer to the atomic species
(following the same scheme as in Fig. 2).

Figure 13
Recovered atomic surfaces for the decagonite structure. Red –TM atoms,
blue – Al atoms and green – mixed atoms. The partially occupied sites are
not differentiated in this image. The phason flip domain in the atomic
surfaces is highlighted by the red circle. The domain corresponds to Al
atoms located at the edges of rhombi.

Figure 14
2D section through the electron density map recovered on the phases of the peaks coming from the refinement. The experimental amplitudes, coming
from the model and their differences, were used to recover density maps. The residual electron density is lower than the potential atom, therefore we can
conclude that our model does not miss any atom.



The last test of our model was the comparison between the

calculated high-symmetry sections through 4D space. The

phases obtained from the refined structure serve to calculate

the electron density map using experimental diffraction

amplitudes and those recovered from the model (Fig. 14). By

calculating the residual electron density j�
j < 1.6%
max we

can be sure that no atoms are missing in the structure.

7. Conclusions

Quasicrystals are usually synthesized in the laboratory by

mixing precise ratios of selected elemental components in

liquid and quenching under strictly controlled conditions

ranging from rapid to moderately slow. Nonetheless, the

finding of two natural quasicrystals in the Khatyrka meteorite

which displays clear evidence of a shock generated by a high-

velocity impact event introduced a dramatic new possibility as

to how these materials might be formed. Here we have

obtained the first structural model for a natural quasicrystal

and showed that it does not exhibit structural peculiarities that

would significantly differ from synthetic quasicrystals. The

structure very much resembles the structural model known for

Al–Cu–M, (M = Co, Ir, Rh). Due to the quality of the

diffraction data, we could not unambiguously determine

whether the linear phason strain is present or absent in the

sample. The HRTEM image of the selected region of the

sample does not indicate the linear phason strain to be

present. Surprisingly, based on the refinement, the random

phason disorder is comparable to the best synthetic quasi-

crystals. Even more, the phasonic bph is comparable in value to

the best structural model known for d-Al–Cu–Rh. Also,

phonon ADPs are standard in magnitude. It is interesting to

note that no puckering of atoms from atomic layers is

observed for synthetic QCs. Since this is the only example of a

structural model of a natural DQC such a feature cannot yet

be generalized.

The crystallographic R factor we obtained for decagonite is

14.57% for peaks with amplitudes jFj > �(F). It is comparable

to that obtained for the synthetic Al–Ni–Co decagonal phase.

Lower values of R have been reported for decagonal phases in

the literature but they require the use of reflections with jFj >

3�(F), which are generally more reliable. The excellent value

of the weighted Rw = 5.44% for decagonite indicates that the

high value of R is caused by a high-� data error rather than

potential flaws in the structural model.
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