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Microstructure-based design of materials requires an atomic level under-

standing of the mechanisms underlying structure-dependent properties.

Methods for analyzing either the traditional diffraction profile or the pair

distribution function (PDF) differ in how the information is accessed and in the

approximations usually applied. Any variation of structural and microstructural

features over the whole sample affects the Bragg peaks as well as any diffuse

scattering. Accuracy of characterization relies, therefore, on the reliability of the

analysis methods. Methods based on Bragg’s law investigate the diffraction

peaks in the intensity plot as distinct pieces of information. This approach

reaches a limitation when dealing with disorder scenarios that do not conform to

such a peak-by-peak basis. Methods based on the Debye scattering equation

(DSE) are, otherwise, well suited to evaluate the scattering from a disordered

phase but the structure information is averaged over short-range distances

usually accessed by experiments. Moreover, statistical reliability is usually

sacrificed to recover some of the computing-efficiency loss compared with

traditional line-profile-analysis methods. Here, models based on Bragg’s law are

used to facilitate the computation of a whole PDF and then model powder-

scattering data via the DSE. Models based on Bragg’s law allow the efficient

solution of the dispersion of a crystal’s properties in a powder sample with

statistical reliability, and the PDF provides the flexibility of the DSE. The whole

PDF is decomposed into the independent directional components, and the

number of atom pairs separated by a given distance is statistically estimated

using the common-volume functions. This approach overcomes the need for an

atomistic model of the material sample and the computation of billions of pair

distances. The results of this combined method are in agreement with the

explicit solution of the DSE although the computing efficiency is comparable

with that of methods based on Bragg’s law. Most importantly, the method

exploits the strengths and different sensitivities of the Bragg and Debye

theories.

1. Introduction

The synthesis of nanostructured materials with precise control

of microstructural properties benefits from the use of powder-

scattering methods to fully resolve the structure of the millions

to billions of crystals in a typical powder sample (Habas et al.,

2007; Solla-Gullon et al., 2015; Gamler et al., 2019; Leonardi &

Engel, 2018). The crystalline structure determines the emer-

gence of diffraction peaks in the scattering profile. Any

statistical fluctuation of structural and microstructural prop-

erties over the whole sample affects the positions, areas and

shapes of the peaks as well as any underlying diffuse scattering

(Scherrer, 1918; Patterson, 1939). Indeed, microstrain, i.e. any

distortion of the atomic arrangement as seen through the eye

of scattering, broadens and shifts the peak profiles and raises

the diffuse component. Different line-profile analysis (LPA)
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methods have been developed to interpret the two reciprocal

representations of powder-scattering data: (i) the traditional

diffraction profile, which is the scattered intensity as a function

of scattering angle; and (ii) the pair distribution function

(PDF), which is the Fourier transform of the scattering data.

Although the diffraction profile and its Fourier transform both

encode the same information, their analysis is more sensitive

to the long- or short-range information, respectively. PDF

methods typically resolve the crystal structure within the

length scale of a few nanometres, which is currently the

experimentally accessible range for most samples (Usher et al.,

2018). Structure distortions over a longer distance range are

difficult to extract from the PDF because the information is

either not fully accessible or is absent owing to limited

experimental resolution. However, PDF methods are capable

of resolving local features that are difficult to determine from

powder-scattering intensity profiles. The signal from any

secondary phase hiding in the diffuse scattering, such as

molecules adsorbed at the particle surface, often emerges

clearly in the sequence of the PDF peaks. The dependence of

the profile broadening on scattering angle or pair distance is

characteristic of the distinct source of disorder (Brandstetter

et al., 2005; Ungár et al., 1999). Thus, accurate materials

characterization via powder-scattering methods relies on the

effectiveness of LPA methods and the reliability of the

phenomenological disorder models employed (Scardi et al.,

2004; Wilkens, 1969, 1970).

Since 1913, Bragg’s law has been the theoretical model at

the base of the analysis of traditional powder-diffraction

profiles (Bragg & Bragg, 1913; Nafday et al., 2018). Peaks in

the intensity plot are investigated as distinct pieces of infor-

mation (Williamson & Hall, 1953; Ungár et al., 1998; Brand-

stetter et al., 2008). As an example, although it uses parameters

related to the material structural properties, the Rietveld

method models the diffraction profiles from powders with a

variety of functions that replace the delta lines of Bragg

reflections (Rietveld, 1967, 1969). The whole-powder-pattern

modeling (WPPM) method advances this idea by modeling the

peak shape as a function of the crystallite’s microstructure

properties (i.e. microstrain, crystal size and shape) (Scardi et

al., 2000; Scardi & Leoni, 2002; Leoni & Scardi, 2004). Crys-

talline domain and diffraction-peak shape are linked by the

Fourier transform of the common-volume function (CVF),

which is calculated for every hkl direction reciprocal to the

observed hkl reflections (Scardi & Leoni, 2001). Distortion of

the atomic arrangement is convoluted to the intensity plot on

a peak-by-peak basis (Warren & Averbach, 1950, 1952;

Warren, 1955). Hence, the reliability of estimated sample-

related parameters is dependent on small perturbations of the

crystal structure over the observed sample. Any information

hidden in the diffuse scattering component is ignored in favor

of high computing efficiency and statistical significance

(Coelho, 2018; Loopstra & Rietveld, 1969; van Laar & Schenk,

2018). The Bragg theory is no longer strictly applicable when

dealing with complex disorder scenarios, as well as when the

variation of the structure factor across the peaks is significant,

because changes in the scattering profile do not conform to

such a peak-by-peak treatment (Rebuffi et al., 2016; Leonardi

& Bish, 2017).

Debye tackled the scattering from an ideally disordered

amorphous phase in 1915 and PDF methods emerged through

the solution of the Debye scattering equation (DSE) (Debye,

1915). Debye theory can be used to solve the crystal structures

of complex molecules or the local distortions in crystalline

materials (McGreevy, 1995; Billinge & Egami, 1993; Keen,

2001). The theory provides an estimate of the atomistic model

of a crystal explicitly, including the existence of defects and

symmetry-dependent structure discontinuities or chemical

inhomogeneities. However, statistical reliability and

computing efficiency are generally sacrificed to access the

information contained in the diffuse scattering component. A

single or limited set of atomistic models is used to describe the

powder sample to reduce the computing time required for the

solution of the PDF. Nonetheless, PDF computation, even for

a single model, is significantly slower than the modeling of the

reciprocal scattering profile with methods based on Bragg’s

law. The reliability of the resulting model is dependent on the

uniformity of the crystals in the sample. Indeed, the dispersion

of structural and microstructural properties in a sample are

both cast in the necessarily limited set of atomistic models,

which is used to describe a sample of billions of crystals.

Hence, although theoretically possible, the PDF methods

usually do not accurately resolve long-range information. PDF

methods reach their application limit when dealing with the

dispersion of properties over entire powder specimens. In

particular, the short-range pair distances usually accessed by

experiments are most affected by the larger crystals. Indeed,

powder data provide a volume-weighted average of the scat-

tering from the observed crystals.

Neither the PDF nor the methods based on Bragg’s law are

fully suited to resolve structure features in both the short and

long range, and particularly in the transition regime between

these two ranges. To address such limitations, recent studies

exploited the Debye theory directly to model the powder-

scattering profile from a collection of atomistic models of

materials (Cervellino et al., 2003, 2010; Scardi & Gelisio, 2016;

Bertolotti et al., 2016). Such approaches are limited by the

intensive computations required. Although a limited set of

models is tested, it is possible to use an overabundance of free

parameters to describe complex disorder scenarios. Indeed,

the greater flexibility of these recent approaches compared

with other more traditional approaches (e.g. WPPM or Riet-

veld-like methods) lies in the possibility of adjusting every

positional coordinate of each atom in the set of the material

model to optimize the agreement between calculated and

measured scattering profiles. However, the scattering profile is

modeled ignoring the different nature of the information

carried by Bragg reflections and diffuse scattering.

Analysis of complex nanostructured materials requires

overcoming the separation between Bragg and Debye theories

while exploiting their advantages. Herein, we introduce the

whole pair distribution function modeling (WPDFM) method,

which directly targets the intermediate regime in nanos-

tructured materials. We use models based on Bragg’s law to
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simplify the computation of a whole PDF and then model

scattering data via the DSE. Our motivation is twofold. First,

models based on Bragg’s law allow for an efficient solution of

the dispersion of the crystal’s properties in a powder sample

with statistical significance. Second, the mean of the PDF

facilitates exploitation of the flexibility of the Debye theory. In

other words, PDF methods provide poor information on

statistical properties, whereas Bragg’s law approaches are not

suitable for providing local information. We compute the

intensity profile combining the contributions from every

independent crystallographic direction, which are computed

by solving the DSE for the associated directional PDFs (D-

PDFs). This approach avoids the need for an atomistic model

of materials and the need for computation of billions of pair

distances. The PDF is not the result of an arbitrary choice of

sites out of an infinite lattice and it encompasses every

possible arrangement of sites that is compatible with the

microstructure properties of interest. In addition to providing

results that are in perfect agreement with the explicit solution

of the DSE, this method allows high computational efficiency

compared with the full solution of the DSE while improving

statistical significance.

2. Theory

2.1. Modeling the powder-scattering data

The elastic and coherent intensity scattered by a set of N

atoms of positions ri 2 (0 . . . N) is

I qð Þ /
XN

i

XN

j

f i qð Þ f j qð Þ exp 2�iq � rij

� �� �
; ð1Þ

where q is the momentum-transfer vector, f is the atomic

scattering factor, and rij = rj � ri is the pair-distance vector

between atoms i and j. In a powder, every pair-distance vector

is uniformly observed with any possible orientation in space.

After integration over the Ewald sphere, equation (1) can be

expressed as a function of the momentum-transfer module Q

= 2�|q| as

I Qð Þ /
XN

i

XN

j

fi Qð Þ fj Qð Þ
sin Qrij

� �
Qrij

� �
; ð2Þ

which is the most common formulation of the DSE. It is worth

noting that the DSE assumes an ideal sample of equal-sized

and equally shaped non-interfering randomly oriented parti-

cles, each including N atoms in the same configuration.

Equation (2) computes the intensity scattered as a function of

the set � of pair distances rij = |rij| at Q = 4� sin �/�, where � is

half of the scattering angle and � is the radiation wavelength.

To solve the DSE, a more efficient strategy than brute-force

calculation is to use the frequency count C�, �(�t) of the

different pair distances �t 2 � as

I Qð Þ /
XM

�

XM

�

f� Qð Þ f� Qð Þ
X�

t

C�;� �tð Þ
sin Q�tð Þ

Q�t

" #
; ð3Þ

where � and � are the M different elemental species in the

sample. To deal with a dispersion of numerous crystals, the

frequency count is replaced by the probability density, W, to

find a pair of atoms separated by a given pair distance in the

whole sample. Because the sampling of pair distances in a

histogram with finite constant step interval, �, yields trunca-

tion errors (Hall & Monot, 1991), the PDF is corrected by

dynamically shifting the histogram bin centers, �k, to suitable

magnitudes: 	k = �k + 
k [Fig. 1(b)]. Although the PDF is

recorded using a constant step interval histogram, effective

shifts are calculated from the average pair-distance error of

each histogram bin as


k ¼

PN
i

PN
j rij � �k

� �
� rij � �k

� �� 	
PN

i

PN
j � rij � �k

� � ; ð4Þ

where

� rij � �k

� �
¼

1; if rij � �k



 

 � �=2

0; otherwise

�
: ð5Þ

The accurate intensity profile is then calculated as [Fig. 1(d)]

I Qð Þ /
XM

�

XM

�

f� Qð Þ f� Qð Þ
X�

k

W�;� �kð Þ
sin Q	kð Þ

Q	k

" #
: ð6Þ

The profile calculated using the corrected PDF is effectively

free from any histogram truncation error (Hall & Monot,

1991; Leonardi & Bish, 2016). Indeed, our previous study

shows that the correction of the PDF bin centers allows the

accuracy of the DSE solution in equation (6) to eventually

exceed (or at least equal) the accuracy of a brute-force algo-

rithm performed with 64-bit floating-point precision

(Leonardi & Bish, 2016). In contrast to methods based on

Bragg’s law, the contribution to the diffuse scattering is fully

captured and the structure factor is not approximated to a

constant over the scattering-angle range of each diffraction

peak.

2.2. Modeling the whole pair distribution function

The modeling of the whole PDF, W(�k), is decomposed to

the calculation of the D-PDF components, �[uvw](�k), such

that

W �kð Þ ¼
X�

uvw½ �

� uvw½ � �kð Þ; ð7Þ

where the set � comprises all independent directions [uvw]

that relate at least one pair of occupied sites within any of the

crystal domains in the observed powder sample and |[uvw]| =

1. The probability of finding a pair of atoms aligned with any

[uvw] direction and separated by a pair distance, L, can be

calculated from atomistic models (Leonardi et al., 2013a,c).

However, here the probability is estimated from the CVF [Fig.

1(a)].

The CVF describes the volume common to a solid shape

and a copy of itself translated by a distance L along a given

direction. As the number of atoms in a crystal is proportional

to its volume, with the ratio between the number of atoms in
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the crystalline structure and the volume of the unit cell being

the proportionality constant, the volume common to the two

copies of the solid shape is proportional to the number of atom

pairs separated by the shapes pair distance (Leonardi et al.,

2013c). The CVF is independent of the origin of the crystalline

lattice relative to the crystal shape. It describes the probability

of finding a pair of atoms for the ensemble of all equivalent

discrete configurations that fit in the ideal crystal shape (see

Section 3.3 for more details). As an example, consider a

spherical crystal with a diameter 20 times the unit-cell para-

meter and simple cubic structure. A discrete model with

structure concentric to the shape has a finite integer number of

occupied sites (i.e. 4169) and first-neighbor pair distances (i.e.

23 112), whereas non-integer values are estimated using the

sphere volume and the CVF (i.e. �4188.79 occupied sites and

�23 249.36 first-neighbor pair distances).

The analytical expression of the CVFs is known for a

limited set of shapes, including: sphere, hollow sphere, cube,

octahedron, tetrahedron, cylinder and hexagonal prism (see

Table S1 in the Supporting information) (Stokes & Wilson,

1942; Vargas et al., 1983; Langford & Louër, 1982; Scardi &

Leoni, 2001; Burresi & Tapfer, 2019; Leoni, 2019). However,

numerical algorithms can be used to compute the CVF for any

arbitrary shape (Leonardi, Leoni, Siboni et al., 2012). The

common volume is calculated at constant pair-distance inter-

vals and for a discrete set of directions. The values are

expressed as a function of the normalized pair distance L/D �

1/K[uvw], where D is a shape-dependent reference size, and

1/K[uvw] is the critical pair distance at which the unit size solid

shape and its copy along the [uvw] direction become

disjointed. The data for distinct directions can be approxi-

mated with piecewise third-order polynomial functions to

improve memory and computing efficiency when accessing the

information in the following steps. Indeed, either the discrete

common-volume values or the coefficients of the polynomial

functions are recorded in data tables.

The CVF parameters for any direction of interest [uvw] 2 �
are interpolated from those tabulated via a weighted average.

The directions are projected on a unit sphere and the

projections of those directions for which the discrete CVFs

were recorded are used as tessellation seeds to divide the

sphere surface into triangular sectors. The three seeds that

define the sector embedding the projection of the direction

[uvw] are used to identify the set of CVF parameters to

average and the barycentric coordinates of the projection of

[uvw] relative to the seeds are used as weights (see Fig. S1 in

the Supporting information). Here we used a Delaunay

triangulation, although other triangulations could provide a

more accurate approximation for a given crystal shape. Both

the critical pair distances and the CVF parameters are inter-

polated. Whereas the common-volume values are averaged

pair distance per pair distance, the polynomial coefficients to

average change with the pair-distance intervals that define the

piecewise polynomial CVFs. In particular, the set of three

piecewise polynomials, defined with two intervals each,

average generally into four distinct intervals (Fig. S1). In
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Figure 1
Modeling of the scattering profiles from a Pad (feck) cubic nanocrystal. (a) h00, hh0 and hhh D-PDFs estimated from the CVFs. The probability count is
normalized by the number of atoms in the crystal to the crystallography redundancy. (b) The whole PDF resulting from the superposition of all the
independent directional components that relate at least one pair of occupied sites within the crystal. (c) Directional components of the Bragg intensity
profile computed by solving the DSE for the different D-PDFs. (d) The same Bragg intensity profile was computed either by solving the DSE for the
whole PDF or by summing the directional components. (e) Problem complexity as a function of the crystal size. ( f ) The relation between the number of
atoms and the number of independent directions as a function of the crystal size.



addition, the CVFs are interpolated between the solutions for

stepwise defined classes of similar shapes. As an example, a

class of truncated cubic shapes ranging from a cube to an

octahedron was defined as a function of the truncation degree

of the cube edges and corners (see Section 3.2 for more

details). Although the CVFs were calculated with a discrete

truncation step interval of 0.5% (i.e. 201 solutions), the

parameters for any intermediate truncation were estimated

via linear interpolation. Finally, as it was first proposed for the

WPPM method (Scardi & Leoni, 2001), the CVFs are possibly

convoluted with the size probability distribution to describe

the dispersion of the crystals in a sample (Fig. S2). In addition,

the dispersions of both the crystals’ size and shape are

generally described via weighted combination of the PDF

estimated for a representative population of different crystals

(see Section S1 in the Supporting information for more

details).

Crystalline materials have a discrete number of atom sites.

The CVFs are therefore sampled over a well defined sequence

of pair distances (see Section 2.3 for more details). Any

distortion of the atomic arrangement will change these

distances. The delta lines that characterize the D-PDF profiles

of perfect crystals, broaden and shift their centers. Available

distortion models from state-of-the-art LPA of either tradi-

tional or PDF scattering methods can be readily used to

compute the resulting changes. Isotropic and anisotropic

thermal vibrations, as well as any available microstrain model,

translate directly to the properties (e.g. width and skewness) of

the peaks’ shape in the D-PDF (Leonardi et al., 2013a,c;

Leonardi & Bish, 2017; Flor et al., 2019; Scardi et al., 2017). As

an example, Gaussian peaks with width proportional to the

temperature resemble the harmonic oscillator model

expressed by the Debye–Waller factor (Debye, 1912; Waller,

1923). The Wilkens model for cubic materials (Wilkens, 1969)

and the general model based on the fourth-order invariant

introduced by Popa and Adler & Houska (Popa, 1998; Adler

& Houska, 1979; Leoni et al., 2007; Martinez-Garcia et al.,

2009) both inherently describe the variation of the D-PDF

peaks width as a function of dislocation defects’ type and

density (Leonardi, Leoni, Li et al., 2012; Leonardi et al., 2015;

Leonardi & Scardi, 2015). The model based on the fourth-

order invariant can also be used to describe a wide range of

microstrain sources, such as surface relaxation and grain

boundaries in polycrystalline materials (Scardi et al., 2015;

Burgess et al., 2013; Rebuffi et al., 2016; Leonardi & Bish,

2017). Indeed, this model does not generally commit to any

specific strain model and is capable of capturing the distortion

anisotropy. Compared with methods based on Bragg’s law, use

of the PDF can easily overcome any assumption often implied

by these distortion models, such as the Gaussian-like broad-

ening of the D-PDF peaks (Leonardi et al., 2013c). In addition,

the broadening and the shift of the centers of the D-PDF

peaks can be easily computed from atomistic models of the

crystals. The contribution from fault defects can be described

either by exploiting the distortion model proposed by Wilson

(Wilson & Zsoldos, 1966; Wilson, 1943) or by directly

computing the change of the pair-distances magnitudes from a

structural model of the stacking error (Thomas, 2010).

Features that violate any structural symmetry or periodicity

can be included by direct modification of the PDF as carried

out with PDF methods. As an example, the distortion field

across multi-component nanostructure architectures (Gamler

et al., 2020), as well as the set of pair distances associated with

molecules adsorbed at the surface of a nanocrystal, can be

computed from atomistic simulations and then included within

the estimated PDF.

2.3. Determination of base parameters for the directional
components

Here we consider the particular case of periodic crystal

structures. Constant step intervals, �, separate the consecutive

pair distances that are to be sampled from the CVF (Fig. 2).

The separation distance is calculated from the distance vector

between the nearest pair of atom sites in the crystal, i and j,

aligned with the direction of interest, �rri; j½uvw� ¼ �rri; j½uvw�, as

� uvw½ � ¼ m; n; oð Þ � a; b; c½ �


 

; ð8Þ

where [a, b, c] is the tensor that defines the crystalline-lattice

system and the triplet ðm; n; oÞ 2 Z3 of setwise coprime inte-

gers (i.e. the greatest common divisor between m, n and o is 1)

is such that

�rri; j ¼
 � uvw½ �

�
¼  � m; n; oð Þ �

a; b; c½ �

�










: ð9Þ

The normalization factor � 2 N relates the i, j atoms and their

periodic repeats to the nodes of a service lattice homologous

to the crystalline-lattice system (i.e. [a, b, c]s = [a, b, c]/�),

where  2 N is the number of non-occupied node sites

intersected by the distance vector �rr (Fig. S3). Although the

first non-zero pair distance to be sampled along [uvw] is then

�þ0; uvw½ � ¼ �rr
i; j
¼

� uvw½ � 

�
; ð10Þ

two sequences of equally spaced pair distances are sampled

for each direction to account for the opposite orientation

pairs: i! j and j! i [Fig. 2(c)]. Notably, the first two non-zero

pair distances, �þ0; uvw½ � and ��0; uvw½ �, are complementary to the

separation distance itself as

� uvw½ � ¼ �þ0; uvw½ � þ��0; uvw½ �: ð11Þ

Whereas a bi-modal sequence of pair distances is generally

sampled, the correlation of an occupied site with any of its

own periodic repeat yields the sampling of a mono-modal

sequence with twice the frequency [Fig. 2(b)]. In the case of

self-correlating sites, the crystalline and service-lattice systems

coincide (� = 1) and the distance vector �rr does not intersect

any other lattice node besides the first neighbor along the

direction [uvw] ( = 1 or 0). Hence, �þ0 ¼ ��0 ¼ � because

 /� = 1 or 0. A similar exception is met for the correlation

between any periodic repeat of two sites with body-centered

symmetry. Indeed, �þ0 ¼ ��0 ¼ �=2 ð�Þ because the

symmetry yields � = 2 and  = 1 (1 or 0) for every direction of

interest.
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The set � of independent directions is derived from the set

	 � Z3 of independent triplets (h, k, l) =  (m, n, o), which

describe in the service-lattice system any pair of nearest

occupied nodes aligned with the direction described by the

coprime triplet (m, n, o). It is worth noting that a triplet

(h, k, l) is not generally setwise coprime because it can be  >

1. As an example, in a cubic lattice with occupied sites of

relative coordinates (0, 0, 0) and (1, 3, 0)/5 [Fig. 2(a)], the

triplet (6, 8, 0) is not coprime although it relates the origin

site with the nearest occupied site aligned with the

coprime triplet (3, 4, 0). Indeed, in the service-lattice

system with normalization factor � = 5, the triplet (6, 8, 0)

relates the origin with the occupied site (6, 8, 0)/5 = (1, 1, 0) +

(1, 3, 0)/5, whereas the site (3, 4, 0)/5 is empty. The set 	 is

evaluated by testing the condition of independence for

any triplet of indices |h|, |k|, |l| � R� =  that relates a pair

of occupied sites, where R is the number of unit cells that fit

within the size of the modeled crystal. To omit the tedious

and computationally expensive test of independence, instead

of 	, the set of coprime triplets (m, n, o) is computed.

Indeed, they are linearly independent by definition. Coprime

triplets are systematically computed using non-intersecting

sets of prime factors listed using the sieve of Atkin &

Bernstein (2003). For each coprime triplet, the value of  is

tested in the range from 1 to /max{m, n, o} searching for an

(h, k, l) triplet that relates a pair of occupied sites. If no

suitable (h, k, l) is found, the coprime triplet is rejected. As an

alternative, 	 is extracted from an orthogonal three-dimen-

sional bitwise map of the occupied sites. Every location

(hs, ks, ls) in the map represents the periodic repeat of one

site relative to another one in the base structure unit such

that any of the vector pairs expressed in the service lattice

are computed as

h; k; lð Þ ¼ h0; k0; l0ð Þ þ � hs; ks; lsð Þ; ð12Þ

where (hd, kd, ld) is the vector difference between the two sites

as they appear within the base structure unit. The locations in

the map are systematically explored increasing the indices one

at a time from� to + . For each location explored (hs, ks, ls),

the set of locations (hs, ks, ls)
0 where

h0; k0; l0ð Þ þ � hs; ks; lsð Þ
0
¼ � h0; k0; l0ð Þ þ � hs; ks; lsð Þ

� �
; ð13Þ

with � 2 Z� 0; 1f g, are marked as rejected because they yield

linearly dependent (h, k, l) triplets. Whereas those locations

marked as rejected are ignored, the others are used to

compute the independent triplets that belong to 	 [equation

(12)]. The coprime triplet (m, n, o) is computed as (h, k, l)/ ,

where  is the greatest common divisor between h, k and l.

This second approach is computationally more efficient but its

application is limited by the large amount of memory required

to record the bitwise map. To improve this approach, the map

is divided into Cartesian octants that are explored one next to

the other. To avoid the selection of opposite triplets from

different octants, additional rejection rules are included, i.e.

the choice of from which octant a given direction can be

extracted.

Different sets 	p of independent triplets are evaluated per

each correlation of different atom sites from within the base

structure unit. Symmetry operations are generally not valid

because not every site in the service lattice is occupied by a

periodic repeat of either one of the observed atoms. As an

example, in the crystalline lattice of Fig. 2(a), although the
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Figure 2
Identification and modeling of the D-PDFs. (a) A periodic cubic lattice (black open circles) with an occupied site at relative coordinates (1, 3, 0)/5 (black
full squares). The dashed circle is the envelope of any three-unit-cell-diameter spherical region embedding the lattice-origin site. Any direction triplet
with a limit index,  = 15, fits within the gray area. The nearest sites bound along the [340] (blue line) and [470] (red line) directions are shown (see the
main text for more details). (b) The hh0 self-correlation D-PDF estimated from the CVF of four spheres with different diameter sizes. The first non-zero
distances to sample equal the separation distances. The normalized frequency is doubled because each pair of sites is observed along the two opposite
orientations. (c) A cross-correlation D-PDF estimated from the CVF of four spheres with different diameters.



(11, 3, 0) triplet relates the origin site with the site (11, 3, 0)/5

= (2, 0, 0) + (1, 3, 0)/5, the triplet (3, 11, 0) with swapped

indices points to an empty site. Moreover, for each direction,

the opposite orientation direction must also be considered.

The separation pair distance can be such that the envelope size

is exceeded, and only either �þ0 or ��0 lies within the crystal

size. From equations (8), (9), (10) and (11), the directions [hkl]

and its opposite ~hh ~kk~ll
� �

relating the origin to the opposite pair of

nearest occupied sites are

h; k; lð Þ ¼ � m; n; oð Þ() ��  ð Þ m; n; oð Þ ¼ ~hh; ~kk; ~ll
� �

: ð14Þ

Hence, it is possible that |h|, |k|, |l| �  while j ~hhj; j ~kkj; j~llj 6� .

Indeed, in Fig. 2(a) the direction opposite to the triplet

(�4, �7, 0) that relates the origin with the site (1, 3, 0)/5 �

(1, 2, 0) is the triplet (16, 28, 0), which relates the origin with

the site (1, 3, 0)/5 + (3, 5, 0). The positively defined triplet has

indices larger than the absolute indices of the negatively

defined triplet and it describes a pair distance that would not

fit in a crystal with limit index  = 15 (i.e. a three unit-cell-wide

envelope region).

The same set 	0 is framed by the correlation of any occu-

pied site with its own periodic repeats. The triplets (h, k, l) 2

	0 are defined in a Cartesian base with no empty lattice nodes

regardless of the crystalline-lattice system (whether cubic or

not). Thus, the set 	0 obeys cubic symmetry. Given the sub-set

of independent triplets such that h 	 k 	 l 	 0, either only

positively defined coprime triplets or one-third of the bitwise

map for the first octant is explored. The complete set 	0 is

inferred by the cubic symmetry operations via swap of the

indices and the indices sign as

8 h; k; lð Þ 2 	0¼)

k; h; lð Þ 2 	0; if k 6¼ h
k; l; hð Þ 2 	0; if k 6¼ h

h; l; kð Þ 2 	0; if k 6¼ l

l; h; kð Þ 2 	0; if k 6¼ l
l; h; kð Þ 2 	0; if k 6¼ h; l

8>>><
>>>:

; ð15Þ

where h 	 k 	 l and ðk 6¼ h j k 6¼ lÞ ) h> l (i.e. h 6¼ l), and

8 h; k; lð Þ 2 	0¼)

h; k; l
� �

2 	0; if l 6¼ 0

h; k; l
� �

2 	0; if k 6¼ 0

h; k; l
� �

2 	0; if l; k 6¼ 0

8<
: : ð16Þ

As for the DSE, the WPDFM method disregards the

symmetries of the smallest group of particles in the material

that constitutes the repeating unit-cell structure. The order

imprinted in the sequence of Bragg peaks is ignored. The

possible ambiguity of selecting a coherent set of reflections to

model the scattering data from highly distorted materials is

overcome and any structural phase transformation can be fully

resolved (Fig. 3). The base structure unit is chosen according

to the most relevant length scale suitable to capture a mate-

rial’s feature of interest, and it is iteratively modified to

optimize the agreement between observed and modeled

scattering data. The base structure unit can be as small as the

unit cell of the structure or as large as the entire crystal.

Although different sets of D-PDF components and separation

distances are estimated, the same whole PDF is computed.

Notably, in the extreme case of a large structure unit, the

WPDFM would turn into a classical method based on the

DSE.

2.4. Bravais lattices of monoatomic materials

Any Bravais lattice of monoatomic materials is described

with a primitive triclinic cell through the tensor equivalences

of Table 1. The self-correlation of the cell-origin sites deter-

mines the same set of independent directions. Moreover, the

CVFs for a powder of spherical crystals are insensitive to the

direction of observation. Hence, only the separation distances

used to sample the CVFs differentiate the computed whole

PDFs. The separation distances change together with the

variation of the lattice-system tensor. Different sets of

diffraction peaks are suppressed or emerge in the intensity

profile. The mean of the whole PDF allows us to model the

powder-diffraction profile disregarding the ambiguous task of

classifying the local crystal structure and choosing the Bragg

components. As an example, crystal systems along the trans-

formation Bain path that connects face-centered and body-

centered lattices are continuously modeled as a function of the

unit-cell c side edge length (Fig. 3).
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Table 1
Equivalence of the system tensors for the Bravais lattices.

Primitive Base centered Body centered Face centered

aP aC aI (bF + cF)/2
bP (aC + bC)/2 aI (aF + cF)/2
cP cC (aI + bI + cI)/2 (aF + bF)/2

Figure 3
Bain transformation path. (a) Intensity-profile evolution for a 10 nm Pd
spherical crystal with crystal structure varying between body centered
(top) and face centered (bottom). (b) End-member structures showing
the tensor of the triclinic base system.



3. Results and discussions

3.1. Software implementation

We implemented the WPDFM method within a high-

performance computing framework (Fig. S4). The computa-

tion of the D-PDFs for the different directions is distributed

across the computing processor units (CPUs) with asynchro-

nous parallelization (see Section S2 for more details). The

sequence of independent directions is dynamically streamed

from a sequential loop, balancing the workflow across multiple

thread processes while avoiding the computation of the same

direction by multiple tasks. Each thread identifies the next

independent direction after locking the loop state. The asso-

ciated D-PDF component is then computed after unlocking

the state. The calculation of the whole PDF by summation of

the D-PDFs computed from each thread and the following

solution of the DSE are also performed with asynchronous

parallelization. Only the sequence of the three stages is

synchronized. A significant increase in speed for the solution

of the DSE is achieved by exploiting the graphics processing

unit (GPU) instead of the CPU. The architecture of a GPU is

well suited for the solution of the DSE starting from a PDF.

The algorithm is then embedded in an iterative loop to opti-

mize the modeling parameters against the observed scattering

profiles. Although we also implemented a simple Monte Carlo

method, the parameter optimizations presented here were

performed using a simulated annealing scheme.

Software performance was evaluated against the full solu-

tion of the DSE (Fig. 4) as implemented in the software

application Rose-X (Leonardi & Bish, 2016). The performance

was measured by the time required to compute a 2000 Q-

points intensity scattering profile from a powder of ideal face-
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Figure 4
Computing performance. Time to compute a 2000 Q-points powder-
scattering profile for an f.c.c. Pd nanocube (unit cell = 0.38907 nm) with
variable side edge length (D). The Debye solution was calculated using
the Rose-X software application with enabled GPU computing capability.
The predicted range of performance of Rose-X (shadow region) was
estimated based on new calculations and the results reported in Leonardi
& Bish (2016).

Figure 5
Reliability of the WPDFM method. (a), (c), (e) The intensity profile from Pd crystals with f.c.c. structure (unit cell = 3.8907 Å). (b), (d), ( f ) Absolute
intensity difference between the profiles simulated via the DSE and modeled using the WPDFM method. Although the goodness of fit (GoF) of the
agreement between the Debye simulated and WPDFM modeled patterns was calculated in the Q range from 2.0 to 10.0 Å�1, the values calculated
including the small-angle region (Q � 2.0 Å�1) are shown in parentheses. (a), (b) The intensity profile from a 6 nm spherical Pd (f.c.c.) crystal with
perfect structure. The Debye profile is solved for a single configuration with lattice origin at the center of the sphere (concentric), or as the average
profile from 1000 equivalent models with a random displacement of the lattice origin. (c), (d) The intensity profile from a 22 nm cubic Pd (f.c.c.) crystal
with perfect structure. The size that optimizes the agreement between Debye simulated and modeled profiles was estimated to be�21.98 nm. (e), ( f ) The
intensity profile from a powder of Pd (f.c.c.) cubic crystals with a uniform size distribution from 5 to 14 nm. The anomalous noise at Q ’ 1.614 Å�1

represents the step size of the crystal models that is the Pd unit-cell parameter.



centred cubic (f.c.c.) Pd nanocrystals (with a unit cell of

0.38907 nm). Although the smallest clock interval that could

be recorded was 1 s, the same profile was modeled from

scratch 1000 times in order to increase the time resolution to

0.001 s. The performance (computing time) of both methods

decreased (increased) with increasing nanocrystal size and the

change was proportional to the methods’ complexity. Whereas

the number of pair distances accounting for the DSE is known

to scale with the square of the crystal volume, the number of

independent directions observed for the WPDFM scales

linearly with the volume [Fig. 1(e)]. Indeed, the performances

of the two methods quickly diverge with an increase of the

nanocrystal size. The performance of the WPDFM software

deviates from the ideal exponential trend for crystal sizes

smaller than 30 nm. Such apparent loss of performance is

explained by the fraction of computing time spent to perform

memory and initialization tasks that are independent of

computing the powder-scattering profile. A similar loss of

performance is expected for any software application that

exploits parallelization, and in particular GPU capability, to

perform a relatively small set of computations. The method

based on the DSE is never expected to perform better than the

WPDFM method. Indeed, in the limit of a structure-unit-size

crystal, the two methods become computationally equivalent

because each distinct pair of sites belongs to an independent

direction.

3.2. Modeling reliability: WPDFM versus Debye

The reliability of the WPDFM method was assessed using

virtual experiments (Fig. 5). Atomistic models of f.c.c. Pd

nanocrystals with different shapes were built by selecting from

an infinite lattice the sites that are within a given envelope

shape (Leonardi et al., 2013b). The intensity profile from a

powder of perfect crystals was then computed via the DSE

using the Rose-X software (Leonardi & Bish, 2016). The

profiles computed with the WPDFM method and the DSE are

in excellent agreement, although they involve different sample

approximations.

The CVF provides the statistical probability of observing a

pair of atoms at a given distance within the envelope shape

regardless of the position of the shape, relative to the lattice

origin. Therefore, whereas the DSE provides the intensity

profile for a unique configuration of atom sites, the WPDFM

inherently describes a set of crystals with the same size and

shape [Fig. 5(a)]. To assess this ambiguity, we compared the

intensity profile for a spherical crystal computed using the

WPDFM method with the DSE solution. We first considered

an atomistic model of the spherical crystal with the origin of

the lattice origin concentric to the sphere. We then built 1000

different atomistic models of the same spherical crystal

randomly displacing the lattice origin relative to the sphere

center and computed the average of the corresponding

profiles. Compared with the DSE solution for the concentric

model, the intensity difference decreased by two orders of

magnitude [Fig. 5(b)], supporting the statistical significance of

the WPDFM method.

Using a crystal structure and envelope shape with the same

symmetry removes the ambiguity of the definition of the

atomistic model of the crystal. Except for those site sets that

yield the truncation of corners or edges, the same configura-

tion of atom sites is selected by a cubic envelope out of an

infinite cubic lattice [Fig. 5(c)]. However, the same sites are

also selected by any cubic envelope of size within a unit-cell-

wide range [half of it for f.c.c. and body-centred cubic (b.c.c.)

crystal structures]. Therefore, in addition to comparing the

profiles for the nominal size, we optimized the size used to

compute the intensity profile with the WPDFM method

against the DSE solution. The best agreement was observed

for the average size between those selecting the two atomistic

model configurations closer to the nominal cube size. Notably,

the intensity difference approached the same value achieved

for the spherical crystals after the optimization [Fig. 5(d)].

We further investigated the reliability of the WPDFM in

capturing the broadening from the size distribution of crystals

in a sample. As the DSE can be solved only for a discrete set of

crystal models, as a case study we chose a uniform size

distribution of cubic crystals with a side edge length ranging

from 5 to 15 nm [Fig. 5(e)]. The independent directional

components were estimated using the convolution of the

uniform probability distribution of the size with the CVF as

P3

n¼0

4Hn

4�n

�4�n
M ��

4�n
m

�4
M��

4
m

Ln; if 0 � L
K � �m

P3

n¼0

4Hn

4�n

�4�n
M � KLð Þ

4�n

�4
M��

4
m

Ln; if �m �
L
K � �M

0; if �M �
L
K

8>>>><
>>>>:

; ð17Þ

where �m � �M are the limit sizes and the CVF is described by

a third-order polynomial function with coefficients Hn. The

best agreement between the intensity profiles simulated with

the DSE and computed with the WPDFM method was

achieved for a size range of about one unit cell wider than

expected (i.e. from �4.8 to �15.2 nm). This error pairs with

the size step of the atomistic models used to approximate the

continuous size distribution in the sample. The high-frequency

oscillations from the longer pair distances do not fully cancel

because of the finite range and constant step interval of the

crystal sizes. Particularly in the small-angle region, the DSE

solution shows anomalous deviations from the trend depicted

by the intensity profile computed with the WPDFM method.

The deviations repeat at constant Q intervals of �1.61 Å�1

corresponding to an inter-planar distance of�3.8907 Å, which

is the Pd unit-cell parameter [Fig. 5(f)].

3.3. Accuracy of modeling using tabulated CVFs

The accuracy of modeling the scattering profile from a

powder of shaped crystals is dependent on the accuracy of the

CVFs (Fig. 6). We compared the profiles from powders of

cubic crystals modeled using the analytical CVF expressions

with those modeled using the tabulated CVF coefficients. The

CVF coefficients were calculated for a finite set of indepen-

dent directions and pair distances (2000 data per direction).

We chose the sets of directions to encompass any positively
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defined independent direction described by a triplet of inte-

gers with none of the indices larger than 6, 7, 9, 12 and 15.

Therefore, each of these sets, of 40, 88, 163, 334 and 598

directions, respectively, includes those with a smaller threshold

index. The difference between the intensity profiles calculated

using the analytical and the tabulated CVF decreases expo-

nentially with increasing size of the set of directions [Fig. 6(a)].

Notably, using the largest set, the difference with the solution

employing the analytical CVF expressions becomes compar-

able with the difference between this latter and the solution of

the DSE (i.e. �1.8 10�3). The accuracy increases by assuming

a dispersion of the crystal sizes [Fig. 6(b)]. For a uniform

distribution with an s.d. of 1 nm, the difference between using

the analytical or the tabulated CVF decreases by half

compared with the monodisperse case. In addition, the

improvement becomes greater as the size distribution

becomes wider and less discontinuous.

We computed a library of tabulated CVFs for a wide set of

polyhedra (Fig. S5). The intensity profiles from powders of

identical crystals with envelope shapes of non-regular poly-

hedra were modeled to assess the contribution of the tessel-

lation used for the interpolation of the tabulated CVFs.

Polyhedra bounded by facets from the same family of planes,

either 310 [Fig. 6(c)] or 411 [Fig. 6(d)], were chosen here to

observe the effect of a different amplitude of edge angles and

of going from a convex to a concave shape. The profiles

modeled with the WPDFM method using 163 tabulated CVFs

are in agreement with the profiles simulated using the DSE. A

similar intensity difference with the DSE solution is observed

for the profiles from either non-regular polyhedral shape or

cubic crystals. Fine features associated with the crystal shape,

such as the ‘teeth’ emerging from the low-angle tails of some

diffraction peaks, are accurately captured.

To test the accuracy of the new method against state-of-the-

art results, we analyzed an intensity profile simulated via the

DSE for a powder of truncated-cube crystals with lognormal

size distribution (mean = 14 nm, s.d. = 2.2 nm) and a constant

degree of truncation (18%), reproducing the sample discussed

in Scardi et al. (2015) (Scardi & Gelisio, 2016). Although the

intensity variation associated with a truncation degree ranging
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Figure 6
Modeling the scattering profiles from Pd (f.c.c.) nanocrystals with arbitrary shape and shape dispersion. (a), (b) Intensity profiles from powders of cubic
crystals with (a) constant and (b) lognormal size distribution (mean = 22 nm and s.d. = 1 nm), which were modeled using an increasing number of
tabulated CVFs. The profiles are compared against the solution using the analytical CVF expressions. The insets show the GoF of the agreement between
the patterns modeled using the analytical and the tabulated CVFs calculated in the Q range from 2.0 to 10.0 Å�1 (blue, open diamond) or including the
small-angle region for Q � 2.0 Å�1 (black, open circle). The exponential fits are also shown (red, line). (c), (d) Intensity profiles for powders of
polyhedral crystals with the same volume (i.e. about the same number of atoms) bounded only by (c) 310 and (d) 411 facets, which were modeled using
163 tabulated CVFs. (e), ( f ) Intensity profiles from powders of truncated cubic crystals with lognormal size distribution (mean ’ 14 nm and s.d. =
2.2 nm), and (e) constant and ( f ) normal truncation distribution (mean = 18% and s.d. = 4%). The profiles are compared with the Debye solution and the
GoF of the agreement was calculated in the Q range from 2.0 to 10.0 Å�1 [the values calculated including the small-angle region (Q� 2.0 Å�1) are shown
in parentheses].



from 10 to 26% is small, we estimated the expected size-

distribution parameters and truncation of 18% with an error

of �0.0045%, which falls in the range of accuracy of the DSE

simulation [Fig. 6(e)]. Improving from previous studies, we

also considered the case of simultaneous dispersion of size and

truncation degree of crystals. We simulated a normal distri-

bution of the truncation degree with a mean of 18% and an s.d.

of 4% for every size fraction in the sample [Fig. 6( f)].

Although the difference between the profiles modeled for a

constant or a normally distributed degree of truncation is

hidden in minor features, we were able to estimate the

expected distribution parameters of both size and truncation

degree. Only the mean degree of truncation was slightly

underestimated as�15.5 instead of 18%. However, this can be

attributed to the stepwise approximation of the truncation of

the cubic models used to compute the Debye solution.

3.4. Polyatomic crystal structures

The scattering profiles from powders of polyatomic crystals

are easily modeled using the WPDFM method (Fig. 7). We

observed the intensity profile evolving during the disorder-to-

order phase transition in bimetallic cubic crystal structures

[Figs. 7(a)–7(d)]. Both A2 Cu–Pd and A1 Cu–Au alloy phases

transform to the ordered intermetallic phases, B2 and L10 or

L12 for Cu3Au and CuAu3, whereas they retain the b.c.c. and

f.c.c. symmetry of the atom sites, respectively [Fig. 7(e)]. The

diffraction peaks observed in the intensity plot from the alloy

phase do not change with the phase transformation. In

accordance with the WPPM theory, the shape and width are

dependent only on the crystal shape and size, which remain

the same over the phase transformation. The transformation

to the intermetallic phases yields the sequence of reflections

characteristic for a simple cubic structure. The reflections

forbidden for the alloy phases quickly rise out of the diffuse

component with the reordering of the elemental species.

Indeed, they are easily distinguishable already with a 25%

order [Fig. 7(a)]. The low-angle teeth in the intensity profiles

for the alloy phases, as well as for the monoatomic structures,

mark the forbidden reflections for both the b.c.c. and the f.c.c.

symmetries [Figs. 7(a) and 7(b)]. Although the teeth can be

explained by the systematic lack of destructive-interference

contributions over the long range, they can also be interpreted

as the result of the ambiguous definition of the surface local

structure. Atom sites at the surface of a crystal bounded by flat

facets show different coordination towards the inside than the

outside of the crystal: b.c.c. or f.c.c. inward and simple cubic

outward. Whereas the intensity of the reflections allowed by

the b.c.c. or f.c.c. symmetries is proportional to the number of

atoms in the crystal, the intensity of the teeth is proportional

to the number of atoms at the surface. Indeed, the smaller the

crystal, the more pronounced the teeth.

Kaolinite crystals were chosen as a case study of a material

with complex polyatomic (i.e. Al2Si2O5(OH)4) and non-cubic

crystal structure. Fig. 7( f) shows the scattering profile

modeled for powders of hexagonal-prism crystals with height

equal to the distance between the pairs of parallel hexagonal

sides. We used the crystal structure from Bish (1989) with C1
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Figure 7
Modeling the scattering profiles from polyatomic nanocrystals. (a)–(e) Disorder-to-order phase transition of (a) and (c) b.c.c. Pd–Cu and (b) and (d) f.c.c.
Au–Cu. (a), (b) Intensity profiles from powders of random alloy and intermetallic 22 nm cubic nanocrystals. (c), (d) Intensity-profile transformation as a
function of the fraction of random versus ordered species in the unit structure (the transition is plotted using a quadratic scale). Note that the unit-cell
parameter was fixed over the phase transformation. (e) Atom-species arrangement in the random alloy and intermetallic end-members crystal structures.
( f ), (g) Intensity profiles from powders of kaolinite nanocrystals with hexagonal-prism shape and height equal to the side-to-side distance. Profiles from
powders with ( f ) monodisperse crystal size are compared with a powder with (g) lognormal size distribution (mean = 15 nm and s.d. = 2 nm).



symmetry and triclinic unit cell. More than 100 diffraction

peaks can be distinguished in the scattering profile from a

powder of 50 nm size crystals, in the usual range of

measurement for a laboratory diffractometer with Cu radia-

tion. The apparent peak shape is affected by the overlapping

of the tails of neighboring peaks. Hence, the accuracy of LPA

is affected by the variation of the scattering structure factor

for each diffraction peak over the angular region where the

individual contribution to the total scattered intensity is not

negligible. The DSE is superior to the methods based on

Bragg’s law and fully captures these features, but its applica-

tion is largely limited because the solution for crystals with a

size (e.g. layer diameter and stacking height) from 50 to

100 nm or more requires very long computation times (i.e.

from �17 h to �45 days or more using a desktop computer

with an AMD Ryzen 7 2700X CPU and a GeForce GTX 1080-

ti GPU). The wide dispersion of sizes in natural samples and

the need to decouple the layer diameter from the number of

stacked layers makes the solution even more computationally

intensive (Leonardi & Bish, 2020). The WPDFM method

provides a very efficient solution compared with the DSE (e.g.

261 s for a 50 nm size crystal), at the same time correcting for

the change in scattering factor angle-by-angle instead of on a

reflection-by-reflection basis as usually carried out with

methods based on Bragg’s law. Moreover, the size of the larger

crystals in the sample determines the time required to model

the scattering profile from a powder sample regardless of the

size dispersion. We spent almost the same computing time,

�58 s, to model the profiles from a powder of 20 nm crystals as

that from a powder of crystals with lognormally distributed

sizes ranging from 8 to 23 nm [Fig. 7(g)].

4. Conclusions

The Bragg and Debye scattering theories are bridged by

WPDFM. Models based on Bragg’s law of material micro-

structure were used to estimate the whole PDF, which was

then employed to solve the DSE. The WPDFM achieved the

same accuracy as the DSE solution in modeling the diffuse

scattering component and the fine features in the diffraction

profiles. Compared with a full solution of the DSE, it is

significantly more efficient and inherently captures the

statistical nature of a powder. Contrary to methods based on

Bragg’s law, the WPDFM method does not rely on the

separation of the contributions of the different diffraction

reflections to model the line profile. Whether or not the

crystalline symmetry is retained, the unit structure used for

modeling the scattering profile can be arbitrarily re-defined by

adjusting the individual atom sites. Any suitable cluster of the

reference crystal unit structure can be used to balance the

LPA in the long and short range. Eventually, the unit structure

can be optimized, as carried out by other full PDF methods.

Disorder models employed by WPPM methods can be directly

included and extended. As the PDF describes a sample in real

space, detailed material features can be captured by modifying

the estimated PDF. As an example, the contribution of

polymer molecules bonded at the surface of crystals can be

included by adjusting the length of a sub-set of the estimated

pair distances and adding those associated with the molecules

themselves. Following this, we envision the opportunity to

directly employ atomistic simulation to the analysis of scat-

tering data.

The WPDFM method was implemented in a tool for

analysis of scattering data, which employs a simulated

annealing algorithm to optimize the agreement between

observed and modeled profiles. The method was tested against

virtual experiments for a wide range of powders of crystals

with different structure symmetry, elemental composition, and

shape and size dispersions. The contribution of the approx-

imation of using a limited set of tabulated common-volume

coefficients instead of analytical expressions was investigated.

The scattering profile modeled for powders of polyhedral

crystals agreed with the solution of the DSE, regardless of

whether the shape was convex or concave. A library of tabu-

lated CVFs was computed for several non-regular polyhedral

shapes (avaliable on request). Extending what was carried out

with the WPPM method, both the size and truncation-degree

dispersions of a powder of Pd truncated-cube crystals, repro-

ducing a real sample that we investigated in the past, were

accurately estimated. Finally, intensity profiles from powders

of kaolinite crystals and those occurring during structure

symmetry or order–disorder transitions of cubic phases were

modeled to test the WPDFM with non-cubic and polyatomic

crystal structures.

These results suggest that the WPDFM method can over-

come current limitations in methods based either on Bragg’s

law or the DSE for the analysis of powder-scattering data.

Additional work remains to include available disorder models

and instrumental contributions before fully exploiting the new

environment to strengthen the capability of capturing complex

disorder in multicomponent nanostructured materials from

their scattering data.
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Ungár, T., Révész, Á. & Borbély, A. (1998). J. Appl. Cryst. 31,

554–558.
Usher, T.-M., Olds, D., Liu, J. & Page, K. (2018). Acta Cryst. A74,

322–331.
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