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Mixtures of biological macromolecules are inherently difficult to study using

structural methods, as increasing complexity presents new challenges for data

analysis. Recently, there has been growing interest in studying evolving mixtures

using small-angle X-ray scattering (SAXS) in conjunction with time-resolved,

high-throughput or chromatography-coupled setups. Deconvolution and inter-

pretation of the resulting datasets, however, are nontrivial when neither the

scattering components nor the way in which they evolve are known a priori. To

address this issue, the REGALS method (regularized alternating least squares)

is introduced, which incorporates simple expectations about the data as prior

knowledge, and utilizes parameterization and regularization to provide robust

deconvolution solutions. The restraints used by REGALS are general properties

such as smoothness of profiles and maximum dimensions of species, making it

well suited for exploring datasets with unknown species. Here, REGALS is

applied to the analysis of experimental data from four types of SAXS

experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-

resolved mixing and time-resolved temperature jump. Based on its performance

with these challenging datasets, it is anticipated that REGALS will be a valuable

addition to the SAXS analysis toolkit and enable new experiments. The software

is implemented in both MATLAB and Python and is available freely as an open-

source software package.

1. Introduction

Small-angle X-ray scattering (SAXS) is a widely used tech-

nique for obtaining structural information from macro-

molecules in solution (Putnam et al., 2007). Increasingly,

SAXS is applied to evolving mixtures of different molecules or

conformational states (Vestergaard & Sayers, 2014; Meis-

burger et al., 2017) during titrations (Brosey & Tainer, 2019),

chromatographic separation (Pérez & Vachette, 2017) or time-

resolved experiments (Kathuria et al., 2011; Neutze & Moffat,

2012; Kirby & Cowieson, 2014). However, because of the

fundamental limitations in the information content of the

SAXS signal (Moore, 1980), multiple structures in a mixture

cannot be resolved from each profile in an unambiguous

manner. This inherent ambiguity can be mitigated by

combining multiple measurements and carefully incorporating

prior knowledge. The individual components can then be

separated mathematically by analyzing the dataset as a whole

using a physicochemical model for how the mixture evolves

(Williamson et al., 2008; Cho et al., 2010; Minh & Makowski,

2013) or known scattering curves of each component

(Konarev et al., 2003). Often, however, both the scattering

curves and physicochemical model are unknown before the

experiment is performed and must be inferred from the data

themselves. In such cases, the challenge is to identify appro-

priate mathematical tools to incorporate more general
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physically motivated restraints that lead to a reliable and

accurate model-free separation.

In dilute solution, SAXS intensities from non-interacting

components combine linearly in proportion to their relative

concentrations. A SAXS dataset from a mixture can therefore

be described as the convolution of the concentration and

SAXS profiles, and deconvolution can be performed using

matrix factorization techniques such as singular value

decomposition (SVD) (Henry & Hofrichter, 1992; Hendler &

Shrager, 1994). However, to recover the scattering from each

component, the basis vectors from SVD must be recombined

using prior knowledge about what constitutes a physically

valid solution. The field of chemometrics has developed a

number of algorithms for solving this problem, known as

multivariate curve resolution or MCR (de Juan & Tauler,

2003; Jaumot et al., 2004). When a physicochemical model is

available, the alternating least-squares (MCR-ALS) algorithm

can perform deconvolution using the model as a hard restraint

(Jaumot et al., 2004). In the context of SAXS, deconvolution

with hard restraints has been applied to time-resolved

experiments (Cho et al., 2010; Chen et al., 1998; Segel et al.,

1998; Akiyama et al., 2002), equilibrium titrations (Williamson

et al., 2008; Blobel et al., 2009; Minh & Makowski, 2013;

Cichocki & Zdunek, 2007), unfolding experiments (Chen et

al., 1996; Ayuso-Tejedor et al., 2011), protein–micelle inter-

actions (Lipfert et al., 2007) and fibril formation (Herranz-

Trillo et al., 2017). Interestingly, MCR can be performed

without assuming a hard model by imposing soft restraints

such as positivity, unimodality and local rank (Jaumot et al.,

2004). Such model-free deconvolution is seldom applied to

SAXS data because soft restraints are rarely sufficient to

provide a robust and unique solution on their own (de Juan &

Tauler, 2003). One exception is SAXS data collected with in-

line size-exclusion chromatography (SEC-SAXS), where

MCR-ALS has been combined with evolving factor analysis

(EFA) (Maeder, 1987) to separate overlapping elution peaks

(Meisburger et al., 2016; Hopkins et al., 2017).

Although the SVD and MCR algorithms are well suited to

certain SAXS experiments, they are a poor fit for other more

challenging datasets. A notable example is SAXS data

collected with in-line anion-exchange chromatography (AEX)

(Hutin et al., 2016). AEX separates according to charge by

applying the sample to cationic media and eluting with a salt

gradient. In SAXS, the salt gradient produces a changing

background scattering that must be accounted for. Because

this changing background violates certain assumptions of the

EFA method, model-free deconvolution of AEX-SAXS data

is not possible with EFA. We previously encountered this issue

when analyzing AEX-SAXS data from the large subunit of

Bacillus subtilis ribonucleotide reductase (BsRNR) (Parker et

al., 2018). To overcome this challenge, we incorporated a

simple assumption as additional prior information, namely,

that the background scattering must change gradually over

time. Using the ALS algorithm with smoothness regularization

applied to the concentration of background scattering

components, we achieved a clean separation of multiple

protein and buffer components (Parker et al., 2018).

Here, we examine the generality of this strategy for the

model-free deconvolution of other complex types of SAXS

data where traditional ‘soft’ restraints are insufficient. We

describe the REGALS (regularized ALS) toolset and intro-

duce the REGALS software package, which is adaptable by

design, freely available and open source. We then demonstrate

the application of REGALS to a wide variety of SAXS

experiments from evolving mixtures. Unlike most deconvo-

lution methods that impose a physicochemical model,

REGALS relies on very general parametric models for the

SAXS profiles and concentration curves. The models include

two types of restraint: smoothness and compact support. In

AEX-SAXS, for example, each elution peak is assumed to be

non-zero over a particular range (compact support) and the

background components are assumed to be smooth. For the

BsRNR dataset, we find this is sufficient to deconvolve the

protein scattering peaks. In other cases, such as equilibrium

titration and time-resolved SAXS, where concentrations are

typically non-zero in all (or nearly all) data frames, the

assumption that concentrations have compact support is

insufficient. However, compact support can be applied to the

SAXS profiles in real space by imposing a maximum particle

dimension. We show that compact support in real space, as

well as boundary conditions applied to the concentration basis

functions, provide sufficient information for successful

deconvolution of such data.

2. Theory

2.1. Background

A dilute evolving mixture of K components scatters X-rays

according to the following linear model:

Icalc:ðq; xÞ ¼
XK

k¼1

ykðqÞ ckðxÞ; ð1Þ

where yk(q) are the individual SAXS profiles and ck(x) are the

relative concentrations. The SAXS profiles depend on the

scattering vector magnitude q = (4�/�)sin�, where � is the

X-ray wavelength and 2� is the scattering angle. The concen-

tration profiles depend on an independent variable x (repre-

senting time, ligand concentration etc). Since intensities are

measured at discrete values of q and x, equation (1) can be

written in matrix form as follows:

Icalc: ¼
X

k

yk � ck

¼

j j j

y1 y2 . . . yK

j j j

2
64

3
75
� c1 �

� c2 �

..

.

� cK �

2
66664

3
77775 ¼ YCT; ð2Þ

where Icalc. contains scattering profiles arranged side by side as

column vectors. Here and throughout this section, the inten-

sity matrix has dimensions of M � N (N scattering profiles

with M discrete values of q). Hence, Y is M � K and C is

N � K.
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Our aim is to determine Y and C given the measured

intensity Imeas. , which contains noise. This is accomplished by

minimizing the least-squares error between data and model:

�2
¼
X

ij

��2
ij Imeas:ð Þij� Icalc:ð Þij

� �2
; ð3Þ

where �ij are the standard errors of the measured intensity. In

the following, we assume that the experimental errors depend

only on q, so that equation (3) can be written as a Frobenius

norm of the error-weighted residual:

�2 ¼ R�1 Imeas: � Icalc:ð Þ
�� ��2

F
; ð4Þ

where R is a diagonal matrix with �ii = N�1
PN

j¼1 �ij. This

simplifying assumption is approximately correct for the data-

sets considered here.

In general, minimizing �2 is not sufficient to determine Y

and C uniquely. The main issue is that basis vectors can be

mixed (or ‘rotated’) without changing �2 : for any non-singular

K � K matrix �, replacing Y! Y� and C ! C��T leaves

the product YCT unchanged. Thus, the primary challenge of

deconvolution is to impose appropriate restraints that provide

a unique and physically meaningful solution.

Deconvolution problems resembling equation (2) arise in

many experimental contexts. A common approach is to apply

SVD (Henry & Hofrichter, 1992; Hendler & Shrager, 1994),

by which an error-weighted data matrix is decomposed as

follows:

USVT
¼ ��1Imeas:; ð5Þ

where U has the left singular vectors as columns, V contains

the right singular vectors as columns and S contains the

singular values along the diagonal in decreasing order. The

uniqueness of the decomposition results from the fact that the

singular vectors are on an orthonormal basis.

The singular values sj = Sjj are positive and indicate the

importance, or weight, of each pair of left and right singular

vectors. When the number of observations (N) is much larger

than the number of independent components in the signal

(which is generally the case for the examples studied here),

most of the singular values will be small and represent the

noise in the data, while a few large singular values correspond

to the signal of interest. To detect significant singular values, it

is useful to calculate a normalized singular value, as follows:

s0j ¼ sj �M1=2
� �

=N1=2; ð6Þ

where M and N are the numbers of rows and columns,

respectively, in the data matrix. If no signal is present, random

matrix theory shows that s0j < 1 in the limit where the data

matrix is large [see Vershynin (2012), and references therein].

Thus, components corresponding to signal above the noise are

expected to have s0j > 1.

By retaining only the K most important singular vectors

(U ! UK etc.), one obtains an approximate (reduced-rank)

representation of the data. Thus, a solution for Y and C can be

constructed from SVD as follows:

YSVD ¼ RUKS
1=2
K ; CSVD ¼ VKS

1=2
K : ð7Þ

Here, the singular-value weights have been distributed evenly

between the SAXS and concentration basis vectors, but other

choices could be made depending on the normalization

conditions.

Although SVD provides a unique low-rank decomposition

of the data, the orthonormality of the singular vectors often

produces non-physical results. For instance, the component

SAXS profiles or concentrations might have negative values. It

is therefore often necessary to further unmix (or ‘rotate’) the

SVD basis vectors by applying physical restraints (Chen et al.,

1996; Lipfert et al., 2007; Segel et al., 1998; Williamson et al.,

2008). In traditional MCR techniques, physical restraints are

imposed using ‘hard’ or ‘soft’ models, whose applicability

depends on the type of experiment performed and prior

knowledge. Alternatively, prior information can be imposed

through Tikhonov–Miller regularization, where additional

functions are minimized at the same time as �2 (Tikhonov &

Arsenin, 1977; Miller, 1970). As described above, in an AEX-

SAXS experiment, the expectation that background scattering

varies gradually over time can be enforced using a regular-

ization function that penalizes large oscillations (Parker et al.,

2018).

Regularization is also used in conventional SAXS data

analysis to infer the pair-distance distribution function, or

P(r), from the measured intensity (Hansen & Pedersen, 1991).

Essentially, P(r) represents the probability of two electrons

being a distance r apart in the sample, and it is related to the

scattering intensity by a Fourier transform:

IðqÞ ¼ 4�

Zdmax

0

PðrÞ
sinðqrÞ

qr
dr; ð8Þ

where the integral terminates at the maximum particle

dimension, dmax [since P(r) = 0 for r > dmax]. Although

equation (8) can be inverted analytically, in practice the

intensity is measured over a finite q range, and thus inversion

is an ill-posed problem. Since the Fourier transform is a linear

operator, Tikhonov–Miller regularization can be applied. P(r)

is discretized as a vector u of length R, which samples values of

P(r) on a uniform grid with spacing �r. Equation (8) can then

be written as

Icalc: ¼ A u; ð9Þ

where Icalc is a vector of length M and A is an M � R matrix

with elements

Aij ¼ 4��r
sinðqirjÞ

qirj

: ð10Þ

The standard indirect Fourier transform (IFT) method for

SAXS data minimizes the �2 between Icalc. and Imeas. plus a

regularization term:

ûu ¼ arg min
u

R�1 Imeas �A uð Þ
�� ��2þ� B uj j2
h i

: ð11Þ
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Typically, the matrix B performs a discrete approximation of

the second derivative (Hansen, 2012; Press, 2007), which

enforces smoothness by penalizing wildly oscillating solutions.

The regularization parameter (or Lagrange multiplier) �
controls the tradeoff between minimizing �2 and minimizing

the regularization function. The optimization problem is

solved by the method of normal equations, with the (formal)

result

ûu ¼ ATR�2Aþ �BTB
� ��1

ATR�2Imeas: ð12Þ

In this study, we describe a general method for deconvol-

ving SAXS data from mixtures that applies regularization to

both the concentration and SAXS profile basis vectors. We

first formulate the deconvolution problem [equation (2)] using

a parametric representation of the basis vectors, similar to the

IFT example above. This parametric form allows the SAXS

profiles to be represented in the real-space [P(r)] basis if

desired. Then, we describe the REGALS algorithm for mini-

mizing the sum of the �2 [equation (3)] and regularization

terms.

2.2. Deconvolution by regularized least squares

In order to deconvolve SAXS data from evolving mixtures,

we introduce a method to impose mathematical constraints

that embody prior information (or general expectations)

about a SAXS experiment. The first way that constraints are

imposed is through a parameterization of the basis vectors:

yk ¼ Akuk; ck ¼ A0kvk; ð13Þ

where uk and vk are the parameter vectors for the SAXS

profile and concentration bases, respectively. Here and in the

following equations, primed functions or matrices refer to the

concentration basis, in order to distinguish them from the

SAXS profile basis. We implemented three types of basis

vector: simple, smooth and real-space [Fig. 1(a)]. In a simple

basis vector, Ak is the identity matrix and the parameter

vector encodes the basis vector directly. In a smooth basis

vector, Ak performs a linear interpolation from a uniform grid

of control points to the experimental grid, which need not be

uniform. Finally, in a real-space basis vector (which applies

exclusively to SAXS profiles), uk samples P(r) on a uniform

grid, and Ak is given by equation (10). Crucially, the global

model can contain a mixture of different parameterizations.

This model was implemented using a flexible object hierarchy

[Fig. 1(b)] as described in the Methods section.

The second way constraints are imposed is through regu-

larization. The regularization functions B embody prior

information (or expectations) about the data, such as

smoothness in data or parameter space, and are minimized

along with �2:

ûu; v̂vf g ¼ argmin
u;v

�2ðu; vÞ þ BðuÞ þ B0ðvÞ
� �

; ð14Þ

Here, u and v refer to global parameter vectors that are

constructed by concatenating parameter vectors for the indi-

vidual basis functions (for example, u is u1, . . . , uK placed end

to end), and �2 is calculated from equations (4) and (13) as

follows:

�2
ðu; vÞ ¼ R�1 Imeas: �

X
k

AkukvT
k A0kð Þ

T

" #�����
�����

2

F

: ð15Þ

The regularization functions are a sum of quadratic regu-

larizers acting on each component’s parameter vector:

BðuÞ ¼
X

k

�k Bkuk

�� ��2; B
0
ðvÞ ¼

X
k

�0k B0kvk

�� ��2: ð16Þ

The regularization parameters �k and �0k control the tradeoff

between minimizing �2 and each regularizing function. For

smoothness regularization, Bk is a discrete approximation of

the second derivative (Press, 2007). Zero boundary conditions

are optionally imposed by removing the parameters on the

boundary and deleting the corresponding rows of Ak and Bk

(Press, 2007).

2.3. REGALS algorithm

The optimization problem described in the previous section

[equations (14), (15) and (16)] is nonlinear and therefore does

not afford a straightforward solution. We chose to adapt the

alternating least-squares (ALS) algorithm, which is often used

in classic MCR (Jaumot et al., 2015, 2004; de Juan & Tauler,

2003). ALS replaces the single nonlinear optimization

problem with two linear problems that are solved in an

alternating fashion over many iterations. Beginning with an
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Figure 1
Overview of the REGALS method. (a) Parametric basis vectors
representing concentrations (top panel) and SAXS profiles (bottom
panel). In simple vectors, each sample (q or x) is given an independent
parameter (black dots). A smooth vector represents the data by linear
interpolation between control points (blue circles) over the region of
support (xmin and xmax , top panel). A real-space vector samples the P(r)
function (orange circles) up to the maximum particle dimension (dmax)
and the corresponding SAXS intensities (orange curve) are calculated by
Fourier transform [equation (8)]. (b) Experimental restraints are
expressed in the software by mixing and matching basis vector types
using a flexible object hierarchy. The basis vectors representing SAXS
profiles (u) and concentrations (v) are refined by methods in the high-
level REGALS class. (c) The refinement algorithm based on regularized
ALS. At each iteration, regularized linear least-squares fits are performed
on the SAXS profiles [equation (17)] and concentrations [equation (18)]
in an alternating fashion until a user-specified convergence test is
satisfied.



initial guess, one set of basis functions is optimized (e.g. the

concentrations) with the other held fixed, and then the other

basis functions are optimized. This is repeated until the change

in basis vectors from one iteration to the next is smaller than a

certain tolerance, or the maximum number of iterations has

been reached.

The REGALS algorithm solves equation (14) iteratively

using ALS with regularization [Fig. 1(c)]. First, an initial guess

is made for the concentration basis parameters (v̂v). This can be

supplied by the user or generated automatically based on the

parameterization type and boundary conditions. In the first

least-squares step, the SAXS basis functions are optimized

while the concentrations are held fixed:

ûu :¼ argmin
u

�2
ðu; v̂vÞ þ BðuÞ

� �
: ð17Þ

The profiles are then normalized according to a their para-

meterization type; for simple and smooth types, the para-

meters are divided by the root-mean-squared value, while for

the real-space type, the parameters are normalized by the

scattering intensity at q = 0 calculated from the area under the

P(r) curve [see equation (8)]. In the second least-squares step,

the concentration basis functions are optimized while the

SAXS profiles are held fixed:

v̂v :¼ argmin
v

�2ðûu; vÞ þ B0ðvÞ
� �

: ð18Þ

Statistics are calculated at this stage, including the change in

the basis vector from the previous iteration (the sum of the

absolute value of the difference) and the �2 for the current

model [equation (3)]. Finally, the cycle is repeated until

reaching convergence according to user-specified termination

conditions. Further details about parameter estimation, error

analysis and implementation can be found in the Methods

section.

3. Methods

3.1. Computational details

3.1.1. Least-squares optimization in each REGALS itera-
tion. The two regularized linear least-squares problems within

each REGALS iteration [equations (17) and (18)] are solved

using the method of normal equations. For the SAXS profile

basis [equation (17)], the best-fit parameters satisfy K sets of

linear equations (with k = 1, 2, . . . , K):

�kBT
k Bkuk þ

XK

l¼1

Mklul ¼ bk; ð19Þ

where

Mkl ¼ ðck � clÞ AT
k R�2Al

� �
; ð20Þ

bk ¼ AT
k R�2Imeas:ck: ð21Þ

Note that these equations can be combined and written in the

form (M + H)u = b, making them straightforward to solve

using standard numerical methods. Similarly, the parameters

for the concentration basis [equation (18)] are found by

solving the K sets of linear equations:

�0k B0kð Þ
T

B0kvk þ
XK

l¼1

M0klvl ¼ b0k; ð22Þ

where

M0kl ¼ yk � R
�2yl

� �
A0kð Þ

T
A0l

� �
; ð23Þ

b0k ¼ Imeas:A
0
kð Þ

T
R�2yk: ð24Þ

3.1.2. Extracting scattering curves and error estimates.
After fitting a dataset with a REGALS model for Y and C, the

results are typically smooth versions of the concentrations and

SAXS profiles. However, for further analysis (such as fitting

atomistic models to the SAXS data), it is desirable to extract

curves resembling experimental data with properly estimated

errors. Previously, we applied a projection algorithm which

uses the pseudo-inverse of the concentration matrix to

generate SAXS profiles and associated error bars (Meisburger

et al., 2016). For the datasets examined here, we found that the

pseudo-inverse method amplifies noise in certain cases.

Therefore, we developed an alternative method which makes

use of the regularized basis vectors to overcome this issue. In

order to extract a particular component, a residual data matrix

is reconstructed by subtracting the model with component k

excluded:

D
ðkÞ
resid: ¼ Imeas: �

X
j6¼k

yj � cj: ð25Þ

The unregularized basis functions y and c are extracted by

minimizing

R�1 D
ðkÞ
resid: � y� c

h i��� ���2

F
; ð26Þ

with either the scattering profile or the concentration held

fixed. The solutions can be written as weighted averages of the

residual data matrix, as follows:

y
ðkÞ
extract ¼ D

ðkÞ
residmk; c

ðkÞ
extract ¼ D

ðkÞ
resid

h iT

m0k; ð27Þ

with coefficients

mk ¼
ck

ck � ck

; m0k ¼
R�2yk

yk � R
�2yk

: ð28Þ

The uncertainties are estimated by standard propagation of

experimental errors:

�y
ðkÞ
extract

h i
i
¼

X
j

r2
ij mkð Þ

2
j

" #1=2

;

�c
ðkÞ
extract

h i
j
¼

X
i

r2
ij m0kð Þ

2
i

" #1=2

:

ð29Þ

3.1.3. Regularization parameter estimation. The regular-

ization parameters �k and �0k reflect prior information about
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the smoothness of the parameters. They are not known in

advance, so initial values must be chosen by the user and

further adjusted if REGALS fails to converge. However, the

regularization parameter is not an intuitive quantity and it

depends in a complicated fashion on the noise level in the data

and the particular regularizer chosen. To assist the user in

selecting initial values, we provide the option of specifying a

more intuitive parameter, the ‘number of good parameters,’ or

nk. This parameter comes from the Bayesian interpretation of

regularized linear regression (MacKay, 1992, 1996) and it

estimates how many parameters are effectively determined by

the data (as opposed to the regularizer). The number of good

parameters determined for uk (SAXS basis) is as follows:

nk ¼
X

j

dkð Þj

dkð Þjþ�k

; ð30Þ

where dk is the vector of generalized eigenvalues of the

matrices Mkk [which depends on |ck|, see equation (20)] and Hk

= BT
k Bk. To determine �k given nk, equation (30) is solved

numerically using the initial guess for ck. Strictly speaking, nk

should be determined using the final value of ck (after

REGALS has converged), but we have found that initial

estimates of nk are usually close to the final values. Similarly,

regularization parameters for the concentration basis are

found by solving equation (30) where dk are the generalized

eigenvalues of M0kk [equation (23)] and H0k = ðB0kÞ
TB0k.

3.1.4. Software implementation. The REGALS method

was developed in MATLAB and subsequently translated into

Python. The two implementations have similar organization

and produce equivalent results. Both versions are available for

the convenience of future users and developers.

The code is organized using a hierarchy of classes to facil-

itate mixing and matching of basis vector types [Fig. 1(b)]. At

the lowest level are Concentration and Profile classes for each

type (simple, smooth and real-space), which share a common

interface and are responsible for calculating the Ak and Bk

matrices [equations (13) and (16)] given parameters such as

boundary conditions, number of samples and extent. At an

intermediate level is the Component class, which represents a

single component in the mixture and contains one Concen-

tration object and one Profile object. At the top level is the

Mixture class, which contains an array of Component objects

as well as the parameter vectors and regularization para-

meters. Methods are included to compute the terms appearing

in the normal equations [equations (19) and (22)], estimate

regularization parameters [inversion of equation (30)] and

extract basis vectors [equations (27) and (29)]. Finally, the

REGALS class implements alternating least squares and it

includes a high-level method (REGALS.run) that controls

flow through the algorithm with user-specified termination

conditions.

The process of setting up, running and analyzing a

REGALS calculation is performed by writing scripts to

interact with the objects. We have included example scripts in

the form of live notebooks (Jupyter notebooks in Python) for

each of the application examples presented here. Source code,

documentation and examples are available at https://

github.com/ando-lab/regals. The release associated with this

publication has been tagged as Version 1.0.

3.2. Example data

3.2.1. AEX-SAXS of BsRNR large subunit. The collection

and preprocessing of AEX-SAXS from the large subunit of

B. subtilis ribonucleotide reductase (BsRNR) were described

in the original publication (Parker et al., 2018). Briefly, the as-

isolated protein was eluted from a MonoQ column using a

linear gradient of 100 to 500 mM NaCl directly into a SAXS

flow cell. Scattering images were recorded continously during

elution (q range of 0.008 to 0.700 Å�1). After integration, each

profile was normalized by the transmitted beam intensity, and

buffer-only curves collected before the start of the gradient

were averaged and subtracted from the remaining curves. A

set of 1737 frames was retained for further analysis, beginning

just after the start of the linear gradient and ending before the

gradient completed, when the NaCl concentration had

reached approximately 400 mM. These preprocessed data are

available in NrdE_mix_AEX.mat (a MATLAB-formatted

HDF5 file).

3.2.2. Equilibrium titration of PheH. A SAXS titration of

phenylalanine hydroxylase (PheH) with phenylalanine

(l-phe) was performed previously (Meisburger et al., 2016). In

the original publication, SAXS curves from PheH at 25 mM

(monomer concentration) were processed to produce 16

background-subtracted scattering curves, each with a different

amount of l-phe (0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 3, 6,

10, 20, 40 and 80 mM). The same amount of l-phe was present

in the buffer-only samples used for subtraction. The q range

was 0.01 to 0.96 Å�1 and the scattering was normalized by the

transmitted beam intensity. These preprocessed data are

available in PheH_titration.mat (a MATLAB-formatted

HDF5 file).

3.2.3. Time-resolved mixing of MsbA NBD with ATP. As a

first example of time-resolved SAXS data, we chose a recently

published stopped-flow mixing dataset (Josts et al., 2020). In

the experiment, a soluble nucleotide binding domain (NBD)

construct [residues 330–581 of the adenosine triphosphate

(ATP)-binding cassette transporter MsbA] was mixed with

Mg2+-ATP in a 1:1 (v:v) ratio (final concentrations 500 mM

NBD and 450 mM ATP). One X-ray exposure of 35 ms was

acquired per shot after a variable time delay of 20 ms to 120 s.

The time-resolved MsbA NBD dataset consisting of 23

buffer-subtracted scattering curves (0.01 < q < 0.5 Å�1) was

downloaded from a public database (the Small-Angle

Scattering Biological Data Bank, https://www.sasbdb.org/

data/SASDGV5/), minimally reformatted and saved as

MsbA_time_resolved.mat (a MATLAB-formatted

HDF5 file). Minor preprocessing was performed before

running REGALS. Upon inspection, we noted a strong

negative-going feature at low q, suggesting a background

subtraction error. We therefore truncated the low q at

0.015 Å�1. In addition, we found that the average intensity

displayed a slight random jitter shot to shot. We corrected for
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this by applying a scale factor to each curve, which was found

by fitting a fifth-order polynomial to the mean intensity versus

log10(time). The resulting scale factors were close to 1 (stan-

dard deviation of 0.013).

3.2.4. Time-resolved temperature jump of CypA. As an

example of a pump–probe time-resolved experiment, we

chose recently reported temerature-jump (T-jump) SAXS/

wide-angle X-ray scattering (WAXS) data collected on the cis-

proline isomerase CypA (Thompson et al., 2019). Here we

analyzed one particular set of experiments corresponding to

the wild-type CypA protein and buffer blanks following a

T-jump to 29.9 � 0.1�C. After downloading the raw T-jump

data (Fraser et al., 2019), we repeated the published data-

reduction protocol (Thompson et al., 2019) using a custom

MATLAB script (available upon request). Briefly, difference

scattering curves (�I = Ion � Ioff) were calculated for both the

protein and buffer blanks, and a series of scaling operations

was performed to correct for shot-to-shot variations, most

crucially the scaling of buffer difference profiles in order to

minimize �Iprotein � �Ibuffer in the WAXS regime, where

solvent scattering predominates. This produced a set of 28

difference profiles: 27 logarithmically distributed time points

after the T-jump, and one control where the laser was off prior

to X-ray exposure. The control profile was close to zero,

indicating that the data processing had not introduced errors

and the remaining profiles resembled those reported in the

original publication. After initial data reduction, the WAXS

data were discarded and the SAXS portion of the curves

(0.025 	 q < 1 Å�1) was saved as CypA_Tjump.mat (a

MATLAB-formatted HDF5 file).

4. Results and discussion

4.1. REGALS deconvolution of AEX-SAXS data

During an AEX separation, sample bound to the column is

eluted by flowing buffer with increasing salt concentrations.

The main challenge in deconvolving AEX-SAXS data is to

account for the changing background scattering from the

buffer. As described in the Methods section, we analyzed a

dataset previously reported for the large subunit of BsRNR

(Parker et al., 2018), which eluted from the column in two

main peaks during a linear gradient of 100 to 400 mM NaCl

[Fig. 2(a)]. The salt gradient produced a rising background

intensity during elution, seen clearly in a plot of the total

intensity per frame [Fig. 2(b), top panel].

First, we performed SVD to estimate the number of scat-

tering components associated with the protein and back-

ground signals. SVD of the entire dataset yields four

significant singular values [Fig. 2(b), bottom panel, black

circles]. To determine which of these four correspond to buffer

versus protein, we repeated SVD on a truncated dataset

consisting of the first 700 frames, collected before the protein

elution [Fig. 2(b), top panel, blue region]. Interestingly, this

region alone produces two significant singular values [Fig.

2(b), bottom panel, blue circles], suggesting that two compo-

nents are needed to describe the background and that the

remaining two correspond to protein. Inspection of the basis

vectors obtained from SVD of the full dataset [equation (7)]

further confirms this assignment. A rising background signal is

present in two of the concentration profiles [Fig. 2(c), left

panel, orange and blue curves]. However, it is also evident in

the concentration profiles that protein peaks appear in all four

components, mixing with the background in two cases, and

that the corresponding SAXS profiles [Fig. 2(c), right panel]

are similarly non-physical, containing negative intensities. The
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Figure 2
REGALS deconvolution of an AEX-SAXS dataset with a changing
background. (a) The scattering intensities obtained in a previously
reported AEX-SAXS experiment on the large subunit of BsRNR (Parker
et al., 2018) plotted as a function of frame number. (b) In the top panel,
the integrated intensities across the elution display two prominent peaks
over a rising background. SVD of the full dataset shows four significant
singular values above the noise level [gray circles above the dashed line in
the bottom panel, see equation (7)]. SVD of only those scattering profiles
prior to the protein peaks (blue region between dashed lines in the top
panel) shows two significant singular values (blue filled circles in the
bottom panel), indicating the presence of two background components.
(c) The deconvolution derived from SVD of the full dataset [equation
(7)] is non-physical. On the left are the concentration profiles (right
singular vectors) and on the right the corresponding scattering profiles
(left singular vectors). (d) REGALS gives physical concentration profiles
(left panel) and scattering profiles (right panel).



fact that many of the concentration and SAXS profiles oscil-

late around zero is expected given the orthonormality

restraint imposed on the SVD basis vectors. Thus, although

SVD provides useful information on the number and types of

scattering components, different restraints are needed in the

deconvolution process to obtain a physically meaningful

interpretation.

With initial insight from SVD, we next constructed a

Mixture model [Fig. 1(b)] that takes into account basic

expectations about the data. The simplest assumption is that

each peak in the chromatogram corresponds to a different

protein component and that the concentrations of the back-

ground components should evolve smoothly over the course

of elution. Each protein component (C1 and C2) was thus

parameterized using a smooth concentration basis vector with

a region of support encompassing each peak. In order to arrive

at a unique deconvolution, the two background components

must be differentiated in some way within the model. Because

SVD revealed that one of the background-containing

components is close to zero for the first
200 frames [Fig. 2(c),

left panel, orange curve], we modeled one of the background

components (B1) to span the full range of frames, while the

other (B2) had a region of support beginning at frame 200 with

a zero boundary condition there. We implemented this model

again using smooth concentration basis vectors for B1 and B2.

Finally, we refined the model using regularization to enforce

smoothness of the background components. The SAXS

profiles were not parameterized (simple basis vectors were

used). To ensure that each protein concentration model fully

encompassed the peak for each component but was not larger

than necessary, we performed several trial refinements with

REGALS while varying the region of support and inspecting a

plot of residual �2 versus frame number (not shown). The

model parameters are summarized in Table S1 in the

supporting information. Finally, REGALS was run for 50

iterations, at which point it was well converged. The overall

reduced �2 was 1.011, suggesting that the refined model

accounted for most of the signal.

The results obtained by REGALS are shown in Fig. 2(d).

The concentrations of the background components (B1 and

B2) rise in an approximately linear fashion during elution [Fig.

2(d), left panel, green and red], reflecting the influence of the

smoothness regularizer on these components. The corre-

sponding SAXS profiles show that B1 is associated with an

increase in scattering at high q, while B2 is primarily a low-q

feature [Fig. 2(d), right panel, green versus red]. The protein

components (C1 and C2) have compact peaks with positive

concentrations and corresponding SAXS profiles that appear

well subtracted [Fig. 2(d), blue and orange]. We previously

showed that these protein components were in excellent

agreement with models of the monomeric and dimeric forms

derived from crystal structures (Parker et al., 2018).

Although SVD had suggested that two background

components were needed to describe the data, we wondered

whether two components were strictly necessary for decon-

volving the protein peaks. To test this, we removed the minor

component from the model (B2) and performed the decon-

volution using REGALS. As expected, the quality of fit was

noticeably worse when the background was modeled with one

component compared with two [Fig. 3(a), bottom versus top].

Interestingly, the fit of the one-background model is worse in

the buffer-only region of the data, but it achieves a near-

perfect fit (�2
’ 1) in the region where the proteins elute. This

observation suggests that the protein components have

absorbed the background subtraction error. Indeed, a

comparison of the extracted SAXS profiles for C1 shows a

significant deviation from expected shape in the low-q region

if only one background is used [Fig. 3(b)]. These results

indicate that the buffer scattering in AEX-SAXS can be

complex and must be modeled well to achieve well subtracted

SAXS profiles. Furthermore, they underscore the importance

of collecting the full buffer scattering before and after the

peak in AEX-SAXS experiments, as this information is

effectively used to extrapolate the complex behavior under-

neath the elution peaks.

4.2. REGALS deconvolution with real-space SAXS restraints

In SAXS datasets from time-resolved or ligand titration

experiments, it is common for components to have non-zero

concentrations in most or all of the measurements, and a

compact support cannot be assumed in the concentration basis

as in the AEX-SAXS example above. To deconvolve such

datasets robustly, it is necessary to incorporate additional

prior information. Within REGALS, this can be done in two

ways: (i) by imposing boundary conditions on the concentra-

tion basis vectors and (ii) by limiting the maximum dimension

of certain components through real-space parameterization of

the SAXS basis vectors.

4.2.1. Equilibrium titrations. As a first test of real-space

restraints, we examined a challenging ligand titration dataset
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Figure 3
The changing background in AEX-SAXS can be complex. (a)
Comparison of �2 values from the REGALS deconvolution of the
AEX-SAXS dataset in Fig. 2 with two background components (top
panel, blue) versus one (bottom panel, orange). The former is relatively
uniform around the expected value of 1, whereas the latter shows
unevenness throughout the elution (black curves are the smoothed �2

values shown as trend lines), indicating that dataset is better described
with two background components. (b) Because the background scattering
includes significant low-q features, failing to take proper account of the
changes in the background can lead to artifacts in the extracted protein
scattering profiles. Here, the use of only one background component in
the analysis leads to a downturn in the low-q region of the scattering from
component 1, which will lead to an underestimation of the protein size.



of phenylalanine hydroxylase (PheH) (Meisburger et al.,

2016). The tetrameric enzyme undergoes a conformational

change upon binding its allosterically activating ligand,

l-phenyalanine (l-phe). In SAXS, the signature of this

conformational change is an oscillating mid-q feature that

appears at physiological concentrations of l-phe [Fig. 4(a),

0–1 mM l-phe]. At higher concentrations of ligand, the mid-q

feature does not change further, but an increase in scattering

at low q is observed [Fig. 4(a), 3–80 mM l-phe], indicating an

increase in the average molecular weight. This larger oligomer

or aggregate is likely to be non-physiological, and therefore

previous analysis focused on the 0–1 mM concentration range.

However, SEC-SAXS experiments at 0 and 1 mM l-phe

revealed the presence of a small amount of aggregate, indi-

cating that all of the SAXS curves in the titration were

corrupted by aggregation to some extent, inflating estimates of

size and molecular weight even at low l-phe concentrations.

The presence of a small population of aggregates is extremely

common in SAXS, and thus a direct method to deconvolve it

from other components is of particular interest.

To deconvolve the PheH titration dataset, we constructed a

REGALS model with three components: resting tetramer,

activated tetramer and aggregate, numbered (1)–(3), respec-

tively. The SAXS profiles for each component were modeled

using the real-space parameterization [P(r)]. The resting and

activated tetramers were estimated to have a maximum

dimension of 130 Å based on previous studies (Meisburger et

al., 2016), and the aggregate was assigned a maximum

dimension of 300 Å, the largest dimension that could be

measured based on the Shannon limit for this dataset (dmax <

�/qmin). Boundary conditions of P(r) = 0 were imposed at both

r = 0 and r = dmax. We also imposed prior information on the

concentration basis vectors using a smooth parameterization.

According to the equilibrium model for this system (Meis-

burger et al., 2016), the concentration of activated tetramer is

negligible at 0 mM l-phe, so a zero boundary condition was

imposed. For the resting tetramer, we limited the range of the

basis vector to 0–3 mM and imposed a zero boundary condi-

tion at 3 mM based on the observation that the mid-q feature

saturates above this concentration. No limits or boundary

conditions were imposed on the aggregate concentration. The

independent variable x was calculated as the logarithm of

[l-phe], reflecting the higher density of samples at low [l-phe]

and the standard practice of visualizing titration data on a

logarithmic scale. Regularization was used to enforce

smoothness of the concentration profiles and the P(r) func-

tions. The model parameters are summarized in Table S2. The

basis vectors were optimized using the REGALS algorithm,

which converged after 50 iterations with an overall reduced �2

of 1.41.

One advantage of using the real-space parameterization is

that P(r) functions are obtained directly from the deconvo-

lution and provide immediate insight into particle shape. For

the resting and activated PheH tetramers, we find that the

P(r) functions decay to zero smoothly at dmax [Fig. 4(b),

components (1) and (2)], as expected for compact particles.

The peak in P(r) shifts toward larger dimensions in the acti-

vated tetramer, indicating that it has a less compact confor-

mation. The P(r) for the aggregated species decays toward

zero at dmax in an approximately linear fashion, which is

characteristic of elongated or rod-like shapes [Fig. 4(b),

component (3)].

In ligand titration datasets like this one, the concentrations

of different components are often of great interest, since they

give insight into the equilibrium behavior of the system,

including cooperativity and binding affinities. The REGALS

deconvolution of the PheH titration produced concentration

profiles that appear physically reasonable [Fig. 4(c), contin-

uous curves]. To verify that smoothness regularization had not

overly biased the result, we also extracted concentration

estimates at each point without regularization [equation (27)]

and found that they agree with the regularized curve [Fig. 4(c),

circles]. We find that the aggregate is present under all

conditions, staying at a low level between 0 and 1 mM l-phe,

before rising sharply at high concentrations, in agreement with

prior SEC-SAXS experiments (Meisburger et al., 2016). The

resting tetramer converts into the activated tetramer in a
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Figure 4
Separation of aggregation from ligand-induced conformational changes
in a titration dataset with real-space regularization in REGALS. (a)
Scattering profiles from a previously reported phenylalanine (l-phe)
titration experiment on PheH (Meisburger et al., 2016). Up to 1 mM
l-phe (red to cyan), the change in scattering occurs mainly at mid q,
corresponding to internal conformational changes. At [l-phe] greater
than 1 mM (blue to magenta), an increase at low q can be observed,
indicative of aggregation. The two sets of profiles are offset for clarity. (b)
Regularized P(r) functions from REGALS deconvolution. Different cut-
offs for P(r) functions differentiate aggregation (green) from normal
conformations (blue and orange). (c) Concentration profiles from
REGALS deconvolution (continuous curves) are consistent with
observations from panel (a), with conformational switching occurring
below 1 mM l-phe and aggregation gradually becoming dominant above
1 mM l-phe. Circles show unregularized concentrations [equation (27)].
(d) Extracted profiles for components (1) and (2) agree with the
scattering profiles of inactive and activated PheH, respectively. Here, the
black curves are the P(r) regularized scattering profiles from SEC-SAXS
(Meisburger et al., 2016).



manner characteristic of cooperative two-state transition, as

shown previously (Meisburger et al., 2016).

Further analysis of this equilibrium is beyond the scope of

this study. However, we note that the arbitrary concentration

scale of Fig. 4(c) can be transformed readily into the fraction

of resting and activated species, which can be fitted using an

equilibrium model. The REGALS results are normalized by

the area under P(r) [equal to I(q ! 0)] and this quantity is

expected to be the same for components with the same

molecular weight. Thus, in this case the tetramer concentra-

tions in Fig. 4(c) differ from the true concentrations (e.g. in

mg ml�1) by the same scale factor.

One assumption in the REGALS model was that the

aggregate did not change in size or shape as a function of

[l-phe], which may not be the case, particularly since its shape

appears to be rod-like and therefore its growth might be non-

terminating. To check whether this assumption was supported

by the data, we examined the reduced �2 of the model at each

l-phe concentration. Interestingly, �2 at the highest [l-phe] is

3.4, which is significantly larger than at other concentrations

(1.3 on average). Thus, it seems likely that the scattering

profile of the aggregate does change, at least at very high

l-phe concentrations. If this is the case and the aggregate is

improperly modeled by REGALS, another technique such as

SEC-SAXS might be necessary to obtain reliable scattering

curves for the tetramers. Nonetheless, the tetramer SAXS

curves extracted from the REGALS deconvolution are in

excellent agreement with those obtained by SEC-SAXS [Fig.

4(d)], suggesting that inaccuracy of the aggregation model had

a minimal effect on deconvolution.

4.2.2. Time-resolved SAXS. Based on the successful appli-

cation of real-space REGALS to the challenging PheH titra-

tion dataset, we considered whether similar models might be

applied to time-resolved SAXS.

Time-resolved experiments can be performed with two

different techniques: mixing and pump–probe. In mixing

experiments, a rapid change in solution conditions (such as by

rapid dilution, or addition of denaturant, allosteric ligand or

reactant) is followed by SAXS measurements after some time

has elapsed. This technique is well suited to irreversible

reactions or those that cannot be initiated except by mixing. In

contrast, pump–probe experiments are usually initiated by a

laser pulse and followed, after a time delay, by the X-ray

measurement. Compared with mixing, pump–probe

measurements can access very short time scales if fast lasers

and pulsed X-ray sources are used. Pump–probe datasets are

also special in that very small changes can be measured by

examining difference profiles (laser on minus laser off), which

removes systematic error. Given these differences, we chose to

evaluate REGALS with both mixing and pump–probe data-

sets, as described below.

First, we chose to analyze a stopped-flow mixing dataset

from the soluble nucleotide binding domains (NBDs) of the

membrane transport protein MsbA, which was recently

published and deposited in a public database (Josts et al.,

2020). In the experiment, a solution with nucleotide-free NBD

monomers was rapidly mixed with ATP, resulting in ligand

binding and dimerization, followed by ATP hydrolysis and

dissociation back to the monomeric state. This transient

increase in average size can be observed in a Kratky plot

[q2I(q) versus q], where the main peak shifts to the left (lower

q) and then to the right [Fig. 5(a)]. In the original publication,

the relative concentrations of NBD monomer and dimer at

each time point were fitted using calculated scattering profiles

from known crystal structures. However, in time-resolved

experiments generally, it is often the case that atomically

detailed structures are not available, either because they have

not been characterized at high resolution or because they are

dynamic. Therefore, we considered whether REGALS could

deconvolve the MsbA dataset using only general properties of

the molecules.

The REGALS model consisted of two components repre-

senting NBD monomer and dimer. The parameterization was

similar to the PheH titration example above: the smooth

parameterization was used for concentrations and the real-

space one for SAXS profiles. Based on the full-length struc-

ture of dimeric MsbA [Protein Data Bank (PDB) ID 3b60], we

estimated the dmax of the dimeric and monomeric forms of the

NBD portions to be 70 and 62 Å, respectively. Reflecting the

prior observation that NBDs relax to a fully dimeric state after

ATP hydrolysis, we applied a zero boundary condition to the
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Figure 5
Model-free deconvolution of a time-resolved mixing dataset in REGALS.
(a) Scattering profiles from a previously reported time-resolved mixing
experiment with MsbA NBD and ATP (Josts et al., 2020) shown as Kratky
plots (red to blue). The peak position shifts to q 
 0.07 Å�1 before
returning to q 
 0.08 Å�1 (denoted by the curved arrow), indicating a
transient increase in size. (b) Regularized P(r) functions of dimer (blue)
and monomer (orange) components have well defined shapes with dmax

estimates based on the crystal structure of full-length dimeric MsbA
(PDB ID 3b60). (c) Concentration profiles from REGALS deconvolution
(continuous curves) and unregularized concentrations (circles), showing
transient formation of the NBD dimer. (d) The extracted scattering
profiles of components (1) and (2) agree with predictions using the NBD
dimer and monomer from the full-length crystal structure [black curves
are CRYSOL (Svergun et al., 1995) fits].



dimer concentration at the final time point (approximately

2 min after mixing). The model parameters are summarized in

Table S3. REGALS was run for 100 iterations, resulting in an

overall reduced �2 of 0.335. The fact that �2 < 1 here suggests

that the reported experimental errors were overestimated, so

�2 is not a reliable statistic for quality of fit. However, the

quality of fit was confirmed by examining the residual (not

shown).

The deconvolved concentration profiles show a rise and fall

of the dimer component, with a concomitant dip in the

monomer, which resembles the profiles obtained by fitting

scattering from crystal structure models in the original publi-

cation (Josts et al., 2020). The P(r) functions are also physically

reasonable, with single peaks that decay smoothly to zero as r

approaches the maximum dimension. Using the REGALS

deconvolution, we extracted the SAXS profiles [equation (27)

in Methods] for the monomer and dimer and compared them

with models derived from crystallography [Fig. 5(d)]. The

excellent agreement suggests that the atomistic models accu-

rately reflect the structures of the NBDs in solution. Although

the analysis presented here used estimates for the maximum

dimension based on a crystal structure, no assumptions were

made about the shape of the individual components.

For a pump–probe dataset, we chose a temperature-jump

(T-jump) SAXS/WAXS experiment which was performed on

the protein CypA (Thompson et al., 2019). These experiments

involved rapidly heating the sample by approximately 10�C

with an infrared laser pulse of several nanoseconds duration,

followed by a synchrotron X-ray pulse of approximately

500 ns duration after a delay of 562 ns to 1 ms. Following the

methods in the original publication (Thompson et al., 2019),

difference profiles were constructed (laser on minus laser off)

for both the protein and buffer blanks, and these were scaled

together in the WAXS regime and subtracted. The remaining

signal, attributed to the effect of the rapid temperature

change, is most significant in the SAXS regime [Fig. 6(a)], and

it evolves non-trivially as a function of the time delay [Fig.

6(a), inset]. Note that the difference profiles are negative and

this is thought to result from the differential thermal expan-

sion coefficients of protein and water, which would reduce the

scattering contrast at high temperature (Thompson et al.,

2019).

Previously, the biphasic appearance of the mean intensity

[Fig. 6(a), inset] was interpreted as a fast transition to excited

states of the molecule, followed by a slow relaxation toward

equilibrium (Thompson et al., 2019). Although SVD analysis

revealed three significant components, no kinetic or structural

interpretation of the basis vectors was reported. We wondered

whether a real-space REGALS deconvolution might offer

additional insight. Based on the SVD result, we chose to

model three components (C1, C2 and C3). For all three, a

smooth parameterization was used for the concentration basis

and a real-space one for the SAXS profile basis. The first

component (C1) was assigned to represent the transient

process following the T-jump, with a concentration of zero at

both end points. No constraints were applied to the concen-

trations of the other two components. In real space, C2 was

assigned a maximum dimension of 46 Å estimated from a

crystal structure of CypA (PDB ID 3k0n). Lacking further

information with which to restrain the model, the maximum

dimensions for C1 and C3 were adjusted by trial and error

based on the quality of fit and subjective appearance of the

P(r) functions. The final model parameters are summarized in

Table S4. Note that, since difference intensities are fitted, this

parameterization represents the difference P(r) function,

�P = Pon� Poff, and dmax represents the maximum dimension

over which changes to P(r) occur after heating.

The REGALS algorithm was run for 400 iterations,

converging to an overall reduced �2 of 1.667. Although the

difference intensities are negative [Fig. 6(a)], the deconvolved

�P(r) functions are all positive [Fig. 6(b)] because the

REGALS algorithm normalizes SAXS basis functions by the

integral of P(r). Consequently, some of the concentrations are

negative [Fig. 6(c)]. Negative concentrations (or SAXS

curves) are a necessary feature when analyzing difference

intensities, and they can be a challenge to conceptualize.

However, two immediate observations can be made. First, the

concentration of C3 is approximately constant for the first


4 ms after the T-jump and the change on those timescales is

captured by C1 and C2. According to the �P(r) functions for

C1 and C2, we conclude that the fast processes occur on length

research papers

IUCrJ (2021). 8, 225–237 Meisburger, Xu and Ando � REGALS 235

Figure 6
Separation of changes at different length scales in a time-resolved T-jump
dataset in REGALS. (a) Difference scattering from a previously reported
time-resolved T-jump experiment on CypA (Thompson et al., 2019) as a
function of time delay (violet to red). (Inset) The mean intensity �I over
q = 0.03–0.05 Å�1 increases before decreasing. (b) Regularized �P(r)
functions from REGALS deconvolution. Three cut-offs were chosen to
separate changes at different length scales: the equilibrium CypA
structure (49 Å, orange), the thermally excited intermediate (59 Å, blue)
and the large length-scale change (150 Å, green). (c) Concentration
profiles from REGALS deconvolution (continuous curves) and unregu-
larized concentrations (circles), showing different kinetics for conforma-
tional changes at different length scales. (d) Reconstructed �P(r, t) from
deconvolved components, displaying two distinct processes occurring at
small and large length scales.



scales up to
60 Å, somewhat larger than the size of the CypA

monomer. Changes on longer timescales additionally involve

C3, which has a much longer range of 150 Å, and probably

involve interparticle interactions because the experiments

were done at a relatively high protein concentration of

50 mg ml�1.

To gain a more intuitive picture of the changes following the

T-jump, we used the regularized basis functions to reconstruct

the time evolution of �P(r). This removes, to some extent, the

influence of choices made during the REGALS para-

meterization and resolves the sign ambiguity. Since the signal

is dominated by the contrast decrease (not shown), we

subtracted the first time point to obtain ��P(r, t) � �P(r, t)

��P(r, t = 561 ns), which tracks the change in signal after the

T-jump [Fig. 6(d)]. This reconstructed signal reveals a clear

positive feature with a peak at r ’ 35 Å that appears at fast

time scales, followed by a negative feature with a peak at

r ’ 60 Å on slower time scales. The physical explanation is not

entirely clear, but one hypothesis might be transient partial

unfolding followed by an increase in inter-particle repulsion

(or a decrease in attraction). As experiments which rely on

difference intensities are often performed at high protein

concentrations, further investigations of inter-particle inter-

actions are of great interest.

5. Conclusions

In this work, we have introduced REGALS as a robust and

generally applicable technique to deconvolve challenging

SAXS datasets from evolving mixtures. The strategy imple-

mented in REGALS has several key advantages. Most notably,

prior knowledge is taken into account without having to

impose a physicochemical ‘hard’ model or known scattering

curves. Having flexible restraints is important in cases where

such models are not available, or when SAXS is to be used for

cross validation. Second, the method is readily adapted to a

range of experiments. As we have demonstrated, AEX-SAXS,

ligand titrations, time-resolved mixing and time-resolved

pump–probe datasets can all be analyzed successfully by

REGALS. Finally, REGALS is not a black box; the model

assumptions are physically motivated, easily explained and

completely specified by the user. Because deconvolution can

be ambiguous and strongly influenced by model assumptions,

this transparency is essential when communicating scientific

results.

The flexibility of the REGALS method is reflected in our

software implementation (see Methods). The model is speci-

fied using object-oriented code, which facilitates mixing and

matching parameterizations to suit the experiment. In order to

provide feedback to the user and support customization, the

code is run using a live notebook that performs data import,

model definition, optimization and visualization. Example

notebooks are provided for each of the datasets described

here. Since SAXS is a rapidly developing technique, we

designed REGALS with future changes in mind. Its hier-

archical object structure allows for new linear parameteriza-

tions and quadratic regularizers to be added with minimal

changes to the existing code. Finally, to facilitate future

development and adoption by the community, we have

provided two functionally equivalent implementations of

REGALS in MATLAB and Python. The code is version-

controlled, open source and free to use.

Future work will focus on augmenting the REGALS toolkit

to expand the range of applications further. Here, we found

that two simple restraints, smoothness and compact support,

proved powerful for expressing prior knowledge. However,

many other types of restraint are possible within the REGALS

framework. Examples of particular interest to SAXS include

sparseness and non-negativity (Cichocki & Zdunek, 2007),

hard restraints on certain components with known scattering

curves, and fixed non-zero or derivative boundary conditions.

In addition, REGALS could be applied to datasets with more

than one independent variable using methods from MCR of

multi-way data (de Juan & Tauler, 2003). For example, the

CypA time series analyzed here was one among several

conducted at different initial temperatures (Thompson et al.,

2019), and thus the entire dataset might be analyzed using a

multi-way REGALS decomposition. Furthermore, the

assumption of a dilute solution can also be relaxed by adding

extra components to represent terms in the Taylor expansion

of the structure factor (Lipfert et al., 2007), which may be of

particular interest for time-resolved experiments that require

high protein concentrations. Finally, certain parameter choices

in REGALS may be automated by leveraging the Bayesian

interpretation of regularized linear regression (MacKay, 1992,

1996), much as the regularization parameter and dmax are

determined automatically in Bayesian IFT (Hansen, 2012). We

anticipate that the REGALS method described here, and

future developments, will be a valuable addition to the SAXS

data analysis toolset and enable new applications.
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