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It has been known for decades that a ferromagnetic sample can depolarize a

transmitted neutron beam. This effect was used and developed into the neutron-

depolarization technique to investigate the magnetic structure of ferromagnetic

materials. Since the polarization evolves continuously as the neutrons move

through the sample, the initial spin states on scattering will be different at

different depths within the sample. This leads to a contamination of the

measured spin-dependent neutron-scattering intensities by the other spin-

dependent cross sections. The effect has rarely been considered in polarized

neutron-scattering experiments even though it has a crucial impact on the

observable signal. A model is proposed to describe the depolarization of a

neutron beam traversing a ferromagnetic sample, provide the procedure for data

correction and give guidelines to choose the optimum sample thickness. It is

experimentally verified for a small-angle neutron-scattering geometry with

samples of the nanocristalline soft-magnet Vitroperm (Fe73Si16B7Nb3Cu1). The

model is general enough to be adapted to other types of neutron-diffraction

experiments and sample geometries.

1. Introduction

The effect of neutron depolarization in ferromagnets has been

realized and studied since the 1940s and was used to directly

investigate magnetic domains [see e.g. the following refer-

ences (Halpern & Holstein, 1941; Burgy et al., 1950; Maleev &

Ruban, 1972; Rosman & Rekveldt, 1990, 1991; Rekveldt, 1993;

van Wilderen et al., 2002; Kõszegi et al., 2003; van Dijk et al.,

2004) and references therein]. The depolarization can be

explained by the fact that in ferromagnetic materials the

neutron spin will precess about the unaligned magnetic flux

density B(r), which is not parallel to the applied magnetic field

H0 because the magnetization M(r) has a domain structure

and is not aligned to H0, unless the material is fully saturated.

[In the work of Maleev & Ruban (1972), Maleev interpreted

the depolarization effect as a result of the very small-angle

neutron scattering (SANS), while in the work of Rosman &

Rekveldt (1990), Rekveldt pointed out that the scattering

interpretation is basically equivalent to the elucidation using

the Larmor precession approach.] As a consequence, the

depolarization studies can yield information about the domain

structure of magnetic materials. The method probes a scale

from �10 nm up to macroscopic dimensions. This overlaps

with and is complementary to the SANS technique, which is a

particularly powerful technique in investigating magnetic

domains, probing a scale roughly from 1 to 100 nm. Besides
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the static magnetic domain structure, the neutron-depolar-

ization technique can also be applied to study the dynamics of

magnetic materials with a time resolution of �5 ms, e.g. the

response of the magnetic domain structure reacting to certain

actions such as tension and magnetic field change (van Schaik

et al., 1981; Rekveldt, 1993).

However, the presented work addresses not the depolar-

ization effect as a method to study magnetic domains but

rather its general impact on polarized neutron scattering. In

our recent polarized SANS studies of ferromagnetic samples,

nanocrystalline Vitroperm (Quan et al., 2020) and mechani-

cally deformed microcrystalline cobalt (Michels et al., 2019),

we were confronted with the consequences of the depolar-

ization effect in the case where the magnetization of the

sample was not fully saturated: the measurements with a given

incident neutron-spin state were contaminated by ‘spin

leakage’, i.e. contributions from the other spin state, owing to

the depolarization of the beam. We note that this spin leakage

is different from the typically discussed spin leakage that

originates from imperfect neutron optics [see e.g. Quan et al.

(2019a) (in this reference non-zero T"# and T#" transmissions

actually denote the total depolarization of the sample but the

impact of the sample on the neutron scattering is not

considered)]. To the best of our knowledge, the discussion of

the depolarization effect has so far been limited to transmis-

sion experiments and has not been considered for the case of

scattering, except for the spin-echo SANS technique

(Rekveldt et al., 2006).

Here we propose a model to quantify the depolarization

and correct the corresponding spin leakage in a SANS

experiment. It furthermore helps to optimize the sample

thickness leading to an optimum signal-to-noise ratio. The

model is general enough to be applied to any neutron-

diffraction experiment. Careful neutron-transmission depo-

larization and polarized SANS experiments have been

conducted that support our theory.

2. Depolarization analysis for SANS

First we need to determine the evolution of the polarization of

a neutron beam traversing the sample. In general, the polar-

ization P(x) of a spin 1/2 neutron is a vector. Assuming that

the sample is homogeneous, the polarization-vector evolution

can be described by a matrix DðxÞ, which has an exponential

form,

PðxÞ ¼ DðxÞPð0Þ ¼ expð�DxÞPð0Þ: ð1Þ

A detailed derivation and discussion of the polarization

evolution is presented in the Appendix. Similar expressions

can be found in the works of Maleev & Ruban (1972) and

Rosman & Rekveldt (1990)

After understanding the evolution of the polarization

vector, the next step is to calculate the polarized neutron cross

sections. Fig. 1 illustrates that the neutron beam is scattered by

the sample in a SANS experiment. Principally, the cross

sections can be calculated by integrating the Blume equations

(Blume, 1963) over the whole sample thickness, taking into

account the evolution of the polarization vector P(x) through

space. However, this is beyond the capability of a longitudinal

polarization analysis. Here we make the following approx-

imation: we choose the sample thickness so that the depolar-

ization effect is small. The limits of this approximation will be

experimentally tested and discussed (vide infra). With this

assumption, we can still treat the neutrons as they were in

defined Zeeman states of the external magnetic field, i.e.

quasi-classical and we only consider the projection of the

polarization vector on the external-field direction. Then we

can approximately use a one-dimensional longitudinal polar-

ization evolution P(x) = Pz(x) = P(0) exp(�Dx), where P and

D become scalars.

With this approximation we are able to derive the measured

intensities of the different spin channels for a SANS experi-

ment with longitudinal polarization analysis from the real

neutron cross sections.

After a fully polarized neutron beam (assuming spin +) with

an initial intensity N0 has traveled a certain distance x in the

sample, the transmitted neutrons are depolarized to a part

with spin +, N+(x), and a part with spin �, N�(x). Hence, we

can write

NþðxÞ ¼ N0Tnsf
ðxÞ ð2Þ

and

N�ðxÞ ¼ N0Tsf
ðxÞ; ð3Þ

where T nsf(x) and T sf(x) are defined as ‘non-spin-flip’ and

‘spin-flip’ transmissions. The polarization of the transmitted

beam can be expressed as

TnsfðxÞ � TsfðxÞ

TnsfðxÞ þ TsfðxÞ
¼ PðxÞ ¼ Pð0Þ expð�DxÞ ¼ expð�DxÞ: ð4Þ

We assume that the sample under investigation has no spin-

dependent absorption (otherwise it is a neutron-spin filter)

and that the scattering is minor compared with the transmis-

sion. These conditions apply for most samples. Therefore we

can write

Tnsf
ðxÞ ¼ expð��xÞ

1þ expð�DxÞ

2
ð5Þ

and
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Figure 1
A polarized neutron beam traversing a sample of length l under an
external magnetic field H0 is scattered at a distance x.



Tsf
ðxÞ ¼ expð��xÞ

1� expð�DxÞ

2
; ð6Þ

where � is the neutron-absorption coefficient of the sample.

Based on equation (8) in the work of Brûlet et al. (2007), we

add the contributions of the different spin states to calculate

the measured spin-dependent neutron-scattering intensities

I�� from the spin-dependent cross sections ���. We assume

that the neutron-beam optics are perfect and that there is no

background. Using one of the spin channels I++ as an example,

we can write

Iþþ ¼

Zl

0

"
N0TnsfðxÞ�þþTnsf l � x

cos �

� �

þ N0Tnsf
ðxÞ�þ�Tsf l � x

cos �

� �

þ N0TsfðxÞ��þTnsf l � x

cos �

� �

þ N0Tsf
ðxÞ���Tsf l � x

cos �

� �#
dx: ð7Þ

Then, we can insert equations (5) and (6) for Tnsf(x) and

T sf(x), and approximate cos � to 1, which is a good approx-

imation under the SANS condition (Brûlet et al., 2007). The

attenuation parts can be extracted from the integral

fexpð��xÞ exp½��ðl � xÞ= cos ��¼ expð��lÞ when cos � = 1}

and I++ then becomes

Iþþ ¼
N0 expð��lÞ

4

Zl

0

 n
1þ expð�DxÞ

þ exp½�Dðl � xÞ� þ expð�DlÞ
o

�þþ

þ

n
1þ expð�DxÞ � exp½�Dðl � xÞ� � expð�DlÞ

o
�þ�

þ

n
1� expð�DxÞ þ exp½�Dðl � xÞ� � expð�DlÞ

o
��þ

þ

n
1� expð�DxÞ � exp½�Dðl � xÞ�

þ expð�DlÞ
o

���

!
dx

¼
N0 expð��lÞ

4

(
l þ 2

1� expðDlÞ

D
þ l expð�DlÞ

� �
�þþ

þ

h
l � l expð�DlÞ

i
�þ� þ

h
l � l expð�DlÞ

i
��þ

þ l � 2
1� expðDlÞ

D
þ l expð�DlÞ

� �
���

)
: ð8Þ

We note that exp(�Dl) = Pf is the final polarization after the

sample that can be easily measured. Therefore D = �(�ln Pf /

l), and equation (8) can be rewritten as

Iþþ ¼
N0l expð��lÞ

4

"
1þ Pf þ 2

1� Pf

�lnPf

� �
�þþ

þ ð1� PfÞ�
þ�
þ ð1� PfÞ�

�þ

þ 1þ Pf � 2
1� Pf

�lnPf

� �
���

#
: ð9Þ

We then define the elements p1 ¼ ð1=4Þf1þ Pf þ½2ð1� PfÞ=
�lnPf�g, p2 ¼ð1=4Þð1� PfÞ and p4 ¼ð1=4Þf1þ Pf �½2ð1� PfÞ=
�lnPf�g. Then the intensities of all four neutron-spin channels

can be written in matrix form as

Iþþ

Iþ�

I�þ

I��

2
6664

3
7775 ¼Mp

�þþ

�þ�

��þ

���

2
6664

3
7775

¼ N0l expð��lÞ

p1 p2 p2 p4

p2 p1 p4 p2

p2 p4 p1 p2

p4 p2 p2 p1

2
6664

3
7775

�þþ

�þ�

��þ

���

2
6664

3
7775: ð10Þ

Notice that the factor l exp(��l) is the product of the sample

length l and the transmission exp(��l). This factor is

proportional to the scattering intensity measured in a unpo-

larized neutron experiment (Brûlet et al., 2007) or for a sample

that does not depolarize the transmitted neutron beam.

The polarized neutron cross sections are obtained from the

spin-leakage corrected intensities as

�þþ

�þ�

��þ

���

2
664

3
775 ¼M�1

p

Iþþ

Iþ�

I�þ

I��

2
664

3
775: ð11Þ

For the case of a SANS experiment without spin analysis of

the scattered neutron-spin state (SANSPOL), the intensities

of equation (10) reduce to

Iþ ¼ Iþþ þ Iþ�

¼ N0l expð��lÞ½ðp1 þ p2Þð�
þþ þ�þ�Þ

þ ðp2 þ p4Þð�
�þ
þ���Þ�

¼ N0l expð��lÞ½ðp1 þ p2Þ�
þ
þ ðp2 þ p4Þ�

�
� ð12Þ

and

I� ¼ I�þ þ I��

¼ N0l expð��lÞ½ðp2 þ p4Þð�
þþ þ�þ�Þ

þ ðp1 þ p2Þð�
�þ
þ���Þ�

¼ N0l expð��lÞ½ðp2 þ p4Þ�
þ þ ðp1 þ p2Þ�

��; ð13Þ

written in matrix form as

Iþ

I�

� �
¼ N0l expð��lÞ

p1 þ p2 p2 þ p4

p2 þ p4 p1 þ p2

� �
�þ

��

� �
: ð14Þ

For the special case where the sample does not depolarize the

transmitted beam (e.g. for polymer or saturated magnetic
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samples) i.e. D ! 0, then Pf ! 1 and ð1� PfÞ=�lnPf! 1.

Hence, p1! 1, p2! 0, p4! 0 and

Iþþ

Iþ�

I�þ

I��

2
664

3
775 ¼ N0l expð��lÞ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

�þþ

�þ�

��þ

���

2
664

3
775; ð15Þ

where mixing of spin channels no longer exists and thus no

spin-leakage correction needs to be considered.

In polarized SANS experiments one often considers

contrast measurements, e.g. one is interested in �+
� �� =

(�++ + �+�)� (��+ + ���), or �+�
���+. These differences

between cross sections yield the intensities

Iþ� � I�þ ¼ N0l expð��lÞðp1 � p4Þð�
þ�
���þÞ ð16Þ

and

Iþ � I� ¼ N0l expð��lÞðp1 � p4Þð�
þ
���Þ: ð17Þ

For both cases we obtain a signal strength that is proportional

to

N0l expð��lÞðp1 � p4Þ ¼ N0l expð��lÞ
1� Pf

�lnPf

¼ N0 expð��lÞ
1� expð�DlÞ

D
: ð18Þ

This function has a maximum when l ¼ lnð1þD=�Þ=D and

Pf ¼ expð�DlÞ ¼ �=ð�þDÞ. In the limit of no depolariza-

tion, D ! 0, the signal is simply proportional to l exp(��l)

and the optimum thickness of the sample approaches l! 1/�,

which corresponds to the normal 1/e law. This also applies to

unpolarized SANS experiments.

3. Experimental

To study the depolarization effect we used the commercial-

grade nanocrystalline soft-ferromagnet Vitroperm as the

sample (Fe73Si16B7Nb3Cu1), the same as investigated by

polarized SANS in the work of Quan et al. (2020). Each

sample sheet has an area of 25 � 35 mm with a thickness of

30 mm. Several stacks with different number of sheets were

prepared so that the total sample thickness could be changed

easily.

To check the theoretical prediction, we first performed a

neutron transmission and depolarization experiment at the

Super ADAM instrument (Vorobiev et al., 2015) at the Institut

Laue-Langevin in Grenoble, France. The incident neutron

beam had a mean wavelength of � = 5.21 Å with a wavelength

spread of ��/� = 0.5% and was polarized using the reflections

from two supermirrors (periscope) from SwissNeutronics with

an efficiency of 99.8%. The transmitted beam was analyzed by

a single reflecting supermirror from SwissNeutronics with an

efficiency of 99.4%. An external magnetic field H0 was applied

perpendicular to the wavevector k0 using an electromagnet.

Additionally we performed a half-polarized (without

analyzer) SANS measurement with the SANS I instrument

(Aswal et al., 2008) at the continuous spallation neutron

source SINQ at the Paul Scherrer Institute, Switzerland. The

incident neutron beam had a mean wavelength of � = 5.63 Å

with a wavelength spread of ��/� = 10% and was polarized by

a V-shaped Fe/Si supermirror transmission polarizer to P =

98%. In both neutron experimental setups, the neutron

polarization could be reversed by means of an adiabatic spin

flipper with an efficiency of � ¼ 99%. The detector was set at

11 m from the sample position with 11 m beam collimation.

We used the same geometry as for the polarized SANS

experiments described by Quan et al. (2020) and applied the

external magnetic field �0H0 = 17 mT perpendicular to the

wavevector k0 of the incident neutron beam and parallel to the

sample’s easy axis. A 7 � 10 mm aperture defined the beam.

3.1. Neutron-transmission measurement

We studied the depolarization as a function of sample

thickness and applied magnetic field. Fig. 2 shows the final

polarization on a logarithmic scale against the sample thick-

ness for different external magnetic fields. As expected, the

higher the applied field, the smaller the observed depolar-

ization. For all field values the longitudinal polarization decays

exponentially for P > 0.75 and then starts to decay faster. This

confirms the fact that only in the case of a small depolarization

can the vector polarization be approximated as a longitudinal

scalar polarization, which decays exponentially. Otherwise a

more complicated polarization vector needs to be taken into

consideration.

3.2. SANS measurement

Before the SANS measurements we performed another

transmission measurement and determined the neutron-

absorption coefficient of the sample, � = 0.032 � 0.001

sheet�1. Then the depolarization coefficient was measured at

17 mT with a transportable triplet dynamic nuclear-polariza-

tion spin analyzer (Quan et al., 2019b) and determined to be D

= 0.016 sheet�1. We did not directly take the value determined

from the transmission measurements on the Super ADAM
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Figure 2
Depolarization of the transmitted neutron beam as a function of the
Vitroperm sample thickness at different external magnetic fields.



instrument since the incident neutron wavelengths for the two

measurements were different. However, the values are in good

agreement.

The experimental values of the absorption and depolar-

ization coefficients can be used to evaluate equation (18), as

shown in Fig. 3, which can be compared with the case without

depolarization, D = 0. Taking the depolarization into account,

the optimum sample thickness to obtain the highest contrast

signal is l = 25.3 sheets, i.e. less than the 1/� = 31.3 sheets for

the case of no depolarization. However, �18 sheets of the

sample will depolarize the neutron beam to P = 75%. For

larger thicknesses the neutrons should get depolarized even

faster. We therefore expect that the signal maxima should be

reached for less than 25 sheets and decrease faster than the

model predicts.

We performed half-polarized SANS measurements at

17 mT as a function of the sample thickness. The sample was

always first saturated at 0.8 T and then brought to 17 mT in

order to follow the same hysteresis curve. The scattering

patterns observed were similar to those presented in Fig. 4 in

the work of Quan et al. (2020). Fig. 4 shows an example of the

sum of the two spin-polarized SANS intensities I+ + I�

(equivalent to the unpolarized SANS intensity) with 35 sheets

of Vitroperm, while Fig. 5 shows the difference between the

two spin-polarized SANS intensities I+
� I� with 7, 19, 26 and

35 sheets of Vitroperm. In Fig. 5, the strong left–right asym-

metric signal at low scattering vector q originates from the

chiral interaction caused by the defect-induced Dzyaloshinskii

–Moriya interaction (DMI) (Michels et al., 2019; Quan et al.,

2020), while the up–down weak signal arises from the nuclear-

magnetic interference scattering. We observe that with 19

sheets of sample both the asymmetric DMI and the nuclear-

magnetic interference signals are much stronger than with 26

and 35 sheets where stronger unpolarized signals [I+ + I� /

l exp(��l)] should be expected.

The normalized contrast I+
� I� and the unpolarized I+ + I�

scattering intensities as functions of sample thickness are

shown in Fig. 6. For the contrast intensity I+
� I� we have

plotted the sum of the positive signal at positive qz and the

modulus of the negative signal at negative qz in the two

horizontal sectors (0.006–0.015 Å�1, � 25�, see Fig. 5). For the

unpolarized intensity I+ + I�, we summed up the neutron

counts in the q range of 0.023–0.045 Å�1. The error bars of all

the data points consider both the statistical error and an

estimated 5% systematic error. We expect that the systematic

error originates from the differences between different sheets

of the sample and their alignment. The unpolarized intensity

I+ + I� follows the function l exp(��l) (same as D = 0),

plotted as the black solid line where � = 0.032 sheet�1 and the
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Figure 3
Simulation of the Vitroperm SANS contrast signal as a function of the
sample thickness, with and without depolarization. For the comparison,
the parameters determined by the transmission depolarization measure-
ment at 17 mT are taken: � = 0.032 sheet�1 and D = 0.016 sheet�1.
Considering the depolarization, the optimum thickness shifts from 1/� =
31.3 to 25.3 sheets.

Figure 4
An example of the sum of the two spin-polarized SANS intensities I+ + I�

with 35 sheets of Vitroperm. This is equivalent to an unpolarized SANS
intensity.

Figure 5
Sample-thickness dependence of the polarized SANS contrast signal I+

� I�. Sample thickness from left to right: 7, 19, 26 and 35 sheets of Vitroperm
(Fe73Si16B7Nb3Cu1).



scaling factor was fitted. For the contrast measurements, we

fitted the first five data points to equation (18) with fixed � =

0.032 sheet�1 , D = 0.016 sheet�1 and a free scaling factor,

which is drawn as the solid red line. The polarization for the

fifth data point is calculated to be exp(�Dl) = 0.74. The model

can describe the scattering intensities well for a sample of a

thickness that does not significantly depolarize the transmitted

neutron beam, P > 0.75 (the longitudinal polarization still

decays as an exponential function). As discussed, for thicker

samples the polarization decays faster than exponential, and

as a consequence we expect that the optimum contrast signal

should be reached with less than the calculated 25.3 sheets of

sample and decrease faster than the model predicts. However,

we notice that this effect is much stronger than expected and

the signal already peaks at �19 sheets and then starts to

decrease extremely fast. This fast decrease is also confirmed by

evaluating the up–down nuclear-magnetic interference signal

and is directly visible in Fig. 5. This strongly emphasizes the

importance of considering the depolarization of the neutron

beam traversing the sample and optimizing the sample

thickness in a neutron-scattering experiment, which may be

decisive for being able to observe a signal.

4. Results and outlook

We have addressed a fundamental problem to be considered

when performing polarized neutron experiments: the trans-

mitted neutron beam is depolarized by the sample, in parti-

cular by ferromagnetic samples, and as a consequence the

measured polarized cross sections are actually contaminated

by the other spin channels. To address this problem, we have

developed a model describing the evolution of the polariza-

tion through the sample. Based on this model we are able to

calculate the scattered neutron intensities of polarized SANS

experiments in the limit of small depolarization (P > 0.75).

This allows us to correct the contamination from the other

spin channels and optimize the sample thickness for the

neutron experiments. The model has been verified experi-

mentally by a neutron-transmission measurement and a

polarized SANS measurement. We showed that it is essential

to consider the depolarization effect and optimize the sample

thickness accordingly. Furthermore, the depolarization effect

and our approach are not limited to SANS. The model can be

tailored according to the experimental geometry and the

sample shape in other types of neutron-diffraction experi-

ments. We suggest that the depolarization of a sample, in

particular if it is a ferromagnet, should be characterized before

any polarized neutron experiment is performed. Ideally, every

neutron instrument for polarized neutron experiments should

be equipped with a spin analyzer to monitor the depolariza-

tion by the sample in case of changing experimental condi-

tions.

The model falls short in describing the scattering of thick

samples that significantly depolarize the transmitted neutron

beam. Under these conditions, we observed a much more

prominent depolarization effect. Then the vector form of the

polarization as well as the full Blume equation (Blume, 1963)

need to be considered, which is certainly beyond the capability

of a typical neutron instrument with longitudinal polarization

analysis.

APPENDIX A
Polarization evolution during neutron transmission

In general, the polarization P(x) of a spin 1/2 neutron is a

vector and we may write its evolution as

Pðx2Þ ¼ Dðx2; x1ÞPðx1Þ; ð19Þ

where Dðx2; x1Þ is a 3 � 3 matrix denoting the depolarization.

We assume that the sample is homogeneous. Then the polar-

ization evolution only depends on the neutron path length in

the sample,

Dðx2; x1Þ ¼ Dðx2 � x1Þ ¼ DðxÞ: ð20Þ

It is natural that the depolarization should satisfy the

following relations:

Dðxþ yÞ ¼ DðyÞDðxÞ; ð21Þ

DðxÞDðyÞ ¼ DðyÞDðxÞ ð22Þ

and

Dð0Þ ¼ I; ð23Þ

where I is the identity matrix.

Since the evolution of the polarization vector should be a

continuous process,D should be continuous. Using these three

relations, we can write

Dðxþ dxÞ ¼ DðxÞDðdxÞ ¼ DðdxÞDðxÞ; ð24Þ

thus
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Figure 6
Normalized contrast I+

� I� and the unpolarized I+ + I� scattering
intensities as a function of the sample thickness. The unpolarized intensity
I+ + I� is fitted to l exp(��l) (with fixed � = 0.032 sheet�1 and only one
free parameter: the scaling factor), drawn as the black solid line. The first
five data points of the contrast SANS signal (the polarization for the fifth
data point is calculated to be P = 74%) are fitted to equation (18) (with
fixed � = 0.032 sheet�1, D = 0.016 sheet�1 and only one free parameter:
the scaling factor), drawn as the red solid line.



dDðxÞ

dx
¼
Dðxþ dxÞ � DðxÞ

dx

¼
DðdxÞ � I

dx
DðxÞ

¼
DðdxÞ � Dð0Þ

dx
DðxÞ

¼
dDðxÞ

dx x¼0
DðxÞ; ð25Þ

where ½dDðxÞ=dx�x¼0 is a constant matrix. We can easily solve

this differential equation and show that the evolution matrix

can be written as an exponential function:

DðxÞ ¼ expð�DxÞ: ð26Þ

Here we insert a ‘�’ sign to denote the depolarization. Thus

we obtain the evolution of the polarization vector:

PðxÞ ¼ DðxÞPð0Þ ¼ expð�DxÞPð0Þ;

which is equation (1). We can make the following remarks.

Mathematically, when DðxÞ satisfies the equations (21), (22)

and (23), it belongs to the continuous translation group in one

dimension (Tung, 1985), and equation (26) follows directly.

Physically, this means that not just the length but also the

direction of the polarization vector P(x) evolves in space. In

other words, the neutrons can go from the initially defined

Zeeman states to mixed states. Similar expressions for the

depolarization matrix (and the polarization vector) have been

derived in the works of Maleev & Ruban (1972) and Rosman

& Rekveldt (1990).

We realize that equation (1) is very similar to the solution of

the Bloch equations for a time-independent Hamiltonian

(Bloch, 1946), which describe the evolution of the polarization

vector in magnetic resonance. In analogy, here the space x is

directly connected to time t via x = vt, where v is the fixed

neutron speed. Assuming D can be diagonalized, equation

(22) implies thatDðxÞ can be diagonalized for all x by the same

matrix T, DðxÞ ¼ T�1DdðxÞT. Here DdðxÞ is a diagonal matrix

and T is independent of x. The diagonalization is equivalent to

a transform to the principal axes. From equations (21) and (23)

it follows that DdðxÞ is a matrix where all three diagonal

elements are exponential functions, DdðxÞ ¼ expð�DdxÞ,

where Dd is an x-independent diagonal matrix. Then the

evolution matrix becomes DðxÞ ¼ T�1 expð�DdxÞT ¼ exp

ð�T�1DdTxÞ ¼ expð�DxÞ, where D = T�1DdT is an x-inde-

pendent matrix. The real part of Dd corresponds to relaxation

while the imaginary part corresponds to precession (phase

shift).
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