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Cleavage is the ability of single crystals to split easily along specifically oriented

planes. This phenomenon is of great interest for materials’ scientists. Acquiring

the data regarding cleavage is essential for the understanding of brittle fracture,

plasticity and strength, as well as for the prevention of catastrophic device

failures. Unfortunately, theoretical calculations of cleavage energy are

demanding and often unsuitable for high-throughput searches of cleavage

planes in arbitrary crystal structures. A simplified geometrical approach

(GALOCS = gaps locations in crystal structures) is suggested for predicting

the most promising cleavage planes. GALOCS enumerates all the possible

reticular lattice planes and calculates the plane-average electron density as a

function of the position of the planes in the unit cell. The assessment of the

cleavage ability of the planes is based on the width and depth of planar gaps in

crystal structures, which appear when observing the planes lengthwise. The

method is demonstrated on two-dimensional graphene and three-dimensional

silicon, quartz and LiNbO3 structures. A summary of planar gaps in a few more

inorganic crystal structures is also presented.

1. Introduction

Cleavage is the ability of single crystals to split easily along

specifically oriented planes (Hurlbut & Klein, 1977). Such

planes are usually parallel to the reticular lattice planes with

low Miller indices/large interplanar distances. The cleavage

phenomenon was known long before the discovery of X-ray

diffraction by crystals; the observation of cleavage in crystals

contributed greatly to the ideas about periodicity/long-range

order of their structures (Tutton, 1922; Authier, 2013). Clea-

vage is the most striking example of anisotropy of physical

properties (Nye, 1985). Finally, cleavage is the subject of many

materials science oriented research (Gilman, 1960; Lawn,

1974): acquiring the information concerning cleavage in a

given crystalline material is essential for the understanding of

failure, brittle fracture, toughness, plasticity and strength

(Lawn et al., 1993).

The prediction and discovery of cleavage planes is impor-

tant for microelectronics and electro-optics where durability

of crystalline materials and prevention of their catastrophic

mechanical failures is critical (Spearing, 2000). Whether

performed theoretically or experimentally, such prediction

presents a challenging task.

The simpler approach to the prediction of cleavage planes

involves counting the number of broken chemical bonds per

unit area of a candidate plane. Such counting can be carried

out analytically for the simplest crystal structures (e.g. of rock

salt, diamond or sphalerite type) (Ramaseshan, 1946).
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However, it becomes impractical for larger (e.g. ternary)

structures. Accurate calculations of cleavage energies are

demanding (Zhang et al., 2007; Bitzek et al., 2015) and should

involve e.g. density functional theory (DFT) calculation of the

surface energies (Ong et al., 2013; Tran et al., 2016), which is

half of the cleavage energy [for the case of slowly propagating

cracks (Griffith, 1921)].

It is also possible to study cleavage experimentally (Cramer

et al., 2000; Field, 1971; Jaccodine, 1963; Lawn et al., 1993;

Michot, 1987; Sherman et al., 2008). While some cleavage

planes may immediately appear because of a ‘mechanical

impact’, such impact ‘experiments’ can hardly be helpful in the

precise measurement of a cleavage energy. More complex

arrangements are implemented for this purpose (Gilman,

1960; Gleizer & Sherman, 2014; Sherman & Gleizer, 2014;

Hirsh et al., 2020). Specifically, a single crystal should be cut to

a plate whose normal is parallel to a candidate cleavage plane

while a uniaxial stress (so-called Mode I stress) must be

applied in a controlled manner. In conclusion, existing

experimental and theoretical methods are demanding and

unsuitable for throughput studies of cleavage without preli-

minary suggestions of several likely possibilities.

Here, we suggest a simple geometrical algorithm and a

computer program GALOCS (gaps’ locations in crystal

structures) which searches for promising cases of cleavage in

single crystals of known structures. Apart from accepting the

working hypothesis about the planar character of cleavage, we

assume that such cleavage occurs along the planes, exposing

the widest planar gaps (the intervals of empty space, appearing

when observing the plane lengthwise). The manual variant of

this approach is common in crystallography classes, where a

lecturer exposes a three-dimensional structural model and

demonstrates prominent clearances/gaps in the structure to

the audience. While such inspection can be performed both

physically and graphically [e.g. by using the VESTA program

(Momma & Izumi, 2011)], there are no computational

methods for doing it automatically. This methodological gap is

filled by the GALOCS package. In addition to its great illus-

trative potential, GALOCS can serve as a rough predictor of

cleavage planes in crystals. If necessary, such planes can be

analysed rigorously using DFT. Alternatively, the results may

suggest a particular experimental geometry that allows

measuring the cleavage energy of the plane.

2. The algorithm behind GALOCS

The proposed approach realizes an automatic (as opposed to

visual) inspection of the ‘space-filling function’ (SFF). Speci-

fically, we suggest inspecting the sections of the SFF by the

planes that are parallel to the lattice planes with reasonable

Miller indices/interplanar distances. The dependence of the

average SFF on the depth of the plane in the unit cell is

produced in order to locate the most prominent planar gaps

and measure their width and depth. The correlation between

the width/depth of the gap and the cleavage ability of the

candidate plane is the major hypothesis behind the algorithm.

2.1. Space-filling function

Calculation of the SFF requires knowledge of space group

type, lattice parameters, coordinates, occupancies of atomic/

Wyckoff positions and types of atoms. The first definition of

the SFF is the superposition of electron densities of individual

pseudo-atoms:

� rð Þ ¼
X
m�

��ðr� Rm � R�Þ: ð1Þ

Here, Rm = umi ai (Einstein summation over the repeated index

running from one to three is implemented everywhere

throughout the article) are the positions of all the lattice

nodes, umi are arbitrary integers and ai are the lattice basis

vectors i = 1, 2, 3. The vectors R� ¼ x�iai (0 � x�i < 1) list the

positions of all the atoms in a unit cell. ��ðrÞ are electron

densities of a (pseudo)atom number �, which can be

approximated using e.g. electron density of an isolated atom

(Su & Coppens, 1998) or atomic invarioms (Dittrich et al.,

2004). All the atomic electron densities are normalized:R
��ðrÞdr ¼ Z� [Z� is the number of electrons, associated with

the (pseudo)atom number �].

Another possible definition of the SFF involves an atomic

probability density function (PDF). It describes the prob-

ability of finding an atom � displaced by a vector u from its

average position R�. Such displacements may originate from

either a thermal motion or a static disorder. A PDF corre-

sponds to the average of all the atomic positions over time or

over different unit cells. A three-dimensional Gaussian func-

tion is the simplest approximation of an atomic PDF

(Coppens, 1997):

p� uð Þ ¼
��1
�

�� ��1=2

ð2�Þ3=2
exp �

1

2
uT �̂��1

� u

� �
: ð2Þ

Here, �̂�� is the second-rank tensor of atomic displacement.

The components of this tensor are known from an X-ray or

neutron diffraction experiment and are represented as

isotropic or anisotropic atomic displacement parameters (Uij

or �ij) (Trueblood et al., 1996; Coppens, 1997; Tsirelson &

Ozerov, 1996). If �̂�� is represented by a 3 � 3 matrix then uT

and u are the rows or the column vectors, respectively. The

SFF �(r) can now be calculated as

� rð Þ ¼
X
m�

W� p�ðr� Rm � R�Þ: ð3Þ

Here, W� describe the ‘weights’ of every atom in the cumu-

lative SFF. W� ¼ 1 yields an SFF in the form of atomic density

(it disregards the sort of atoms involved). Setting W� to the

atomic masses defines the SFF as the mass density. Finally,

setting W� to Z� will produce an SFF in the form of nuclei

charge density.

Notably, all possible definitions of the density function

sustain the periodicity so that �(r) = �(r + Rm). Therefore, it is

sufficient to calculate the values of �(r) inside the unit cell

only. Because both p�ðrÞ and ��ðrÞ are negligible when |r| >

rmax (rmax ’ 1Å), only the limited number of atoms whose
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centres are inside the unit cell or within rmax from its borders

are included in the sums (1) or (3).

2.2. Forming a section of a unit cell by an arbitrary candidate
cleavage plane

GALOCS inspects the sections of the SFF by the planes

that are perpendicular to a unitary vector n (|n| = 1). Let us

define the depth D of the plane inside the crystal and intro-

duce the orientation and depth-dependent average �(n, D) of

the SFF �(r) as

� n;Dð Þ ¼ h� rð Þirn¼D: ð4Þ

Here the averaging of �(r) is performed over all the positions

r, satisfying the condition rn = D (the equation of a plane,

normal to the vector n and standing at the distance D from the

origin). The periodicity of the crystal structure means that D is

non-negative and below the corresponding interplanar

distance d(n) = dhkl . The latter is the inverse length of the

primitive reciprocal lattice vector, Bhkl ¼ hia
�
i {hi or h, k, l are

coprime integers/Miller indices of the plane [the Miller indices

are coprime if a primitive unit cell is used (Nespolo, 2015)] and

a�i are the basis vectors of the reciprocal lattice aia
�
j ¼ �ij}

where Bhkl k n:

dhkl ¼ Bhkl

�� ���1
: ð5Þ

It is sufficient to average the SFF �(r)rn = D over translationally

independent locations only, rather than over the entire plane.

It is therefore worth transforming the coordinates of r to the

coordinate system A1, A2, A3 such that Ai and ai are the bases

of the same crystal lattice, but the vectors A1 and A2 are

parallel to the plane of interest (hkl) and A3 connects two

adjacent lattice planes (A3ihi = 1). The number-theoretical

algorithms for such a transformation are described elsewhere

(Gorfman, 2020) and the corresponding MATLAB-based

program MULDIN is deposited there. This step presents the

core of the algorithm because it uses the periodicity of the

crystal structure. Using the coordinates X1, X2 and X3 such

that r = XiAi = xi ai and expressing the SFF �(x1, x2, x3) as

�hkl(X1, X2, X3) yields

� hkl;X3ð Þ ¼ h�hkl X1;X2;X3ð Þi0�X1;X2<1 X3 2 ½0; 1�: ð6Þ

The cleavage planes are likely to appear where �(hkl, X3)

drops to the lowest possible values. Averaging of �(hkl, X3)

over X3 would yield the average of the SFF

h�ðhkl;X3ÞiX3
¼ �0 over the entire unit cell. Let us introduce

the constant threshold �S = y�0 (typically y = 0.75) such that all

the X3 values where �(hkl, X3) < �S are considered as planar

gaps. We define the maximum effective width of a planar gap

as

Chkl ¼
1

�0

dhkl�X3h�S � �ðhkl;X3Þi�X3
: ð7Þ

Here �X3 is the length of the longest continuous range of X3

values where �(hkl, X3) < �S and h�S � �ðhkl;X3Þi�X3
is the

average gap depth in this range. The denominator �0 is

introduced in order to reduce the dimension of Chkl to Å. Fig.

1 explains definition (7) graphically. It shows an arbitrary

�(hkl, D) with the most prominent gap between two vertical

dashed lines.

Definition (7) suggests that Chkl must be centrosymmetric.

Indeed, the sets of Miller indices (hkl) and ð �hh �kk�llÞ define the

same lattice planes. The only difference between them

concerns the direction of the plane movement with the

increasing value of X3. Specifically, �ð �hh �kk�ll;X3Þ ¼ �ðhkl;�X3Þ,

meaning that �ð �hh �kk�ll;X3Þ has the same minima, the same

average value and the same width of the structural gap as

�(hkl, X3). Accordingly, Chkl ¼ C �hh �kk�ll, so the symmetry of the

Chkl is defined by one of the eleven Laue classes.
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Figure 1
A graphical illustration of the definition of Chkl according to equation (7). The solid line shows an arbitrary �(hkl, D) function extending over two unit
cells (one unit cell on the positive and one unit cell on the negative side of the D axis). The dashed horizontal line shows the threshold value of �S =
0.75�0. The regions of �(hkl, D) < �S are filled by colour. The numerator of equation (7) is equal to the area inside the coloured region.



2.3. The flow chart of the GALOCS algorithm

GALOCS realizes the following steps:

(i) Calculating electron density �(x1, x2, x3) (or any other

SFF in future releases) inside a unit cell (0 � xi < 1) as a

superposition of spherical atoms.

(ii) Generating the set of symmetry-independent (with

respect to the relevant Laue class) lattice planes (hkl) such

that dhkl > dmin.

(iii) For each (hkl) transforming the basis vectors ai! Ai

using the MULDIN algorithm (Gorfman, 2020), and expres-

sing �(x1, x2, x3) as �hkl(X1, X2, X3) (0 � Xi < 1).

(iv) Calculating Chkl according to equation (7), and drawing

the directional dependence of Chkl on the stereographic

projections and polar plots.

The MATLAB-based software package includes several

modules for:

(a) Automatic reading of relevant structural information

from CIFs.

(b) Calculating �(x1, x2, x3) in the unit cell on the predefined

grid. The current version of the program uses pre-tabulated

spherically symmetrical electron densities in isolated atoms

(Su & Coppens, 1998).

(c) Drawing �(hkl, D) curves for any chosen hkl values.

(d) Calculation of Chkl (according to equation 7 with user-

defined clearance threshold, typically y = 0.75) for the set of

lattice planes with interplanar distance above some user-

defined value dmin.

The software package of GALOCS with corresponding

manual is available in the supporting information and

through the GitHUB platform. The functionality of the

package will be extended (e.g. by introduction to the

graphical user interface and by implementing various SFF

models) subject to the interest of the user community.

2.4. Two-dimensional illustration

Fig. 2 illustrates the GALOCS output for a two-dimensional

graphene structure. The conventional unit cell is based on the

vectors a1 and a2 such that a1 ¼ a2 ¼ a ¼ 2:461 Å; � ¼ 120�.

The SFF was defined by the superposition of electron densities

of isolated carbon atoms. Fig. 2(a) shows the transformed unit

cells [based on the vectors A1 and A2 with A1 being parallel to

(hk)] for the cases of (10), (11) and (12) planes. Fig. 2(b)

illustrates the dependence of Chk on the reciprocal-space

directions using the polar plot. The spikes extend in the

directions of the reciprocal lattice vectors Bhk, their lengths

are proportional to the corresponding Chk values. It shows that

the longest gap in graphene is present for {10}H and {11}H

families of planes [the notation fhkgH stands for set of planes

that are symmetry equivalent to (hk) with respect to the

operations of the crystal class of two-dimensional hexagonal

lattice]. {21}H planes have 	15 times smaller Chk (see Table 1

for the numerical values).
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Figure 2
A two-dimensional illustration of the GALOCS output for the case of graphene. (a) The SFF for the structure of graphene according to equation (1) and
electron densities of isolated carbon atoms. The same figure shows the standard unit cell and its three transformations, suitable for the analysis of the
corresponding planar gaps in this structure. In all cases, the transformed unit cell has the vector A1 parallel to the (hk) planes. (b) The dependence of the
Chk on the direction n k Bhk. The Miller indices corresponding to each of the directions are marked explicitly. (c) The dependences of �(10, X3), �(11, X3)
and �(12, X3) on D = dhkX3 (vertically shifted relatively to each other for clarity).



3. Examples

Here, we demonstrate the implementation of the algorithm for

the case of three inorganic structures (Si, LiNbO3 and SiO2).

3.1. Silicon/diamond structural type

Fig. 3 projects the structure of silicon along the crystal-

lographic [001] and [110] directions. The structure has one

symmetry-independent atom sitting at the standard origin 1 of

the space group Fd3m. Each atom has four nearest neighbours

at the corners of a regular tetrahedron. Table 2 summarizes

the relevant structural information.

The calculation of Chkl over the lattice planes with the

interplanar distance above dmin ¼ 0:2Å involved 17 330

primitive reciprocal lattice vectors enclosed in a corre-

sponding reciprocal-space sphere of radius d�1
min ¼ 5Å

�1
. This

set included 446 symmetry-independent planes (with respect

to the operations of the point-symmetry group m3m). The cut-

off dmin is justified by the fact that Chkl drops to zero for those

planes that have small interplanar distances. Fig. 4 illustrates

this statement by showing Chkl as a function of the length of

the primitive reciprocal lattice vector (Bhkl ¼ d�1
hkl). Prominent

gaps are present among low Bhkl (high dhkl) planes only. The

same figure indicates the Miller indices of the planes with the

highest cleavage ability. Note that the indices of the planes are

given with respect to the conventional non-primitive (face

centred) unit cell and therefore some of the indices are not

coprime. The indices are coprime if expressed using a primi-

tive unit-cell basis (Nespolo, 2015).

Figs. 5 and 6 illustrate the striking anisotropy of Chkl in

silicon using stereographic projections and polar plots. The

stereographic projections contain a false-colour map, which

sets one-to-one correspondence between the colour and the

Chkl values. The projection is viewed along the zone axis Auvw

= [uvw] = ua1 + va2 + wa3 {½1�110�/[111] in Figs. 5(a)/6(a),

respectively}. Figs. 5(b) and 6(b) show polar plots of Chkl for

all the reciprocal lattice directions Bhkl in the zone (i.e. such

that Bhkl 
 Auvw = 0). The individual spikes extend in the

directions that are normal to the anticipated cleavage planes.

Such polar plots provide specific guidelines for the cleavage

experiment, in which a crystal is prepared in the form of a

wafer whose surface is normal to Auvw . Cleavage is initiated at

a small pre-crack [see e.g. (Hirsh et al., 2020)] and at a uniaxial

stress [also known as Mode I stress (Lawn et al., 1993)] along

the direction n. Table 3 lists numerical values for the cleavage

ability of the most prominent planes.

The calculations predict {111}C and {110}C as the most

prominent cleavage planes in silicon [the notation fhklgC
stands for the set of planes that are symmetry equivalent to

ðhklÞ with respect to the operations of the cubic crystal class

m�33m]. These planes are well known from real cleavage

experiments on single crystals of silicon (Gleizer et al., 2014).

The output is further illustrated in Figs. 7 and 8. Fig. 7 shows

the corresponding sections of electron density by (111) planes

and the �(n, D) function where the gap is seen clearly. Fig. 8

shows the view of the structure along the predicted cleavage

plane. This figure was produced using the VESTA program,

where (111) plane was added artificially and the structural

model was rotated in a way that the normal to the plane is

parallel to the horizontal axis of the screen. The easy ability to

produce the images, exposing the structural gaps in the crystal

clearly, is one of the goals of the suggested algorithm.

research papers

IUCrJ (2021). 8, 793–804 Uriel Vaknin et al. � Geometrical prediction of cleavage planes in crystal structures 797

Figure 3
The structure of silicon viewed along (a) [001] and (b) [110] crystal-
lographic directions. The images were produced using the VESTA
program (Momma & Izumi, 2011).

Figure 4
The Bhkl dependence of Chkl values in silicon. Here Bhkl is the length of
the corresponding reciprocal lattice vector (inverse to dhkl). The Miller
indices are given with respect to the non-primitive (face centred) unit cell;
accordingly, some Miller indices [e.g. (220)] have a common divider.
When converted to the primitive unit cell, these indices are coprime.

Table 2
The structure of silicon used for the calculations.

Space group Fd�33m (No. 227)
Laue class m�33m
Number of atoms per unit cell 8
Lattice parameter(s) (Å) a ¼ 5:43

Asymmetric unit

Atom name Charge Position Wyckoff letter
and multiplicity

Local symmetry

Si 14 [000] 8a �443m

Table 1
Magnitudes of Chk in graphene.

(hk) (10) (11) (12)
Chk ðÅÞ 0.54 0.40 0.03

Table 3
Magnitudes of Chkl in silicon.

(hkl) (111) (110) (100) (311) (211) (331) (511)
Chkl ðÅÞ 1.025 0.676 0.289 0.285 0.149 0.121 0.047



3.2. Quartz (SiO2)
Fig. 9 projects the structure of quartz along [100] and [001]

directions, while Table 4 summarizes the relevant structural

information (Levien et al., 1980). Right-handed quartz crys-

tallizes in the space group type P3221 (No. 154) and corre-

sponds to the Laue class 3m. The structure has two symmetry-

independent atoms (Si and O). Enumeration of the lattice

planes with the interplanar distance above dmin ¼ 0:2Å results

in 49 358 reciprocal lattice vectors, 4393 of them are symmetry

independent (with respect to the point-symmetry operations

of the Laue class). Figs. 10–12 and Table 5 show the results of

the calculations (as in chapter 3.1). Fig. 10 illustrates the
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Figure 6
Same as Fig. 5 but for the [111] direction in silicon. The outer circle in (b) corresponds to the highest cleavage ability C111 = 1.025 Å.

Figure 5
Anisotropy of Chkl values in silicon. (a) The stereographic projection viewed along the ½1�110� crystallographic direction displays the false-colour map of
the Chkl (dependence of Chkl on the direction). Each point on the stereographic projection corresponds to a specific reciprocal-space direction. The small
white points indicate the stereographic projections of the normals to all the lattice planes involved in the calculation. The colour scheme expresses the
values Chkl=maxðChklÞ according to the colour bar on the left. (b) The polar diagram of the cleavage ability for all the planes in the ½1�110� zone. The outer
circle corresponds to the highest cleavage ability (C111 = 1.025 Å for the case of silicon).

Table 4
The structure of quartz used for the calculations.

Space group P3221 (No. 154)
Laue class �33m
Number of atoms in the unit cell 9
Lattice parameters (Å) a ¼ 4:91; c ¼ 5:40

Asymmetric unit

Atom name Charge Position Wyckoff letter
and multiplicity

Local
symmetry

Si 14 [0.47 00] 3a 2
O 8 [0.41 0.27 0.12] 6b 1



dependence of Chkl on the length of the reciprocal lattice

vectors. Figs. 11 and 12 illustrate the anisotropy of Chkl using

stereographic projections along [100] and [001] zone axes

[defining the normal to X and Z cuts of quartz wafers (Brai-

nerd et al., 1949)]. Table 5 lists the numerical values of Chkl of

seven planes with the most prominent gaps. Figs. 13 and 14
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Figure 8
The structure of silicon viewed along the (111) plane. The [111]*
reciprocal lattice direction is horizontal. The figure exposes the
corresponding structural gap (as also appears in Fig. 7).

Figure 9
The structure of quartz viewed along [100] and [001] crystallographic
directions. The images were produced using VESTA (Momma & Izumi,
2011).

Figure 7
An illustration of the structural-gap location for the case of the (111) plane in silicon. The parts (a)–(c) show three electron-density sections by the (111)
plane at three various positions of the plane in the unit cell, while (d) shows the �(111, D) function with the vertical lines at the positions corresponding
to the electron-density sections in (a)–(c).

Figure 10
Same as Fig. 4 but for the case of quartz.

Table 5
Magnitudes of Chkl in quartz.

(hkl) (011) (101) (203) (112) (031) (110) (010) (102)
Chkl ðÅÞ 0.714 0.483 0.213 0.209 0.170 0.165 0.138 0.114

Table 6
The structure of LiNbO3 used for the calculations (Weigel et al., 2020).

Space group R3c (No. 161)
Laue class �33m
Number of atoms per unit cell 30
Lattice parameters (Å) a ¼ 5:15160 ð10Þ c ¼ 13:8690 ð6Þ

Asymmetric unit

Atom
name

Charge Position Wyckoff Local
symmetry

Li 3 [00 0.3014] 6a 3
Nb 41 [00 0.0199] 6a 3
O 8 0:0488 0:3438 1

12

� �
18b 1



(organized in the same way as Figs. 7 and 8) illustrate the

output for the case of (011) planes in quartz.

3.3. Lithium niobate (LiNbO3)

LiNbO3 crystallizes in the space group type R3c (Weis &

Gaylord, 1985; Weigel et al., 2020), Laue class �33m. Table 6

summarizes the relevant structural information. The structure

has three symmetry-independent atoms (Li, Nb and O).

Enumeration of the lattice planes with the interplanar

distance exceeding dmin ¼ 0:2Å results in the generation of

46 340 reciprocal lattice vectors, where 4108 of them are

symmetry independent (with respect to the point-symmetry

group �33m). The calculation results are presented in Figs. 15–19

and Table 7, organized as in the previous sections. The analysis

predicts the most prominent cleavage plane with the Miller

indices (012). This plane is also known from the measure-

ments of cleavage energies in LiNbO3 crystals (Hirsh et al.,

2020).
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Figure 12
Same as Fig. 5 but for the [001] direction in quartz. The outer circle in (b) corresponds to the highest cleavage ability C011 = 0.714 Å.

Figure 11
Same as Fig. 5 but for the [100] direction in quartz. The outer circle in (b) corresponds to the highest cleavage ability C011 = 0.714 Å.

Table 7
Magnitudes of Chkl in LiNbO3.

(hkl) (012) (104) (110) (001) (101) (116) (122) (010)
Chkl ðÅÞ 1.556 0.945 0.776 0.572 0.562 0.482 0.392 0.390

Table 8
Magnitudes of Chkl in AlN [wurzite structural type, space group type
P63mc, the structure is reported by Xu & Ching (1993)].

(hkl) (001) (010) (1�220Þ (011) (013) (�1122Þ (012) (021)
Chkl ðÅÞ 0.774 0.654 0.462 0.385 0.257 0.227 0.189 0.100



4. Further examples

Tables 8–12 present a brief summary of the Chkl calculations

for the structures of wurzite (AlN), fluorite (CaF2), diamond

(C), pyrite (FeS2) and corundum (Al2O3). They are organized
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Figure 13
An illustration of the gap location for the case of the (011) plane in quartz. Parts (a)–(c) show three electron-density sections by the (011) plane at three
various positions of the plane in the unit cell, while (d) shows the �(011, D) function with the vertical lines at the positions corresponding to the electron-
density sections in (a)–(c).

Figure 14
The structure of quartz viewed along the (011) plane. The [011]*
reciprocal lattice direction is horizontal.

Figure 15
Same as Fig. 4 but for the case of LiNbO3.

Table 9
Magnitudes of Chkl in CaF2 [fluorite structural type, space group type
Fm�33m, the structure is reported by Speziale & Duffy, 2002)].

(hkl) (110) (111) (100) (311) (211) (331) (511) (310)
Chkl ðÅÞ 0.718 0.648 0.338 0.285 0.182 0.141 0.067 0.040

Table 10
Magnitudes of Chkl in diamond/C (space group type Fm�33m).

(hkl) (111) (110) (311) (200) All the rest
Chkl ðÅÞ 0.465 0.222 0.045 0.016 0

Table 11
Magnitudes of Chkl in pyrite [FeS2, space group type Fm�33m, the structure
is reported by Ramsdell (1925)].

(hkl) (011) (113) (111) (102) (001) (012) (112) (115)
Chkl ðÅÞ 0.378 0.299 0.249 0.154 0.151 0.128 0.057 0.040

Table 12
Magnitudes of Chkl in corundum [space group type R�33c, the structure is
reported by Lewis et al. (1982)].

(hkl) (012) ð�1114Þ (010) ð1�220Þ ð1�22�66Þ ð2�33�44Þ ð0 1 10Þ ð�11�113Þ
Chkl ðÅÞ 0.520 0.406 0.314 0.260 0.259 0.131 0.130 0.072



in the same way as Tables 3, 5 and 7. All the examples are

included in the GALOCS user manual in the supporting

information.

5. Discussion

GALOCS is an easy and illustrative way to find planar gaps in

arbitrary crystal structures. Although we do not claim a one-

to-one correspondence between the size of these gaps and the

cleavage energies, some correlation between them exists.

Specifically, the calculations in Section 3.1 suggest that the

most prominent gap is seen along (111) and the next most

prominent is seen along (110) planes. This result is proven by

both experiments (Gleizer et al., 2014) and calculations (Pérez

& Gumbsch, 2000), suggesting that single crystals of silicon
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Figure 16
Same as Fig. 5 but for the [100] direction in LiNbO3. The outer circle in (b) corresponds to the highest cleavage ability C012 = 1.556 Å.

Figure 17
Same as Fig. 5 but for the [001] direction in LiNbO3. The outer circle in (b) corresponds to the highest cleavage ability C012 = 1.556 Å.

Table 13
Cleavage energies of silicon (obtained from DFT calculations/experi-
ment) against the length of the structural gaps calculated in this work.

(111) (110)

Cleavage-energy DFT (Pérez & Gumbsch, 2000)
ðJ=m2Þ

2.88 3.46

Cleavage-energy experiment (Gleizer et al., 2014)
ðJ=m2Þ

2.2 � 0.2 2.7 � 0.3

Gap length (this work) (Å) 1.025 0.672



will indeed break most readily along (111) and next most

readily along (110) planes. Specifically, these literature results

imply that cleavage along (110) planes requires 	20% more

energy input than cleavage along (111) planes. Table 13 shows

the numerical values of cleavage energies against the calcu-

lated parameters of the gaps.

Cleavage of quartz single crystals is debated in the literature

[see e.g. (White, 2006; Bloss & Gibbs, 1963)]. We are unaware

of any accurate calculations or precise measurements of the

cleavage energies in quartz. Nonetheless, according to Bloss &

Gibbs (1963), when crushed, quartz cleaves most readily along

(101)/(011) planes and next most readily along (112) planes.

All these planes appear at the top of the list calculated by our

algorithm.

Cleavage of LiNbO3 crystals was recently investigated by

Hirsh et al. (2020), featuring (012), (010) and (116) cleavage

planes [the cleavage energies of (012) and (010) were

measured]. While all these planes appear on the most

prominent planar-gap list in Table 7, there is some disagree-

ment between the measured cleavage energy and the gap

width. Specifically (see Table 14), while the measured cleavage

energy of (010) is 	40% smaller than that of (012), the gap of

(010) is four times narrower than (012). It is important to

reiterate that this type of disagreement is expected, while the

presence of these planes on the list is the simplified GALOCS

scheme main goal (since most of the planes do not exhibit any

gaps at all).

Still, in order to investigate the matter deeper, we inspected

the �(hkl, D) for both (012) and (010) planes. Fig. 20 shows
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Figure 19
The structure of LiNbO3 viewed along the (012) plane. The [012]*
reciprocal lattice direction is horizontal.

Figure 20
�(012, D) and �(010, D) curves for LiNbO3. The horizontal dashed line is
drawn at the chosen threshold level of 0.75�0.

Figure 18
An illustration of the gap location for the case of the (012) plane in LiNbO3. Parts (a)–(c) show three electron-density sections by the (012) plane at three
various positions of the plane in the unit cell, while (d) shows the �(012, D) function with the vertical lines at the positions corresponding to the electron-
density sections in (a)–(c).

Table 14
Cleavage energies in LiNbO3 (obtained from an experiment) against the
length of the structural gaps calculated in this work.

(012) (010)

Cleavage-energy experiment (Hirsh et al., 2020) ðJ=m2Þ 2.2 1.3
Gap length (this work) (Å) 1.55 0.39



that the �(012, D) curve has a well, which separates the gap

into two ‘valleys’. This suggests that the chosen threshold

value y = 0.75 results in overestimation of the actual gap size

for (012) planes. Such close inspection of �(hkl, D) is there-

fore recommended for all planes that are selected as candidate

cleavage planes, and can be carried out by using the GALOCS

package. Additionally, it is possible to recalculate all the Chkl

values using different y thresholds if necessary.

The algorithm can be improved by adding dummy atoms

into the structures (e.g. to mimic chemical bonds). Alter-

natively, it may implement advanced models of electron

density, which, in turn, is obtained by DFT calculations or

results from a multipole model refinement of X-ray diffraction

intensities (Hansen & Coppens, 1978). Additionally, atomic

electron densities may be convoluted with their PDFs; this can

be particularly valuable for disordered materials with high

atomic displacement parameters. In general, the SFF

�(x1, x2, x3) can be customized, e.g. by adding ‘sticks’ (addi-

tional electron densities) along the bond lines and removing

the atoms themselves. This way the algorithm and the program

will be capable of counting the number of chemical bonds

intersected by the planes.

6. Conclusions

We developed geometrical algorithm GALOCS to locate the

planes that expose the most prominent planar gaps in crystal

structures. Such planes are listed as candidate cleavage planes,

to be explored experimentally or by using density-functional-

theory calculations. GALOCS implements some known

generalized space-filling function (e.g. superposition of atomic

electron densities or the probability density function). It

calculates the average values of this function within specific

planes and as a function of plane depth with respect to the

unit-cell origin. We also provided detailed illustration of the

algorithm for silicon, quartz and LiNbO3 where a clear

correlation between our calculations and existing experi-

mental studies of cleavage energy is present.
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