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Laboratory X-ray diffraction contrast tomography (LabDCT) is a novel imaging

technique for non-destructive 3D characterization of grain structures. An

accurate grain reconstruction critically relies on precise segmentation of

diffraction spots in the LabDCT images. The conventional method utilizing

various filters generally satisfies segmentation of sharp spots in the images,

thereby serving as a standard routine, but it also very often leads to over or

under segmentation of spots, especially those with low signal-to-noise ratios and/

or small sizes. The standard routine also requires a fine tuning of the filtering

parameters. To overcome these challenges, a deep learning neural network is

presented to efficiently and accurately clean the background noise, thereby

easing the spot segmentation. The deep learning network is first trained with

input images, synthesized using a forward simulation model for LabDCT in

combination with a generic approach to extract features of experimental

backgrounds. Then, the network is applied to remove the background noise

from experimental images measured under different geometrical conditions for

different samples. Comparisons of both processed images and grain reconstruc-

tions show that the deep learning method outperforms the standard routine,

demonstrating significantly better grain mapping.

1. Introduction

Non-destructive 3D characterization of grain structures (sizes,

shapes and orientations) is indispensable in understanding the

microstructural evolution in the bulk of polycrystalline

materials. Such techniques are well established at large

synchrotron X-ray facilities and provide grain mapping at

length scales from tens of nanometres to millimetres, and

temporal resolution from microseconds to hours (e.g. Larson

et al., 2002; Poulsen, 2004, 2020; Suter et al., 2006; Ludwig et al.,

2008; Simons et al., 2015). To broaden the use of non-

destructive grain mapping by offering such possibilities at

home laboratories, laboratory X-ray diffraction contrast

tomography (LabDCT) has been developed (King et al., 2013,

2014; McDonald et al., 2015). This novel technique has already

been demonstrated to be very useful in 3D/4D studies of

metals and alloys (McDonald et al., 2017; Sun et al., 2019, 2020;

Lei et al., 2021).

A 2D detector is typically placed behind the sample to

record diffraction spots in a transmission geometry in

LabDCT. Grain microstructures are reconstructed from the

spots collected at different sample rotations. As the spots

often suffer from undesired background noise, precise spot

identification may be difficult, which in turn leads to mistakes
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in the grain reconstructions. Conventionally, rolling median

processing is used for reducing the noise followed by various

filters to enhance the spot contrast. This approach works fine

for spots with good signal-to-noise ratios (SNRs) but it can

lead to over or under segmentation of spots with low SNRs. As

the background intensities vary over projections and time due

to variations of X-ray source and sample thickness, the

background noise cannot always be removed completely by

the rolling median process, resulting in poor spot segmenta-

tion. Furthermore, it requires extensive human expertise to

tune and optimize the processing parameters.

In recent years, machine-learning methods have been

adopted by materials scientists to successfully identify or

restore features of interest from microscopic or tomographic

images (e.g. Larmuseau et al., 2021; Jiang et al., 2020; DeCost et

al., 2017; Dimiduk et al., 2018). Particular interest has also

increased within X-ray diffraction imaging. For example, a

machine-learning method was developed to locate Bragg

peaks in high-energy X-ray diffraction images at a much faster

speed than conventional pseudo-Voigt fitting (Liu et al., 2021).

A deep learning (DL) model trained with synthetic data was

established to reconstruct a single-particle image in Bragg

coherent diffraction imaging (Wu et al., 2021). We also

established a DL model for processing LabDCT images

(Hovad et al., 2020). In that work, the model was trained with

synthetic data containing very simple (and actually not

realistic) noise and still turned out to be quite efficient in

removing background noise for LabDCT images.

Encouraged by the first attempt, in this work we develop a

new DL model by synthesizing images containing fully

realistic noise. This is carried out by establishing a flexible

method to generate input and ground-truth images using a

forward simulation model combined with a generic approach

to extract features of the experimental background noise. The

features of the synthesized images are carefully tuned to

capture the main aspects of the experimental images. The

trained model turns out to be excellent in removing the

background noise as confirmed by applying this model to real

unseen experimental images. Comparisons of spot-segmented

images and complete grain reconstructions both show that the

DL method outperforms the standard routine.

2. Data and methods

2.1. Data for the DL networks

To avoid intensive labor manual training of the DL

network, a forward simulation model was used to generate

LabDCT projections. Each projection contains diffraction

spots from the first four {hkl} families of all grains in artificially

created samples, a constant background and a central region

with zero pixel values to mimic the beam stop shielding the

direct beam. To maximize the variety of the spot features such

as sizes and intensities, we synthesized three cylindrical

aluminium samples with different grain size distributions

covering the most common grain size ranges for LabDCT

studies. Table 1 shows the main characteristics of the input

samples. The grain orientations were generated randomly and

no misorientation was present within the grains, i.e. zero

mosaicity.

The grains were meshed into polyhedrons and the diffracted

intensity of each lattice plane of each polyhedron was

computed; for further details see Fang et al. (2020). Diffraction

spots were thus generated by summing all the diffraction

intensities for each pixel on a virtual detector (2032 � 2032

pixels with an effective pixel size of 3.36 mm). The simulations

were performed in a Laue focusing geometry: the sample-to-

source distance (Lss) was the same as the sample-to-detector

distance (Lsd) and equal to 11 mm. An X-ray spectrum from a

tungsten anode X-ray tube operating at 140 kV was used as

the photon source. For each sample, 181 projections were

simulated in 2� steps for a 360� rotation. Fig. 1(a) shows an
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Figure 1
Data for training the DL network. (a) A simulated LabDCT image (Isimu) containing spots, a constant background and a central black area (pixel value =
0) from the sample D35. (b) A normalized background-noise image (IBG, gray values between 0 and 1) containing only long-range noise extracted from
an experimental dataset. (c) An input image (x) containing both spots and noise. (d) A content image (yc) containing spots only.

Table 1
Characteristics of three virtual input aluminium samples.

Mean values and standard deviations are given for grain size and the number
of spots per projection.

Name

Cylinder dimension,
diameter � height
(mm2)

Number
of grains

Grain size
(mm)

Number of spots
per projection

D18 100 � 150 230 18.3 � 7.7 391 � 18
D35 200 � 300 337 35.8 � 8.2 717 � 22
D64 400 � 600 485 63.6 � 14.1 1028 � 26



example of the simulated LabDCT projection (Isimu). The

forward simulation model can handle any sample geometry,

any grain size and any X-ray spectrum but here we only

performed simulations for the most common experimental

circumstances. More details of the forward simulation model

can be found in the work of Fang et al. (2020) and the code is

available at https://github.com/haixingfang/LabDCT-forward-

simu-model.

The input image (x) for the DL networks was created by

combining the simulated LabDCT image with an image of the

background noise. The latter image was produced by

extracting and normalizing the background noise from an

experimental LabDCT dataset. A generic method was

established to extract background noise from any type of

experimental images. An example of the normalized back-

ground-noise image (IBG) is shown in Fig. 1(b). Here, the

background-noise image mainly contains the long range (low

frequency) noise that depends on the sample, values of Lss and

Lsd, the X-ray beam size, as well as the intensity. To also mimic

the short range (high frequency) noise, Poisson-type noises

were subsequently added. For details on this method, see

Appendix A.

The arithmetic operation to create the input image x in a

pixel-by-pixel manner can be expressed as

x0 ¼ Isimu � CBG

� �
þ RBG IBG;

where RBG 2 random I0 � I0ð Þ
1=2; I0 þ I0ð Þ

1=2
� �

; ð1Þ

and

x ¼ x0 þ � Poisson
x0

2

� �
; ð2Þ

where x0 is the image containing the spots and the long-range

noise, CBG is the background constant value of Isimu, RBG is a

value randomly generated in the range [I0� (I0)1/2, I0 + (I0)1/2]

determined by a constant I0, Poisson(x0 /2) represents the

short-range noise following a Poisson distribution with a mean

value of x0 /2 for each pixel, and � is a factor to tune the noise

level. In this work we set � = 1 and I0 = 110, which is a common

background-pixel value for experimental LabDCT images

(Lindkvist et al., 2021). Since RBG is a random number and the

Poisson noise is added, variances are retained for each input

image (x) even when the same combination of Isimu and IBG

are used. This matches the dynamic changes of the X-ray beam

characteristics in real experiments. An example of the input

image is shown in Fig. 1(c). A plot of the signal-to-noise

distribution is presented in Fig. S1(a) of the supporting

information.

Fig. 1(d) shows a content image (yc) that serves as the

ground truth for the DL network, corresponding to what

would have been identified in a perfect manual training of the

network. The spots in the content images were segmented

from the simulated images Isimu using a Laplacian of Gaussian

(LoG) approach (more details on this approach are described

in Section 2.4). Since the background is constant, this

segmentation precisely retains the spot shapes. In yc the pixel

values of diffraction spots are 255 and the remaining pixels, i.e.

the background, have a value of 0. In total, we synthesized

1086 images in an eight-bit format for each x and yc from a

random combination of three forward simulated image data-

sets and three different types of IBG extracted from real

experimental images.

2.2. DL algorithm

As shown in Fig. 2, the DL method consists of two

components: an image transformation network fW and a loss

network �(z), where z ¼ fŷy; ycg (Johnson et al., 2016). The

image transformation network transforms input images x into

output images ŷy via mapping ŷy ¼ fWðxÞ with a deep convolu-

tional neural network parameterized by weights W. In this

work, the transformation network has an architecture similar

to the original U-Net (Ronneberger et al., 2015; Çiçek et al.,

2016), but is featured differently by having a pre-trained

model as the backbone. This network is referred to as the

‘dynamic U-Net’ network. Here, ResNet34 (https://www.

kaggle.com/pytorch/resnet34) is used as the pre-trained

model.

There are in total 54 convolutional layers in the dynamic

U-Net network. This network consists of a contracting path

(image size is decreasing, downsampling) and an expansive
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Figure 2
Deep learning neural networks consisting of a transformation network and a loss network. Adapted from the works of Johnson et al. (2016) and Hovad et
al. (2020).



path (image size is increasing, upsampling). The contracting

path follows the typical architecture of a convolutional

network. It consists of the repeated application of convolu-

tions, each typically followed by a batch normalization, a

rectified linear unit (ReLU) or a max-pooling operation for

downsampling. The number of feature channels is doubled at

each downsampling step. Every step in the expansive path

consists of an upsampling of the feature map followed by a

convolution that halves the number of feature channels, a

concatenation with the correspondingly cropped feature map

from the contracting path, and several convolutions, each

typically followed by an ReLU. To avoid checkerboard arti-

facts for upsampling images, a sub-pixel convolutional neural

network, PixelShuffle (Shi et al., 2016), is used. Batch

normalization is also used in several places in the upsampling

to control the gradients during training. Average 2D pooling is

used to get the dimensions right with respect to odd numbers

of image size. At the final layer a convolution is used for

mapping each 64-component feature vector to the given

output image size. More details on the layers in the dynamic

U-Net are summarized in Table S1 of the supporting infor-

mation.

The loss network defines loss functions that measure the

difference between the output image ŷy and a target content

image yc at different layers. In this work, we use a 16-layer

VGG network (Simonyan & Zisserman, 2015) and compute

three outputs (j = 0, 1, 2) for the loss functions. Instead of only

encouraging each pixel of the output image ŷy to exactly match

that of the content image yc , the output image is also

encouraged to have similar features as computed by the loss

network. Therefore, three contributions to the total loss,

loss ðŷy; ycÞ, are considered: pixel loss, feature loss and Gram

loss. The pixel loss is the normalized Euclidean distance

between ŷy and yc . The feature loss is the normalized Euclidean

distance between feature maps of ŷy and yc at the jth output

from the loss network, denoted as �jðŷyÞ and �j(yc), respec-

tively. The Gram loss is the squared Frobenius norm of the

difference between the Gram matrices of ŷy and yc at the jth

output, denoted as G
�
j ðŷyÞ and G

�
j ðycÞ, respectively. The total

loss can thus be expressed as

loss ŷy; ycð Þ ¼
kŷy� yck

2
2

CHW
þ
X2

j¼0

1

CjHjWj

�jŷy� �jyc

�� ��2

2

þ
X2

j¼0

1

CjHjWj

G
�
j ŷy�G

�
j yc

�� ��2

F
; ð3Þ

where C is the number of image channels, and H and W are

image height and width in pixels, respectively. More details on

the DL networks used here can be found elsewhere (Johnson

et al., 2016; Hovad et al., 2020).

2.3. Model implementation

The DL model was implemented using a Jupyter

notebook with Python codes based on the fast.ai library

(https://github.com/fastai/course-v3/blob/master/nbs/dl1/

lesson7-superres.ipynb). The 1086 generated images for both x

and yc were resized using bilinear interpolations to H � W =

600� 600, and split into a training dataset (85% = 924 images)

and a validation dataset (15% = 162 images). Notably, the

resizing reduces the image resolution and may cause an

aliasing effect on the spot shapes. However, this effect is

limited to one to two pixels on the spot edges only and thus

does not significantly affect the DL performance. The DL

model was first trained with a fixed learning rate (lr = 0.01) and

then with the learning rate unfrozen. A batch size of three was

used for training the model. During each epoch of training,

training loss (loss value for the training dataset) and validation

loss (loss value for the validation dataset) were computed. The

model was trained for a maximum of 50 epochs where it was

observed that the validation loss stopped decreasing. The

training took �40 h using an NVIDIA Quadro P5000 with a

memory size of 16 GB. After the model was trained, it took

only 40 s to remove the background noise and identify the

spots in a typical experimental LabDCT dataset consisting of

181 images. The final DL output images have a size of 1200 �

1200, which were subsequently used for grain reconstruction.

The source programming codes, training dataset, trained

model and DL output images will be published on Materials

Commons and will be publicly accessible (https://doi.org/

10.13011/m3-2z1n-qh56).

2.4. Experimental LabDCT measurements and grain
reconstructions

With the aim of quantifying how efficient the trained DL

network is to identify spots in real images and how this new

procedure compares with the standard routine, a fully

recrystallized pure iron (99.99 wt% Fe) sample was char-

acterized with a commercial LabDCT instrument (Zeiss

Xradia 520 Versa X-ray microscope). Scans were performed in

a Laue focusing geometry, i.e. Lss = Lsd = 13.0 mm. This

distance is slightly different from that used in the training. The

reason for choosing a different distance is to further challenge

the DL network. Diffraction signals were recorded by a

detector (2032 � 2032 pixels) with an effective pixel size of

3.36 mm. A beam stop with an area of 2.5� 2.5 mm was placed

between the sample and the detector to block the direct

transmitted beam. A total of 181 diffraction images with an

exposure time of 500 s were acquired during a full sample

rotation of 360�, followed by recording 1601 absorption

tomographic projections (exposure time of 1.5 s) for recon-

structing the sample volume. An accelerating voltage of

160 kV and a power of 10 W were used for all the scans. The

LabDCT projections were then processed with the standard

routine and the DL method.

Using the standard routine, the LabDCT projections were

first processed by a rolling median correction through the

image stack to remove most of the background noise with the

beam-stop area excluded for further analysis. The diffraction

spots were then segmented using an LoG based approach.

This approach includes four parameters: a background value,

a standard deviation (SD) for the Gaussian filter, a percentage

value and a minimum spot size, which are required to be
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carefully tuned for optimizing spot segmentation. In this

approach the rolling-median-corrected image is subtracted by

the background value, then smoothed with the Gaussian filter

(the SD must be assigned) and subsequently processed with a

Laplacian operator. All the connected components in the

resulting image are then segmented one-by-one by applying a

threshold value that is a certain percentage of the maximum

intensity of the connected component. At last, any identified

spots smaller than a certain size are removed because they are

likely to be noise. More details on the standard routine for

spot segmentation can be found elsewhere (Fang et al., 2021).

The trained DL networks were directly applied to the

LabDCT projections, removing the background noise without

the need to tune any parameter. Since all the background

noise is cleaned (gray values become zero) and only the spots

are left by this method, segmentation to create binary images

is straightforward.

Based on the binary images output from either the standard

routine or the DL method, grain structures with a voxel size of

2.5 mm were reconstructed using a commercial software

(GrainMapper3D version 2.3, developed by Xnovo Tech-

nology ApS). A standard set of parameters for the grain

reconstruction (Fang et al., 2021) were used and held fixed for

all reconstructions. Therefore, the effects of reconstruction

parameters were excluded and the reconstruction is only

dependent on the method for creating the binary images.

Detailed descriptions of GrainMapper3D can be found in the

works of Bachmann et al. (2019) and Oddershede et al. (2019).

2.5. Comparison of the reconstructed grain structures
obtained by LabDCT with the ground truth obtained by
synchrotron measurements

The two LabDCT reconstructed grain structures, based on

the standard routine and the novel DL method, were

compared with that obtained by synchrotron DCT (SR-DCT)

measurements of the same iron sample. As reported in

previous studies (Reischig et al., 2013; Renversade et al., 2016;

Johnson et al., 2008; Syha et al., 2013), SR-DCT has an

orientation resolution of <0.1�, a detection limit of �5 mm

(smallest detectable grain in terms of equivalent spherical

diameter) and a spatial resolution [accuracy of grain boundary

(GB) position] of �1.5 mm for fully recrystallized grain

structures. LabDCT has a similar orientation resolution

(�0.1�), but a minimum detectable grain size of the order of

>20–40 mm (Bachmann et al., 2019) and a spatial resolution of

4.4–7 mm for grains larger than 40 mm (McDonald et al., 2015,

2021), whilst the spatial resolution becomes worse for smaller

grains (Fang et al., 2021). Although the indexing of small

grains might not be fully correct even with SR-DCT, the

spatial resolution and detection limit for SR-DCT are both

much better than LabDCT. Therefore, the grain structure

obtained by SR-DCT is used as the ground truth in the present

analysis. This grain structure dataset is referred to as SR-DCT.

Details of the SR-DCT measurement are reported by Zhang et

al. (2018), and information about the DCT setup and data

processing can be found in the works of Johnson et al. (2008)

and Ludwig et al. (2008, 2009).

Grain indexing was compared between each LabDCT

reconstruction and the ground truth. GB positions for each

commonly indexed grain were also compared and the differ-

ences were quantified. The GB deviation ("GB) for each voxel

in the SR-DCT dataset was calculated as the Euclidean

distance between this voxel and the nearest voxel on the

boundary of the paired grain in the LabDCT dataset. The

average GB deviation (�GB) can thus be calculated as

�GB ¼
1

Nvoxel;GB

X
"GB; ð4Þ

where Nvoxel, GB is the total number of GB voxels in the SR-

DCT dataset. Details of the method for such comparisons can

be found in the work of Fang et al. (2021). By comparing the

grain indexing and the GB positions found in the LabDCT

datasets with the ground truth, we can identify whether the

DL method can outperform the standard routine for the grain

mapping or not.

3. Results

3.1. DL training

The aim of the training of the DL network is to minimize

the validation loss. Fig. 3 shows the training loss and validation

loss as a function of training epoch. During the first step with

frozen learning, the loss values rapidly decrease in the first ten

epochs and then slowly decrease further [Fig. 3(a)]. During the
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Figure 3
Training and validation loss as a function of epoch number during (a) frozen learning with a constant learning rate of 10�2 and (b) unfrozen learning.



subsequent step with unfrozen learning, the training loss

continues to decrease while the validation loss becomes steady

after 15 epochs [Fig. 3(b)]. Therefore, the training was stopped

at the 49th epoch. As the parameter optimizing of the DL

networks is complex during training, the loss curve is often not

as smooth as the validation-loss curve in Fig. 3(b).

After the training is complete, the noise removal is found to

be very efficient. An example of the noise removal for the

input image x from the validation dataset can be seen in Fig. 2.

The figure shows that the DL output image ŷy contains only

spots and no background noise, i.e. very similar to the content

image yc .

3.2. Performance of the DL model for background removal in
real experimental images

After being trained, the DL model was applied to process

the experimental LabDCT images. An example of the DL

output and the experimental input image is shown in Figs. 4(a)

and 4(b) (here only one quarter of the image is shown – the

whole image is shown in Fig. 5). It can be seen that the

background is totally black, leaving only diffraction spots

brightly visible in the DL output. A quantitative comparison is

shown by pixel-value profiles along two line scans: diagonal as

well as horizontal [Figs. 4(c) and 4(d), respectively]. Both line

scans show that the spots are recovered with sharp peaks and

the background intensities are reduced to zero everywhere,

regardless of location (such as the corner and the beam-stop

region) in the image. This confirms that the background noise

has been completely removed. The intensities of most spots

are recovered to 255 (the maximum pixel value for an eight-bit

image). A few spots, recovered from very weak experimental

spots, have lower intensities after the DL cleaning [e.g. the

small peak for the diagonal line scan shown in Fig. 4(c)]. This

is reasonable because the model has not been trained to

exactly restore all the pixel values, as indicated by the non-

zero loss value at the end of the training [see Fig. 3(b)],

although a minimal loss value has been reached. Nevertheless,

Fig. 4 shows that all the recovered spots have intensities

significantly higher than zero. This means that the spots in the

output image can be easily and precisely segmented by

applying a single threshold value.

A comparison of the segmented binary images obtained by

the DL method and the standard routine is shown in Fig. 5.

Using the DL method with the experimental image as the

input, the output only contains spots [see Fig. 5(b)], and thus it

is straightforward to segment (here with a threshold value of

five) and create the binary image as shown in Fig. 5(c). Using

the standard routine, a rolling median correction was first

applied to reduce the background noise of the experimental

image [resulting in Fig. 5(e)], and then an LoG-based

approach was employed for spot segmentation. Given an

optimized combination of these parameters, the segmented

image is shown in Fig. 5( f). We also plotted the distribution of

the SNRs in comparison with the synthesized DL input images

[see Fig. S1(b)].

From the images showing the difference between the

segmentation and the experimental image [Figs. 5(d) and

5(g)], we can see that spots are well segmented using the DL

method [no visible bright areas are seen in Fig. 5(d), such

bright areas would mean bad spot segmentation]. Using the

standard procedure, there are some bright areas corre-

sponding to mis-segmented spots or parts of spots, which are

still clearly seen in Fig. 5(g) (marked by the arrows). Upon

close examination it is found that these bright areas very often

are connected to spots with higher intensities. There may be

two reasons for this mis-segmentation by the standard

procedure: (i) during the rolling median correction, parts of

spots can be removed when too many spots at different

projections are present at the same pixel position through the

image stack, and (ii) during LoG processing the threshold

value determined by the percentage of maximum intensity of

the whole connected region is too high to segment the weaker

spots.
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Figure 4
DL output for an experimental LabDCT image. (a) The experimental image (with pixel values between 38 and 255), (b) the DL output image (with pixel
values between 0 and 255, only 1/4 of the full images are shown here), and pixel-value profiles of line scans in (c) diagonal and (d) horizontal directions of
the two images. The dashed lines in (c) and (d) indicate the maximum pixel value of 255.



Deficiencies of the standard routine thus demonstrate two

clear benefits gained by the DL model: a more precise spot

segmentation and no need to tune parameters.

3.3. Comparison of reconstructed grain structures

3.3.1. Grain indexing. Fig. 6 shows the LabDCT recon-

structions by the standard routine (Lab-Routine) and by DL

(Lab-DL), together with the synchrotron dataset (SR-DCT),

the latter being the ground truth. While the grain structures

are largely consistent, significant differences in grain indexing

and grain shapes can be seen upon close examination,

especially from 2D slices. Some grains are seen in the slice of

SR-DCT but are not seen in any of the two LabDCT slices

[see the red arrows in Fig. 6(a)]. By checking slices at other

locations, we found that all these grains except grain #693 exist

in other sections of both LabDCT datasets, indicating a

significant spatial shift for reconstructions of these grains.

Comparison of the LabDCT dataset with SR-DCT shows that

more grains are present in the same slice of Lab-DL than
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Figure 5
Comparison of the steps to create binarized spot images from (a) an experimental image using (b), (c) the DL method and (e), ( f ) the standard routine.
Furthermore, (d) and (g) are the results of arithmetic operations on the experimental and binary images: a � ac and a � af, respectively, showing the
performance of the segmentations. Red arrows in (g) mark spots that are not segmented by the standard routine.

Figure 6
Grain structures visualized in 3D in the top row and as slices normal to the Z axis (sampled at a distance of 115 mm from the top surface) in the bottom
row. Grains are colored with Z-direction inverse-pole-figure colors. (a) SR-DCT, and LabDCT datasets obtained using (b) the standard routine and (c)
DL. Grains of interest are marked by red and blue arrows in the slices (some are shown with their grain IDs).



Lab-Routine, as seen for the grains marked by the blue arrows

in Fig. 6(c). Among these grains, grain #148 and #393 cannot

be found in other slices of Lab-Routine, which means that they

are not indexed by Lab-Routine.

Statistics of the grain indexing are given in Table 2. Both the

two LabDCT datasets index far fewer grains (mostly small

ones of <20 mm) than SR-DCT, resulting in a slightly larger

value of the average grain size hDi. Interestingly, the hDi value

in Lab-Routine is closer to that of SR-DCT than Lab-DL. This

seems to imply that Lab-Routine provides a better grain

reconstruction. However, comparisons of the grain volumes

indicate that the volumes of small grains are more severely

underestimated (which is less accurate) in Lab-Routine than

in Lab-DL, leading to a slightly smaller average grain size in

Lab-Routine, although there are more grains indexed in Lab-

DL (see the plot of grain size distributions in Fig. S2 and the

total volume of the reconstructed grains in Table S2).

All the grains in the datasets can be classified into four

groups: one-to-one indexed, one-to-multi indexed (one grain

in SR-DCT is indexed by more than one grain in the LabDCT

dataset), false-negatively indexed (a grain that is not indexed

in the LabDCT dataset but actually exists in the ground truth)

and false-positively indexed (a grain that is indexed in the

LabDCT dataset but actually does not exist in the ground

truth). The first two groups are true-positively indexed. It is

found that there are 12 more one-to-one indexed (mostly

grains of <30 mm) and 11 fewer false-negatively indexed grains

in Lab-DL than Lab-Routine, whilst the number of one-to-

multi and false-positively indexed grains is very similar. This

suggests that DL improves the grain indexing.

3.3.2. GB positions. There are 388 commonly indexed

grains between Lab-Routine and Lab-DL. The boundary

positions of these grains in the LabDCT datasets are

compared with those in SR-DCT. Fig. 7(a) plots the average

deviation of the GB voxels (�GB) as a function of grain size (D)

for both Lab-Routine and Lab-DL. In both datasets, values of

�GB are low and of similar magnitude for large grains, while

they rapidly increase with decreasing grain size for D < 40 mm.

This is consistent with our previous observation that �GB is

grain size dependent and is larger for smaller grains (Fang et

al., 2021). Comparison for each individual grain shows that

�GB is generally smaller in Lab-DL than in Lab-Routine [Fig.

7(a)], especially for the smaller grains. This becomes more

evident when the �GB ratio of Lab-Routine to Lab-DL is

plotted as a function of grain size [Fig. 7(b)]. The figure shows

that the ratio is larger than one for 73% of the grains. The

average value is 1.17 with a maximum value of 3.4 and the SD

is 0.28. This suggests that GB positions are more accurately

reconstructed with DL than with the standard routine. As

the accuracy of the GB position is an indicator of spatial

research papers

726 H. Fang et al. � Deep learning for improving non-destructive grain mapping IUCrJ (2021). 8, 719–731

Figure 7
Comparison of accuracies in GB positions between datasets of Lab-Routine and Lab-DL for the common 388 one-to-one indexed grains. (a) �GB and (b)
�GB ratios of the standard routine to DL as a function of grain size. Error bars for each data point are not plotted for visual purpose but an average value
of the error bar (2.1 and 1.6 pixels, respectively) is plotted instead. In (b) the average �GB ratio is 1.17 and the SD is 0.28. The �GB ratios for grains #263
and #276 are pointed out by arrows.

Table 2
Statistics of indexed grains in the synchrotron dataset (SR-DCT), and in the LabDCT datasets obtained by the standard routine (Lab-Routine) and deep
learning (Lab-DL).

Grain size is expressed as a mean value, hDi, with a standard deviation. For one-to-multi indexed grains, the number of grains, N, in SR-DCT is given as well as the
paired number of grains in the LabDCT datasets listed in brackets.

Dataset hD i (mm)

N

Total
indexed

One-to-one
indexed

One-to-multi
indexed

False-negatively
indexed

False-positively
indexed

SR-DCT 39.6 � 22.4 596 — — — —
Lab-Routine 42.9 � 27.0 418 403 5 (10) 188 5
Lab-DL 43.6 � 26.0 429 415 4 (8) 177 6



resolution, it can be concluded that on average the spatial

resolution can be improved by 17% using DL instead of the

standard routine.

Examples of comparing GB deviations for each voxel ("GB)

are shown for grains #263 and #276 in Figs. 8(a)–8(c) and 8(d)–

8( f), respectively. The two grains have a similar grain size of

�46 mm, and for both grains Lab-DL gives a more precise

grain size than Lab-Routine. For grain #263 the values of "GB

are as high as 25 pixels for a considerable number of GB

voxels in Lab-Routine, whereas they are at highest 14 pixels

for only a handful of GB voxels in Lab-DL. As a result, the

average value of "GB, i.e. �GB, for grain #263 in Lab-Routine is

3.4 times that in Lab-DL [see also the marked data point for

the ratio in Fig. 7(b)]. For grain #276 the difference is smaller

but still observable, showing a smaller �GB in Lab-DL than

Lab-Routine [a �GB ratio of 1.9, as shown in Fig. 7(b)].

3.3.3. Reasons for better grain indexing and shape
reconstruction with DL. The improved indexing and shape

reconstruction (thus spatial resolution) are attributed to a

more precise spot segmentation with DL than with the stan-

dard routine. As already shown in Fig. 5, DL has an advantage

in segmenting weak spots and also closely located ones, which

can be either partly missed or segmented as a single spot with

the standard routine. Such difference in spot segmentation can

lead to different grain indexing results. As an example, Fig. 9

shows the differences in spot segmentation as well as indexing
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Figure 9
Comparison of spot segmentation using the standard routine and DL for grains at a specific rotation angle (!). The figure shows (a) regions of interest
cropped from experimental LabDCT projections, (b) segmented images using the standard routine and (c) segmented images using DL. Since the two
grains are correctly indexed with DL, the forward simulated spots are overlaid onto (c) with the zoom-in views shown in (d). Arrows mark the location of
the spots in each image. The top row shows spot (112) for grain #442 at ! = �2� and the bottom row shows spot ð1�330Þ for grain #442 at ! = �38�.

Figure 8
Comparison of GB positions between the two LabDCT datasets (Lab-Routine and Lab-DL) and SR-DCT for (a)–(c) grain #263 and (d)–( f ) grain #276.
For the LabDCT datasets, deviation maps of GB positions are shown in connection with voxelized volumes. Pixels that completely match are shown as
transparent in the deviation maps. The values of �GB are given for each deviation map. The grain size (denoted as D) is given for each reconstruction.



results for two grains. For both grains, the experimental spots

are rather weak. Thus with the standard routine, they are not

segmented for grain #442 or poorly segmented from being

connected to a neighboring spot for grain #468 [see Fig. 9(b)].

As a result, neither of them are indexed in Lab-Routine.

Conversely, these spots are well segmented with DL [see Fig.

9(c)]. Therefore, the two grains are successfully indexed. This

is documented by the fact that forward simulated spots are

overlapped with the experimental ones [see Fig. 9(d)].

It can also be seen from Fig. 9 that the spot boundaries are

more precisely identified by DL than by the standard routine

for segmenting of the same experimental spots. In general, the

spots are segmented as a bit larger/fatter by the standard

routine than by DL, due to incorrect noise removal. This is

expected to be the main reason for the improved spatial

resolution with DL. Some noise is also segmented as small

spots with the standard routine [see Fig. 9(b)], which might not

be problematic in this case but can cause unexpected false-

positive indexing if such incorrect over-segmentation is

dominating.

4. Discussion

4.1. Advantages of the DL method over the standard routine

A key to maximizing the performance of the DL method is

proper training. As proposed in our preliminary work (Hovad

et al., 2020), this training can be unsupervised (i.e. free of

tedious and time-consuming human manual labeling) by using

forward simulated images. Important here is how to get these

forward simulated images to mimic real experimental images.

In this work, a procedure combining forward simulated images

with the background noise extracted from real experimental

images, plus a Poisson noise, is used. It is shown that this

procedure makes the input image comprising spatially varying

low- and high-frequency noise and the content image ideal for

training the DL model. This procedure allows one to create an

unlimited number of images. Notably, this method for gener-

ating synthetic input images is of a generic nature and can be

applied to synthesize images for other DL neural networks.

In the present study, the SNRs in the synthesized input

images cover the whole range of typical experimental

LabDCT images (from 0.1 to 28, see Fig. S1). It is presumed

that the difference in performance between the DL method

and the standard routine would be less significant if the SNR

was further increased. Much better SNRs would however

require longer experimental measuring times. As it is often not

realistic to spend such long times, which would also increase

source drifts etc., we do not investigate situations with very

high SNR values. The main aim of using the DL method is to

improve segmentation of small and/or weak spots (usually

with low SNR), which are critical for improving grain

mapping. A further in-depth investigation to optimize DL

performance for LabDCT images with low or ultra low SNRs,

resulting from short exposure times, will be of higher value in

practice to save measuring time without sacrificing the grain-

reconstruction quality.

Mainly two limitations have been recognized for the stan-

dard routine: (1) the spot segmentation is sensitive to filtering

parameters and thus the parameters must be carefully tuned;

and (2) spots, especially the ones with relatively low SNRs, are

often under- or over-segmented even with optimized para-
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Figure 10
(a)–(d) Different types of LabDCT images and (e)–(h) the corresponding DL output images. The sample information and acquisition conditions of the
experimental images are as follows: (a) a fully recrystallized pure iron with an average grain size of �40 mm, an exposure time of 500 s, no pixel binning
and Lss = Lsd = 13 mm; (b) the same sample, exposure time and pixel binning as (a), but Lss = 11 mm and Lsd = 18 mm; (c) a fully recrystallized pure iron
sample with an average grain size of 25 mm, an exposure time of 300 s, a pixel binning of 2 and Lss = Lsd = 11 mm; and (d) a partially recrystallized
aluminium sample with an exposure time of 600 s, no pixel binning and Lss = Lsd = 14 mm. The average SNRs for images (a)–(d) are 3.9 � 1.9, 4.1 � 2.0,
4.6 � 1.4 and 1.4 � 0.5, respectively.



meter settings. The former limitation requires extensive

human expertise, and the latter hinders the improvement of

both the detection limit and the spatial resolution for

LabDCT. Notably, there is no single set of parameters that

work properly for all the spots with the standard routine.

There is always a trade-off between saving weak/small spots

and removing spots from noise (Lindkvist et al., 2021). Using

the DL method, the background noise can be completely

removed and the remaining spots can be segmented easily.

During the training of the DL model, a few parameters such as

batch size, image size and number of epochs have to be

adjusted. However, the basis for the adjustment is simple – just

to maximize the values for these parameters within the limits

of the capability of the computer system [e.g. the graphics

processing unit (GPU) memory size].

4.2. Versatility of the DL model

The trained DL model has been demonstrated to be

remarkably efficient in removing background noise, thereby

enabling a precise spot segmentation for the LabDCT images

from the iron sample in the Laue focusing geometry as shown

in Figs. 4, 5 and 9. It also performs rather well for other

LabDCT images. This is illustrated in Fig. 10. It can be seen

that all the DL output images for various types of experi-

mental images, measured under different conditions (exposure

time, geometries, etc.) or for different samples, show a zero

background whilst the spots are left brightly visible. The

images shown in Figs. 10(a)–10(c) represent the most common

types of LabDCT images for fully recrystallized samples with

grain sizes in the range 5–200 mm. A very different type of

image measured for a partially recrystallized aluminium

sample is shown in Fig. 10(d). Also for this image, the DL

model performs adequately. This is impressive as no partially

recrystallized grain structures were included in the training of

the model and the SNR range is slightly lower than those used

for training the DL model. All the spots in Fig. 10(d) are

recovered as shown in Fig. 10(h), and only the large ‘blobs’,

caused by diffraction from a deformed grain in the sample, are

overestimated due to streaks (but still with intensities signifi-

cantly higher than the background). The method for synthe-

sizing images can easily be adapted to include this particular

type of LabDCT image for training the DL model if an even

more precise spot segmentation is desired.

The efficient noise removal for the different types of images

demonstrates the excellent versatility of the DL model. Given

the generic nature of the procedure to prepare images for

training the DL model, the model is flexible and easy to

retrain to include new types of LabDCT images (e.g. a very

different type of sample or background noise). Therefore, the

output can be optimized and a better grain mapping can be

obtained. Given its significant advantages over the standard

routine and its efficiency for implementation, the DL method

offers substantial opportunities to advance the LabDCT

technique.

5. Conclusions

We have developed a DL model to clean the background noise

of LabDCT images for efficient spot identification. The DL

model is trained in an unsupervised manner, avoiding the need
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Figure 11
Creating a normalized background-noise image from experimental LabDCT projections. The figure shows (a) an experimental LabDCT projection. For
part (b) most of the spots in the experimental projection are identified and removed by a segmentation method combining a Sobel filtering and binary
thresholding. For (c) a filling-mask image is obtained by convoluting the image containing the segmented spots with a Gaussian filter (size = 2 pixels and
SD = 1 pixel) followed by a dilation in a disk shape with a radius of 13 pixels. Part (d) involves filling the regions in (b) specified by the mask image (c),
while (e) is the background-noise image obtained by rolling median over 60 sequential images of (d) followed by dividing by the maximum pixel value.
Finally, ( f ) is a color scale of (e) showing the heterogeneous gradients of intensities.



for human labeling and intervention. This is realized by

combining a forward simulation model and a generic proce-

dure to extract experimental background noise, resulting in

input images that are as real as experimental images and

content images that are ideal as the ground truth for the

training. The following conclusions can be drawn.

(a) The DL model is excellent in removing the background

noise for various types of LabDCT images, making the model

a sophisticated tool to handle challenging circumstances of

spot identification, e.g. to identify weak or overlapped spots. It

is fast and straightforward to apply the DL model to real

experimental images once it is trained. The DL method

enables more precise spot segmentation in a more straight-

forward way (no need to tune parameters) compared with the

standard routine.

(b) The DL model improves grain mapping compared with

the results of the standard routine. This was demonstrated by

grain reconstructions of an iron sample. Compared with the

standard routine, more than ten grains (mostly <30 mm, which

are typically challenging to index) were indexed and the

spatial resolution (i.e. accuracy of the GB position) improved

by 17% on average using the DL method.

The proposed approach allows one to create an unlimited

amount of training data based on the forward simulations,

thereby circumventing the common challenge of having a

limited amount of training data. This approach is transferrable

and can easily export training data for other DL models with

other purposes. The versatility and the other advantages over

the standard routine make the DL model a promising method

for improving grain mapping techniques.

APPENDIX A
Generation of a normalized background-noise image

As shown in Fig. 11, spots in an experimental image are

segmented by a combination of Sobel filtering (Sobel, 2014)

and binary thresholding; this segmentation does not need to

be ideal as the purpose is only to remove most of the bright

spots from the input, as shown in Fig. 11(b). Then, a filling-

mask image [Fig. 11(c)] is generated to define the regions with

nonzero pixel values for filling the neighboring ‘holes’,

followed by a Gaussian filtering, resulting in Fig. 11(d). To get

rid of the local intensity variations caused by the filling

process, a rolling median process over a large number (e.g. 60)

of sequential images is applied. The obtained image is

subsequently normalized by dividing all pixel values by the

maximum one, rendering the final image as shown in

Fig. 11(e). Fig. 11( f) shows the final image in a pseudo-colored

version.
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